Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (1): 366-376    DOI: 10.1016/j.jia.2025.04.014
Agricultural Economics and Management Advanced Online Publication | Current Issue | Archive | Adv Search |

Does the adoption of direct-seeded rice affect pesticide use?  Evidence from China

Chao Zhang1#, Shanshan Li1, Fan Yang1, Ruifa Hu2

1 School of Economics, Beijing Institute of Technology, Beijing 102488, China

2 Institute of Advanced Agricultural Sciences, Peking University, Weifang 262113, China

 Highlights 
The adoption of direct-seeded rice (DSR) increases pesticide expenditure by 401.72 CNY ha–1 in China’s Yangtze River Basin.
DSR adoption demonstrates the most substantial positive impact on insecticide expenditure, and the least positive impact on herbicide expenditure.
DSR adoption exhibits a stronger positive impact on pesticide expenditure among farmers under 60 years of age, with minimum 6 years of education, and managing rice sown areas below 2 ha.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

在中国,越来越多农民采用直播稻。虽然直播稻的影响得到了一些研究,但直播稻采用对农药施用影响的证据却很少。本研究利用2018年对中国长江流域982位稻农的调查数据,研究了直播稻采用对农药施用的影响,并且采用内生处理回归模型和转换回归模型来解决自选择问题。结果表明,在考虑自选择问题后,采用直播稻的农户与未采用直播稻的农户相比,每公顷多花费401.72元购买农药。虽然直播稻采用大幅增加了杀虫剂、杀菌剂和除草剂的使用,但其对杀虫剂和除草剂支出的正向影响分别最大和最小。通过替换因变量、对研究样本进行极端值删除以及改变计量估计方法,本研究证实了研究结果的稳健性。异质性分析表明,对于年龄在60岁以下、至少受过6年教育、水稻播种面积小于2公顷的农民来说,直播稻采用对农药支出的正向影响更大。基于这些结果,本研究建议应加强直播稻配套技术普及、直播稻栽培技术推广和社会化服务。总之,本研究更加全面地论述了直播稻的优缺点,重点关注其对农药施用的影响,为减少农药施用提出了重要的政策建议。



Abstract  
In China, farmers have increasingly adopted direct-seeded rice (DSR).  While various impacts of DSR have been studied, limited evidence exists regarding the effect of DSR adoption on pesticide use.  This study examines the impact of DSR adoption on pesticide use utilizing data from a 2018 survey of 982 rice farmers in China’s Yangtze River Basin.  The endogenous treatment-regression and switching regression models are employed to address self-selection bias.  The results indicate that, after accounting for self-selection, DSR adopters spend 401.72 CNY ha–1 more on pesticides compared to non-adopters.  Although DSR adoption significantly increases the use of insecticides, fungicides and herbicides, its impact is most pronounced for insecticide expenditure and least pronounced for herbicide expenditure.  The findings remain robust when altering the dependent variable, truncating the research sample, and modifying the estimation method.  Heterogeneous analysis reveals that DSR adoption has a stronger positive impact on pesticide expenditure among farmers below 60 years of age, with at least 6 years of education, and managing rice sown areas less than 2 ha.  Based on these findings, this study recommends enhancing complementary techniques for DSR, improving the dissemination of DSR cultivation technologies, and strengthening socialized services.  This research provides a comprehensive assessment of DSR’s advantages and disadvantages, particularly regarding pesticide use, offering important policy implications for pesticide reduction.
Keywords:  direct-seeded rice        pesticide use       self-selection issue       labor-saving technology       China  
Received: 24 March 2024   Accepted: 03 April 2025 Online: 18 April 2025  
Fund: 

This work was supported by the General Project of Humanities and Social Sciences Research of the Ministry of Education of China (24YJA790085), and the Science and Technology Innovation Program of Beijing Institute of Technology, China (2024CX01020).

About author:  #Correspondence Chao Zhang, E-mail: zhangchao@bit.edu.cn

Cite this article: 

Chao Zhang, Shanshan Li, Fan Yang, Ruifa Hu. 2026.

Does the adoption of direct-seeded rice affect pesticide use?  Evidence from China . Journal of Integrative Agriculture, 25(1): 366-376.

Anderson E, Lybbert T J, Shenoy A, Singh R, Stein D. 2024. Does survey mode matter? Comparing in-person and phone agricultural surveys in India. Journal of Development Economics166, 103199.

Bayramoglu B, Chakir R. 2016. The impact of high crop prices on the use of agro-chemical inputs in France: A structural econometric analysis. Land Use Policy55, 204–211.

Biswakarma N, Pooniya V, Zhiipao R R, Kumar D, Verma A K, Shivay Y S, Lama A, Choudhary A K, Meena M C, Bana R S, Pal M, Das K, Sudhishri S, Jat R D, Swarnalakshmi K. 2021. Five years integrated crop management in direct seeded rice-zero till wheat rotation of north-western India: Effects on soil carbon dynamic, crop yields, water productivity and economic profitability. AgricultureEcosystems and Environment318, 107492.

