Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (3): 859-870    DOI: 10.1016/j.jia.2024.08.004
Section 2: Drivers of grassland ecosystem changes Advanced Online Publication | Current Issue | Archive | Adv Search |
Large herbivores increase the proportion of palatable species rather than unpalatable species in the plant community

Yu Li1, Shikui Dong2, 3#, Qingzhu Gao4#, Yong Zhang5, Hasbagan Ganjurjav4, Guozheng Hu4, Xuexia Wang6, Yulong Yan7, Fengcai He2, Fangyan Cheng8

1 School of Public Administration, Chongqing Technology and Business University, Chongqing 400067, China

2 School of Grassland Science, Beijing Forestry University, Beijing 100083, China

3 Department of Natural Resources, Cornell University, Ithaca, NY 14853-3001, USA

4 Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China

5 National Plateau Wetlands Research Center, College of Wetlands, Southwest Forestry University, Kunming 650224, China

6 Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China

7 China New Era Group Corporation, Beijing 100082, China

8 State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

研究普遍认为当植物群落中的优势物种适口时,大型食草动物可以减少优势物种,并提高先前被抑制物种的比例。然而,这种观点可能并不总是成立的。我们在青藏高原开展了一项为期4年的牦牛放牧试验,追踪记录了期间轮牧和禁牧草地的植物群落组成。结果表明,在没有牦牛的情况下,植物群落由两个适口物种,即高山嵩草和针茅所主导,这与它们的小叶面积和快速生长策略有关。牦牛的出现显著抑制了针茅和超过一半的杂草,而高山嵩草的比例增加,成为绝对优势物种,这与大型食草动物抑制适口物种比例的观点相矛盾。年际间,轮牧草地的高山嵩草在干旱年份优势度下降,导致其他8个物种的优势度上升;禁牧草地高山嵩草的优势度在干旱年份显著下降,针茅和其他7种杂草的优势度显著增加。这些结果表明高山嵩草是耐牧的,但不耐旱,而其他8个物种是耐干旱的,但并不耐牧。群落水平,禁牧后演替引起的群落组成变化超过了干旱引起的变化,干旱倾向于导致群落物种更替,而放牧倾向于导致物种丰度变化。这些结论提醒牧场管理者,在衡量牲畜对植物群落组成的影响时,他们应该考虑当地的条件和气候变化,而不能简单地认为牲畜会抑制适口物种。



Abstract  
When the dominant species in a plant community are palatable, many believe that large herbivores will reduce the dominant species and promote the proportion of previously suppressed species.  However, this view may not always hold true.  We conducted a 4-year yak grazing experiment on the Qinghai-Tibet Plateau and tracked the plant compositions of the rotational grazing (RG) and grazing exclusion (GE) grasslands during the four years.  The results showed that in the absence of yaks under GE, the plant community was dominated by two palatable species, Kobresia pygmaea and Stipa capillata, due to their small leaf area and rapid growth strategy.  The presence of yaks under RG significantly inhibited Scapillata and over half of the forbs, while the proportion of Kpygmaea increased and it became the absolute dominant species, contradicting the view that large herbivores inhibit palatable species.  Interannually, the dominance of Kpygmaea under RG decreased in the dry year, leading to an increase in the dominance of the other eight species.  Under GE, the dominance of Kpygmaea declined notably in the dry year, while Scapillata and seven other forbs increased substantially.  Overall, these results suggest that Kpygmaea is grazing-tolerant but not drought-tolerant, whereas the other eight species are drought-tolerant but not grazing-tolerant.  At the community level, community composition shifts resulting from succession after grazing exclusion exceeded those caused by drought, drought tends to induce community species turnover while grazing tends to induce species abundance variations.  In summary, our conclusions remind ranch managers that when considering the impact of livestock on plant community composition, they should factor in local conditions and climate change rather than simply assuming that livestock will suppress the palatable species.



