Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Fhb9, a major QTL for Fusarium head blight resistance improvement in wheat
Fuping Zhang1, Hongjun Zhang2, Jilu Liu1, Xiaomeng Ren1, Yanpeng Ding1, Fangyao Sun1, Zhenzhen Zhu1, Xi He1, Yang Zhou2, Guihua Bai3#, Zhongfu Ni1, Qixin Sun1, Zhenqi Su1#

1 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100083, China

2 The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China 

3 US Department of Agriculture, Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, USA 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  由禾谷镰刀菌(Fusarium graminearum)引起的赤霉病是影响小麦生产的世界性重要病害。发掘并验证抗性稳定、效应大且对重要农艺性状无不良效应的抗病基因位点(QTL),对成功培育小麦赤霉病抗病品种十分重要本研究利用小麦品种4185“石家庄8构建的RIL群体,田间和温室环境下分别对其进行赤霉病抗性鉴定,通过QTL分析4185”2DL染色体上定位了一个稳定的赤霉病抗性主效QTL对目标QTL区间位置和供体亲本的遗传系谱分析发现,该QTL与已知来源于5265”赤霉病抗性主效QTL—QFhb-2DL为相同位点,我们将之命名为Fhb9根据外显子捕获测序分析结果,我们在抗、感品种QTL候选区间发现了4个多态性位点并将之转化为KASP标记。利用加密的遗传图谱将Fhb9定位于标记KASP-525525.9 Mb)和KASP-12056533.8 Mb)区间,可解释26.0-30.1%抗性表型变异。Fhb9等位基因的地理分布表明,抗性等位基因源于我国黄淮冬麦区Fhb9抗性等位基因在现有育成品种中存在率较低,表明尚未被广泛用于小麦赤霉病抗性的遗传改良。除赤霉病抗性外,田间和温室条件下Fhb9近等基因系重要产量性状上无显著差异,表明抗性等位基因对重要农艺性状无明显负效应。研究表明Fhb9Fhb1存在加性效应,共同提高赤霉病抗性。综上Fhb9是重要的赤霉病抗性QTL,在小麦赤霉病抗性遗传改良中具有重要的应用价值,本研究开发的与之紧密连锁近诊断性标记为Fhb9有效利用提供了重要支撑。

Abstract  Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is one of the most devastating diseases of wheat worldwide. Identification and validation of major quantitative trait loci (QTLs) for FHB resistance without negative effects on agronomic traits is critical to success in breeding FHB-resistant cultivars.  In this study, a stable major QTL on chromosome arm 2DL was identified by evaluating a recombinant inbred line (RIL) population derived from Shi4185×Shijiazhuang 8 in both field and greenhouse experiments.  QTL mapping and pedigree analyses indicated that the 2DL QTL is the same QTL as QFhb-2DL previously identified in Ji5265, therefore, designated Fhb9.  Four kompetitive amplicon sequence polymorphism (KASP) markers were developed based on exome capture sequencing data to enhance marker density in the Fhb9 region, and it was delimited to an interval between single nucleotide polymorphism (SNP) markers KASP-12056 (533.8) and KASP-525 (525.9 Mb) explained 26.0-30.1% of the phenotypic variation.  Analysis of the geographic distribution of the Fhb9 resistance allele suggested that it originated from Huang-Huai winter wheat region in China, and very low frequency of Fhb9 in modern Chinese cultivars reveals that it has not been widely deployed in breeding programs.  Field and greenhouse evaluation of yield-related traits of near-isogenic lines (NILs) contrasting in Fhb9 alleles indicated that Fhb9 resistance allele did not show any adverse effects on those traits.  Fhb9 showed an additive effect on enhancing FHB resistance with Fhb1.  Therefore, Fhb9 is a valuable major QTL for improving FHB resistance in wheat and the near-diagnostic markers developed in this study will facilitate its deployment in wheat breeding programs.
Keywords:  Fusarium       head blight              QFhb-2DL              QTL validation              diagnostic markers              Fhb9  
Online: 11 April 2024  
About author:  Fuping Zhang, E-mail: zhangfp0129@163.com; #Correspondence Zhenqi Su, Tel: +86-10-62734072, E-mail: suzhenqi80@cau.edu.cn; Guihua Bai, E-mail: guihua.bai@usda.gov