Cabangon R J, Tuong T P, Abdullah N B. 2002. Comparing water input and water productivity of transplanted and direct-seeded rice production systems. Agricultural Water Management57, 11–31.

Caton B P, Foin T C, Hill J E. 1999. A plant growth model for integrated weed management in direct-seeded rice: I. Development and sensitivity analyses of monoculture growth. Field Crops Research62, 129–143.

Chatzimichael K, Genius M, Tzouvelekas V. 2022. Pesticide use, health impairments and economic losses under rational farmers behavior. American Journal of Agricultural Economics104, 765–790.

Chen P, Lu J. 2013. Research advances on the physiological and ecological characteristics and cultivation techniques of direct seeding rice in the middle-lower Yangtze Area. Journal of Nuclear Agricultural Sciences27, 487–494. (in Chinese)

Dong D, Wang J. 2023. Air pollution as a substantial threat to the improvement of agricultural total factor productivity: Global evidence. Environment International173, 107842.

Fang Y, Zhao Y. 2011. Looking for instruments for institutions: Estimating the impact of property rights protection on Chinese economic performance. Economic Research Journal5, 138–148. (in Chinese)

Farooq M, Siddique K H M, Rehman H, Aziz T, Lee D J, Wahid A. 2011. Rice direct seeding: Experiences, challenges and opportunities. Soil and Tillage Research111, 87–98.

Feng S, Han Y, Qiu H. 2021. Does crop insurance reduce pesticide usage? Evidence from China. China Economic Review69, 101679.

Gao J, Gai Q, Liu B, Shi Q. 2021. Farm size and pesticide use: Evidence from agricultural production in China. China Agricultural Economic Review13, 912–929.

Gong Y, Baylis K, Kozak R, Bull G. 2016. Farmers’ risk preferences and pesticide use decisions: Evidence from field experiments in China. Agricultural Economics47, 411–421.

Guo L, Cao A, Huang M, Li H. 2021. Effects of haze pollution on pesticide use by rice farmers: Fresh evidence from rural areas of China. Environmental Science and Pollution Research28, 62755–62770.

Hou L, Liu P, Huang J, Deng X. 2020. The influence of risk preferences, knowledge, land consolidation, and landscape diversification on pesticide use. Agricultural Economics51, 759–775.

Huang J, Hu R, Pray C, Qiao F, Rozelle S. 2003. Biotechnology as an alternative to chemical pesticides: A case study of Bt cotton in China. Agricultural Economics29, 55–67.

Huang J, Wang Y, Wang J. 2015. Farmers’ adaptation to extreme weather events through farm management and its impacts on the mean and risk of rice yield in China. American Journal of Agricultural Economics97, 602–617.

Ishfaq M, Akbar N, Anjum SA, Anwar-Ul-Haq M. 2020. Growth, yield and water productivity of dry direct seeded rice and transplanted aromatic rice under different irrigation management regimes. Journal of Integrative Agriculture19, 2656–2673.

Jaraitė J, Kažukauskas A. 2012. The effect of mandatory agro-environmental policy on farm fertilizer and pesticide expenditure. Journal of Agricultural Economics63, 656–676.

Kuhfuss L, Subervie J. 2018. Do European agri-environment measures help reduce herbicide use? Evidence from viticulture in France. Ecological Economics149, 202–211.

Li H, Guo H Q, Helbig M, Dai S Q, Zhang M S, Zhao M, Peng C H, Xiao X M, Zhao B. 2019. Does direct-seeded rice decrease ecosystem-scale methane emissions? A case study from a rice paddy in southeast China. Agricultural and Forest Meteorology272–273, 118–127.

Li H, Zhao Y, Shen Y. 2011. Direct seeding rice aftereffect and its cognition in coastal areas. Chinese Agricultural Science Bulletin29, 273–276. (in Chinese)

Li Y, Huan M, Jiao X, Chi L, Ma J. 2023. The impact of labor migration on chemical fertilizer use of wheat smallholders in China-Mediation analysis of socialized service. Journal of Cleaner Production394, 136366.

Lin Y, Hu R, Zhang C, Chen K. 2022a. Effect of agricultural extension services in the post-reform era since the mid-2000s on pesticide use in in China: Evidence from rice production. International Journal of Agricultural Sustainability20, 955–966.

Lin Y, Hu R, Zhang C, Chen K. 2022b. The role of public agricultural extension services in driving fertilizer use in rice production in China. Ecological Economics200, 107513.

Liu E M, Huang J. 2013. Risk preferences and pesticide use by cotton farmers in China. Journal of Development Economics103, 202–215.