Keywords:  grazing       drought        community composition        succession        Qinghai-Tibet Plateau  
Received: 28 March 2024   Accepted: 24 June 2024
Fund: 
This work was financially supported by grants from the National Natural Science Foundation of China (32101315 and 32101326), the National Key R&D Program of China (2021YFE0112400), the Second Tibetan Plateau Scientific Expedition and Research Program, China (2019QZKK0307), the High-Level Talent Research Start-Up Project of Chongqing Technology and Business University, China (950319097), and the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (KJQN202100827).
About author:  Yu Li, E-mail: 2019262@ctbu.edu.cn; #Correspondence Shikui Dong, Mobile: +86-13811445835, E-mail: dongshikui@bjfu.edu.cn; Qingzhu Gao, Tel: +86-10-82109346, E-mail: gaoqingzhu@caas.cn

Cite this article: 

Yu Li, Shikui Dong, Qingzhu Gao, Yong Zhang, Hasbagan Ganjurjav, Guozheng Hu, Xuexia Wang, Yulong Yan, Fengcai He, Fangyan Cheng. 2025. Large herbivores increase the proportion of palatable species rather than unpalatable species in the plant community. Journal of Integrative Agriculture, 24(3): 859-870.

Archibald S, Hempson G P, Lehmann C. 2019. A unified framework for plant life-history strategies shaped by fire and herbivory. New Phytologist224, 1490–1503.

Bardgett R D, Bullock J M, Lavorel S, Manning P, Schaffner U, Ostle N, Chomel M, Durigan G, Fry E, Johnson D. 2021. Combatting global grassland degradation. Nature Reviews Earth & Environment2, 720–735.

Baselga A. 2013. Separating the two components of abundance-based dissimilarity: Balanced changes in abundance vs. abundance gradients. Methods in Ecology and Evolution4, 552–557.

Baselga A, Orme C D L. 2012. betapart: An R package for the study of beta diversity. Methods in Ecology and Evolution3, 808–812.

Batbaatar A, Carlyle C N, Bork E W, Chang S X, Cahill Jr J F. 2022. Multi-year drought alters plant species composition more than productivity across northern temperate grasslands. Journal of Ecology110, 197–209.

Bat-Oyun T, Shinoda M, Cheng Y, Purevdorj Y. 2016. Effects of grazing and precipitation variability on vegetation dynamics in a Mongolian dry steppe. Journal of Plant Ecology9, 508–519.

Borer E T, Seabloom E W, Gruner D S, Harpole W S, Hillebrand H, Lind E M, Adler P B, Alberti J, Anderson T M, Bakker J D. 2014. Herbivores and nutrients control grassland plant diversity via light limitation. Nature508, 517–520.

Chen Q, Bakker J P, Alberti J, Bakker E S, Smit C, Olff H. 2021. Long-term cross-scale comparison of grazing and mowing on plant diversity and community composition in a salt-marsh system. Journal of Ecology109, 3737–3747.

Cingolani A M, Cabido M R, Renison D, Solís Neffa V. 2003. Combined effects of environment and grazing on vegetation structure in Argentine granite grasslands. Journal of Vegetation Science14, 223–232.

Cornelissen J, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich D, Reich P, Ter Steege H, Morgan H, Van Der Heijden M. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany51, 335–380.

Crawley M J, Pakeman R J, Albon S D, Pilkington J G, Stevenson I R, Morrissey M B, Jones O R, Allan E, Bento A I, Hipperson H. 2021. The dynamics of vegetation grazed by a food-limited population of Soay sheep on St Kilda. Journal of Ecology109, 3988–4006.

Dorji T, Totland O, Moe S R, Hopping K A, Pan J, Klein J A. 2013. Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Global Change Biology19, 459–472.

Elser J J, Dobberfuhl D R, MacKay N A, Schampel J H. 1996. Organism size, life history, and N: P stoichiometry: Toward a unified view of cellular and ecosystem processes. BioScience46, 674–684.

Endara M J, Coley P D. 2011. The resource availability hypothesis revisited: A meta-analysis. Functional Ecology25, 389–398.

Eskelinen A, Harpole W S, Jessen M T, Virtanen R, Hautier Y. 2022. Light competition drives herbivore and nutrient effects on plant diversity. Nature611, 301–305.