Cite this article: 

Fuping Zhang, Hongjun Zhang, Jilu Liu, Xiaomeng Ren, Yanpeng Ding, Fangyao Sun, Zhenzhen Zhu, Xi He, Yang Zhou, Guihua Bai, Zhongfu Ni, Qixin Sun, Zhenqi Su. 2024. Fhb9, a major QTL for Fusarium head blight resistance improvement in wheat. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.03.045

Allen G C, Flores-Vergara M A, Krasynanski S, Kumar S, Thompson W F. 2006. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature Protocols, 1, 2320-2325.

Bernardo R. 2008. Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Science, 48, 1649-1664.

Buerstmayr M, Steiner B, Buerstmayr H, Léon J. 2019. Breeding for Fusarium head blight resistance in wheat—Progress and challenges. Plant Breeding, 139, 429-454.

Cainong J C, Bockus W W, Feng Y, Chen P, Qi L, Sehgal S K, Danilova T V, Koo D H, Friebe B, Gill B S. 2015. Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat. Theoretical and Applied Genetics, 128, 1019-1027.

Chen A H, Islam T, Ma Z H. 2022. An integrated pest management program for managing fusarium head blight disease in cereals. Journal of Integrative Agriculture, 21, 3434-3444.

Chen S L, Zhang Z L, Sun Y Y, Li D S, Gao D R, Zhan K H, Cheng S H. 2021. Identification of quantitative trait loci for Fusarium head blight (FHB) resistance in the cross between wheat landrace N553 and elite cultivar Yangmai 13. Molecular Breeding, 41, 24.

Cuthbert P A, Somers D J, Brule-Babel A. 2007. Mapping of Fhb2 on chromosome 6BS: A gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 114, 429-437.

Gao X, Li F, Sun Y, Jiang J, Tian X, Li Q, Duan K, Lin J, Liu H, Wang Q.2023. Basal defense is enhanced in a wheat cultivar resistant to Fusarium head blight. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2023.06.014.

Hu W J, Fu L P, Gao D R, Li D S, Liao S, Lu C B. 2023. Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in the high-quality soft wheat cultivar Yangmai 15. Journal of Integrative Agriculture, 22, 360-370.

Hu X, Rocheleau H, Mccartney C, Biselli C, Bagnaresi P, Balcerzak M, Fedak G, Yan Z, Vale G, Khanizadeh S, Ouellet T. 2019. Identification and mapping of expressed genes associated with the 2DL QTL for fusarium head blight resistance in the wheat line Wuhan 1. BMC Genetics, 20, 47.

Jiang G L, Shi J, Ward R W. 2007. QTL analysis of resistance to Fusarium head blight in the novel wheatgermplasm CJ 9306. I. Resistance to fungal spread. Theoretical and Applied Genetics, 116, 3-13.

Jiang P, Zhang X, Wu L, He Y, Zhuang W, Cheng X, Ge W, Ma H, Kong L. 2019. A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarium head blight in wheat. Plant Pathology, 69, 249-258.

Kage U, Karre S, Kushalappa A C, Mccartney C. 2017. Identification and characterization of a fusarium head blight resistance gene TaACT in wheat QTL-2DL. Plant Biotechnology Journal, 15, 447-457.

Li G, Zhou J, Jia H, Gao Z, Fan M, Luo Y, Zhao P, Xue S, Li N, Yuan Y, Ma S, Kong Z, Jia L, An X, Jiang G, Liu W, Cao W, Zhang R, Fan J, Xu X, et al. 2019. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nature Genetics, 51, 1106-1112.