Liu L, Min J, Liu S, Li X, Pan X, Liu W, Hu M, Zhao Y, Li Y. 2022. Production situation and varieties breeding strategies of direct seeding rice. China Rice28, 44–48. (in Chinese)

Ma W, Zheng H. 2022. Heterogeneous impacts of information technology adoption on pesticide and fertilizer expenditures: Evidence from wheat farmers in China. Australian Journal of Agricultural and Resource Economics66, 72–92.

Maddala G S. 1983. Limited-Dependent and Qualitative Variables in Econometrics. Cambridge University Press, Cambridge.

Mishra A K, Khanal A R, Pede V O. 2017. Is direct seeded rice a boon for economic performance? Empirical evidence from India. Food Policy73, 10–18.

NBSC (National Bureau of Statistics of China). 2019. China Statistical Yearbook. China Statistics Press, Beijing. (in Chinese)

NBSC (National Bureau of Statistics of China). 2022a. China Rural Statistical Yearbook. China Statistics Press, Beijing. (in Chinese)

NBSC (National Bureau of Statistics of China). 2022b. China Statistical Yearbook. China Statistics Press, Beijing. (in Chinese)

NDRCC (National Development and Reform Commission of China). 2022. Compile of Cost-Benefit Materials of Agricultural Products in China. China Statistics Press, Beijing. (in Chinese)

Pan D, Zhang N, Kong F. 2021. Does it matter who gives information? The impact of information sources on farmers’ pesticide use in China. Journal of Asian Economics76, 101345.

Qian W, Wang D, Zheng L. 2016. The impact of migration on agricultural restructuring: Evidence from Jiangxi Province in China. Journal of Rural Studies47, 542–551.

Sha W, Chen F, Mishra A K. 2019. Adoption of direct seeded rice, land use and enterprise income: Evidence from Chinese rice producers. Land Use Policy83, 564–570.

Stock J H, Yogo M. 2005. Testing for weak instruments in linear IV regression. In: Stock J H, Andrews D W K, eds., Identification and Inference for Econometric ModelsA Festschrift in Honor of Thomas Rothenberg. Cambridge University Press, Cambridge.

Sun S, Hu R, Zhang C. 2021. Pest control practices, information sources, and correct pesticide use: Evidence from rice production in China. Ecological Indicators129, 107895.

Tao Y, Chen Q, Peng S, Wang W, Nie L. 2016. Lower global warming potential and higher yield of wet direct-seeded rice in Central China. Agronomy for Sustainable Development36, 24.

Wang J, Qian Y, Wang C. 2020. The reappearance of rice direct seeding: Simple retro or rational return. Journal of Agrotechnical Economics9, 130–142. (in Chinese)

Wang Q, He J, Li M, Dai Y, Shi D, Ye G. 2000. Weed species and their damage in rice fields in Zhejiang. Acta Agriculturae Zhejiangensis12, 317–324. (in Chinese)

Weerakoon W M W, Mutunayake M M P, Bandara C, Rao A N, Bhandari D C, Ladha J K. 2011. Direct-seeded rice culture in Sri Lanka: Lessons from farmers. Field Crops Research121, 53–63.

Wooldridge J M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. The MIT Press, Cambridge.

Wu Y, Liang C, Zhao C, Sun J, Ma D. 2024. Occurrence of weedy rice disaster and ecotype evolution in direct-seeded rice fields. Chinese Journal of Rice Science38, 447–455. (in Chinese)

Xu L, Li X, Wang X, Xiong D, Wang F. 2019. Comparing the grain yields of direct-seeded and transplanted rice: A meta-analysis. Agronomy9, 767.

Zhang C, Hu R. 2022. Adoption of direct seeding, yield and fertilizer use in rice production: Empirical evidence from China. Agriculture12, 1439.

Zhang C, Hu R, Shi G, Jin Y, Robson M G, Huang X. 2015. Overuse or underuse? An observation of pesticide use in China. Science of the Total Environment538, 1–6.

Zhang X, Zhang G, Sun X, Zhang J, Zhang H. 2000. Studies on occurring regularity and integrated control of weed in the direct-sowed rice field. Journal of Nanjing Agricultural University23, 117–118. (in Chinese)

Zhang Y, Liu H, Guo Z, Zhang C, Sheng J, Chen L, Luo Y, Zheng J. 2018. Direct-seeded rice increases nitrogen runoff losses in southeastern China. AgricultureEcosystems and Environment251, 149–157.

Zhao Y. 2002. Causes and consequences of return migration: Recent evidence from China. Journal of Comparative Economics30, 376–394.

Zhou W, Guo Z, Chen J, Jiang J, Hui D, Wang X, Sheng J, Chen L, Luo Y, Zheng J, Li S, Zhang Y. 2019. Direct seeding for rice production increased soil erosion and phosphorus runoff losses in subtropical China. Science of the Total Environment695, 133845.