Hickman K R, Hartnett D C. 2002. Effects of grazing intensity on growth, reproduction, and abundance of three palatable forbs in Kansas tallgrass prairie. Plant Ecology159, 23–33.

Ishii R, Crawley M J. 2011. Herbivore-induced coexistence of competing plant species. Journal of Theoretical Biology268, 50–61.

Knapp A, Hoover D, Blair J, Buis G, Burkepile D, Chamberlain A, Collins S, Fynn R, Kirkman K, Smith M. 2012. A test of two mechanisms proposed to optimize grassland aboveground primary productivity in response to grazing. Journal of Plant Ecology5, 357–365.

Koerner S E, Collins S L. 2014. Interactive effects of grazing, drought, and fire on grassland plant communities in North America and South Africa. Ecology95, 98–109.

Koerner S E, Smith M D, Burkepile D E, Hanan N P, Avolio M L, Collins S L, Knapp A K, Lemoine N P, Forrestel E J, Eby S. 2018. Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology & Evolution2, 1925–1932.

Liu H, Mi Z, Lin L, Wang Y, Zhang Z, Zhang F, Wang H, Liu L, Zhu B, Cao G. 2018. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America115, 4051–4056.

Liu Y, Pan Q, Liu H, Bai Y, Simmons M, Dittert K, Han X. 2011. Plant responses following grazing removal at different stocking rates in an Inner Mongolia grassland ecosystem. Plant and Soil340, 199–213.

Miehe G, Miehe S, Kaiser K, Jianquan L, Zhao X. 2008. Status and dynamics of the Kobresia pygmaea ecosystem on the Tibetan Plateau. AMBIOA Journal of the Human Environment37, 272–279.

Orr D A, Bui A, Klope M, McCullough I M, Lee M, Motta C, Mayorga I, Konicek K, Young H S. 2022. Context-dependent effects of shifting large herbivore assemblages on plant structure and diversity. Journal of Ecology110, 1312–1327.

Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte M, Cornwell W, Craine J, Gurvich D. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany61, 167–234.

Souther S, Loeser M, Crews T E, Sisk T. 2020. Drought exacerbates negative consequences of high-intensity cattle grazing in a semiarid grassland. Ecological Applications30, e02048.

Spinoni J, Vogt J V, Naumann G, Barbosa P, Dosio A. 2018. Will drought events become more frequent and severe in Europe? International Journal of Climatology38, 1718–1736.

Sun G, Luo P, Wu N, Qiu P, Gao Y, Chen H, Shi F. 2009. Stellera chamaejasme L. increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China. Soil Biology and Biochemistry41, 86–91.

Tang H, Zhao X, Zhou L. 2006. Long-term grazing alters species composition and biomass of a shrub meadow on the Qinghai-Tibet Plateau. Pakistan Journal of Botany38, 1055–1069.

Wan H, Bai Y, Schönbach P, Gierus M, Taube F. 2011. Effects of grazing management system on plant community structure and functioning in a semiarid steppe: Scaling from species to community. Plant and Soil340, 215–226.

Wang C T, Wang Q J, Long R J, Jing Z C, Shi H L. 2004. Changes in plant species diversity and productivity along an elevation gradient in an alpine meadow. Chinese Journal of Plant Ecology28, 240. (in Chinese)

Wang S, Duan J, Xu G, Wang Y, Zhang Z, Rui Y, Luo C, Xu B, Zhu X, Chang X, Cui X, Niu H, Zhao X, Wang W. 2012. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology93, 2365–2376.

Yang Y, Wu L, Lin Q, Yuan M, Xu D, Yu H, Hu Y, Duan J, Li X, He Z, Xue K, van Nostrand J, Wang S, Zhou J. 2013. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Global Change Biology19, 637–648.

Yang Z, Xiong W, Xu Y, Jiang L, Zhu E, Zhan W, He Y, Zhu D, Zhu Q, Peng C. 2016. Soil properties and species composition under different grazing intensity in an alpine meadow on the eastern Tibetan Plateau, China. Environmental Monitoring and Assessment188, 1–12.