Li H, Zhang F, Zhao J, Bai G, Amand P S, Bernardo A, Ni Z, Sun Q, Su Z. 2022. Identification of a novel major QTL from Chinese wheat cultivar Ji5265 for Fusarium head blight resistance in greenhouse. Theoretical and Applied Genetics, 135, 1867-1877.

Ma Z, Xie Q, Li G, Jia H, Zhou J, Kong Z, Li N, Yuan Y. 2020. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theoretical and Applied Genetics, 133, 1541-1568.

Mcmullen M, Jones R, Gallenberg D. 1997. Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Disease, 81, 1340-1348.

Meng L, Li H, Zhang L, Wang J. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 3, 269-283.

Qi L L, Pumphrey M O, Friebe B, Chen P D, Gill B S. 2008. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theoretical and Applied Genetics, 117, 1155-1166.

Radecka-Janusik M, Piechota U, Piaskowska D, Goral T, Czembor P. 2022. Evaluation of Fusarium head blight resistance effects by haplotype-based genome-wide association study in winter wheat lines derived by marker backcrossing approach. International Journal of Molecular Sciences, 23, 14233.

Steiner B, Buerstmayr M, Michel S, Schweiger W, Lemmens M, Buerstmayr H. 2017. Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Tropical Plant Pathology, 42, 165-174.

Su Z, Bernardo A, Tian B, Chen H, Wang S, Ma H, Cai S, Liu D, Zhang D, Li T, Trick H, St Amand P, Yu J, Zhang Z, Bai G. 2019. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nature Genetics, 51, 1099-1105.

Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Lyu Z, Chen L, Xu S, Guo J, Li M, Su P, Li X, Wang G, Bo C, Fang X, Zhuang W, Cheng X, Wu J, Dong L, et al. 2020. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 368, 822-823.

Wang X, Li G, Jia H, Cheng R, Zhong J, Shi J, Chen R, Wen Y, Ma Z. 2024. Breeding evaluation and precise mapping of Fhb8 for Fusarium head blight resistance in wheat (Triticum aestivum). Plant Breeding, 143, 26-33.

Wu L, He X, He Y, Jiang P, Xu K, Zhang X, Singh P K. 2022. Genetic sources and loci for Fusarium head blight resistance in bread wheat. Frontiers in Genetics, 13, 988264.

Xiao J, Chen Y, Lu Y, Liu Z, Si D, Xu T, Sun L, Wang Z, Yuan C, Sun H, Zhang X, Wen M, Wei L, Zhang W, Wang H, Wang X. 2021. A natural variation of an SVP MADS-box transcription factor in Triticum petropavlovskyi leads to its ectopic expression and contributes to elongated glume. Molecular Plant, 14, 1408-1411.

Xue S, Li G, Jia H, Xu F, Lin F, Tang M, Wang Y, An X, Xu H, Zhang L, Kong Z, Ma Z. 2010. Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 121, 147-156.

Xue S, Xu F, Tang M, Zhou Y, Li G, An X, Lin F, Xu H, Jia H, Zhang L, Kong Z, Ma Z. 2011. Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 123, 1055-1063.

Zhang P, Guo C, Liu Z, Bernardo A, Ma H, Jiang P, Song G, Bai G. 2021. Quantitative trait loci for Fusarium head blight resistance in wheat cultivars Yangmai 158 and Zhengmai 9023. The Crop Journal, 9, 143-153.

Zhu T, Wang L, Rimbert H, Rodriguez J C, Deal K R, De Oliveira R, Choulet F, Keeble-Gagnere G, Tibbits J, Rogers J, Eversole K, Appels R, Gu Y Q, Mascher M, Dvorak J, Luo M C. 2021. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. Plant Journal, 107, 303-314.

Zhuang Q. 2002. Chinese Wheat Improvement and Pedigree Analysis. China Agriculture Press, China. (in Chinese)

No related articles found!
No Suggested Reading articles found!