Zhu X, Hu R, Zhang C, Shi G. 2021. Does Internet use improve technical efficiency? Evidence from apple production in China. Technological Forecasting and Social Change166, 120662.

[1] Xue Shen, Quanyu Yang, Rongjun Ao, Shengsheng Gong. Rural labor migration and farmers’ arrangements of rice production systems in Central China: Insight from the intergenerational division of labor[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3200-3214.
[2] Libin Liang, Yaning Bai, Wenyan Huang, Pengfei Ren, Xing Li, Dou Wang, Yuhan Yang, Zhen Gao, Jiao Tang, Xingchen Wu, Shimin Gao, Yanna Guo, Mingming Hu, Zhiwei Wang, Zhongbing Wang, Haili Ma, Junping Li. Genetic and biological properties of H9N2 avian influenza viruses isolated in central China from 2020 to 2022[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2778-2791.
[3] Xuan Li, Shaowen Wang, Yifan Chen, Danwen Zhang, Shanshan Yang, Jingwen Wang, Jiahua Zhang, Yun Bai, Sha Zhang.

Improved simulation of winter wheat yield in North China Plain by using PRYM-Wheat integrated dry matter distribution coefficient [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1381-1392.

[4] Dian Chen, Xiangming Fang, Yu Chen, Xiaodong Zheng, Zhuo Chen, Rodney B.W. Smith.

The impact of the Rural Minimum Living Standard Guarantee (Rural Dibao) Program on child nutrition outcomes [J]. >Journal of Integrative Agriculture, 2024, 23(2): 444-456.

[5] Yi Cui, Qiran Zhao, Thomas Glauben, Wei Si. The impact of Internet access on household dietary quality: Evidence from rural China[J]. >Journal of Integrative Agriculture, 2024, 23(2): 374-383.
[6] Xiao Han, Kaiyu Lyu, Fengying Nie, Yuquan Chen.

Resilience effects for household food expenditure and dietary diversity in rural western China [J]. >Journal of Integrative Agriculture, 2024, 23(2): 384-396.

[7] Jie Xue, Xianglin Zhang, Songchao Chen, Bifeng Hu, Nan Wang, Zhou Shi.

Quantifying the agreement and accuracy characteristics of four satellite-based LULC products for cropland classification in China [J]. >Journal of Integrative Agriculture, 2024, 23(1): 283-297.

[8] ZHANG Sha, YANG Shan-shan, WANG Jing-wen, WU Xi-fang, Malak HENCHIRI, Tehseen JAVED, ZHANG Jia-hua, BAI Yun. Integrating a novel irrigation approximation method with a process-based remote sensing model to estimate multi-years' winter wheat yield over the North China Plain[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2865-2881.
[9] LI Dong-qing, ZHANG Ming-xue, LÜ Xin-xin, HOU Ling-ling. Does nature-based solution sustain grassland quality? Evidence from rotational grazing practice in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2567-2576.
[10] YU Wen-jia, LI Hai-gang, Peteh M. NKEBIWE, YANG Xue-yun, GUO Da-yong, LI Cui-lan, ZHU Yi-yong, XIAO Jing-xiu, LI Guo-hua, SUN Zhi, Torsten MÜLLER, SHEN Jian-bo. Combining rhizosphere and soil-based P management decreased the P fertilizer demand of China by more than half based on LePA model simulations[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2509-2520.
[11] YANG Rui, XU Hang. Water diversion and agricultural production: Evidence from China[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1244-1257.
[12] HOU Jing, ZHOU Li, Jennifer IFFT, YING Rui-yao. The role of time preferences in contract breach: Evidence from Chinese poultry farmers participating in contract farming[J]. >Journal of Integrative Agriculture, 2023, 22(2): 623-641.
[13] TIAN Jin-yu, LI Shao-ping, CHENG Shuang, LIU Qiu-yuan, ZHOU Lei, TAO Yu, XING Zhi-peng, HU Ya-jie, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Increasing the appropriate seedling density for higher yield in dry direct-seeded rice sown by a multifunctional seeder after wheat-straw return[J]. >Journal of Integrative Agriculture, 2023, 22(2): 400-416.
[14] ZHANG Xi-juan, LAI Yong-cai, MENG Ying, TANG Ao, DONG Wen-jun, LIU You-hong, LIU Kai, WANG Li-zhi, YANG Xian-li, WANG Wen-long, DING Guo-hua, JIANG Hui, REN Yang, JIANG Shu-kun. Analyses and identifications of quantitative trait loci and candidate genes controlling mesocotyl elongation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(2): 325-340.
[15] SHI Peng-fei, HUANG Ji-kun. Rural transformation, income growth, and poverty reduction by region in China in the past four decades[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3582-3595.
No Suggested Reading articles found!