[1] Hairen Shi, Pei Guo, Jieyan Zhou, Zhen Wang, Meiyue He, Liyuan Shi, Xiaojuan Huang, Penghui Guo, Zhaoxia Guo, Yuwen Zhang, Fujiang Hou. Effects of stocking rate on growth performance, energy and nitrogen utilization, methane emission, and grazing behavior in Tan sheep grazed on typical steppe[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1234-1245.
[2] Yu Tang, Chunhan Zhou, Keyu Chen, Sen Xing, Hailan Shi, Congcong Li, Yanfen Wang, Xiaoyong Cui, Haishan Niu, Baoming Ji, Jing Zhang. Grazing exclusion enriches arbuscular mycorrhizal fungal communities and improves soil organic carbon sequestration in the alpine steppe of northern Xizang[J]. >Journal of Integrative Agriculture, 2025, 24(3): 913-924.
[3] Xiaotong Liu, Siwei Liang, Yijia Tian, Xiao Wang, Wenju Liang, Xiaoke Zhang. Effect of land use on soil nematode community composition and co-occurrence network relationship[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2807-2819.
[4] Lingxiao Zhu, Hongchun Sun, Ranran Wang, Congcong Guo, Liantao Liu, Yongjiang Zhang, Ke Zhang, Zhiying Bai, Anchang Li, Jiehua Zhu, Cundong Li. Exogenous melatonin improves cotton yield under drought stress by enhancing root development and reducing root damage[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3387-3405.
[5] LI Dong-qing, ZHANG Ming-xue, LÜ Xin-xin, HOU Ling-ling. Does nature-based solution sustain grassland quality? Evidence from rotational grazing practice in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2567-2576.
[6] Ketema Tilahun Zeleke. Effect of grazing time and intensity on growth and yield of spring wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2019, 18(5): 1138-1147.
[7] CHEN Xue-jiao, LIN Qi-mei, ZHAO Xiao-rong, CHEN Hao, WEN Jing, LI Ying, LI Gui-tong. Long-term grazing exclusion influences arbuscular mycorrhizal fungi and their association with vegetation in typical steppe of Inner Mongolia, China[J]. >Journal of Integrative Agriculture, 2018, 17(06): 1445-1453.
[8] CHEN Yi-zhao, SUN Zheng-guo, QIN Zhi-hao, Pavel Propastin, WANG Wei, LI Jian-long, RUAN Hong-hua. Modeling the regional grazing impact on vegetation carbon sequestration ability in Temperate Eurasian Steppe[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2323-2336.
[9] JI Shou-kun, JIANG Cheng-gang, LI Rui, DIAO Qi-yu, TU Yan, ZHANG Nai-feng, SI Bing-wen. Growth performance and rumen microorganism differ between segregated weaning lambs and grazing lambs[J]. >Journal of Integrative Agriculture, 2016, 15(4): 872-878.
[10] LI Xi-liang, LIU Zhi-ying, REN Wei-bo, DING Yong, JI Lei, GUO Feng-hui, HOU Xiang-yang. Linking nutrient strategies with plant size along a grazing gradient: Evidence from Leymus chinensis in a natural pasture[J]. >Journal of Integrative Agriculture, 2016, 15(05): 1132-1144.
[11] Ubugunov Leonid, Rupyshev Yuriy, Ubugunov Vasiliy, HOU Xiang-yang, Vishnyakova Oxana, Lavrentieva Irina, Ubugunova Vera, REN Wei-bo , DING Yong. Impact of Climate and Grazing on Biomass Components of Eastern Russia Typical Steppe[J]. >Journal of Integrative Agriculture, 2014, 13(6): 1183-1192.
[12] LI Yu-jie1, 2 , ZHU Yan1, ZHAO Jian-ning1, LI Gang1, WANG Hui1, LAI Xin1 and YANG Dian-lin1, 2 . Effects of Rest Grazing on Organic Carbon Storage in Stipa grandis Steppe in Inner Mongolia, China[J]. >Journal of Integrative Agriculture, 2014, 13(3): 624-634.
No Suggested Reading articles found!