Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (11): 4195-4210    DOI: 10.1016/j.jia.2024.05.031
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Long-term excessive nitrogen application decreases spring maize nitrogen use efficiency via suppressing root physiological characteristics

Hong Ren1, 2, Zheng Liu1, Xinbing Wang1, Wenbin Zhou1, Baoyuan Zhou1, Ming Zhao1, Congfeng Li1#

1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China

2 College of Agronomy, Jilin Agricultural University, Jilin 130118, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
长期过量施用氮肥后玉米的产量和氮肥利用率(NUE)出现不在增加甚至降低的现象,但根系形态和生理特性在其中的作用尚不清楚。本研究的目的是从从根系形态和根系生理特征的角度解释过量施氮下不增产的机理。在中国东北地区吉林省进行了连续10年的长期氮肥定位试验,于2019年、2020年和2021年,在三个氮肥水平(零氮、N0;推荐氮、N2;以及高氮水平、N4),种植两种当地广泛推广的玉米品种:“先玉335”(XY335)和“郑单958”(ZD958)。分析了籽粒产量、氮含量、根系形态和其他生理特性,以进一步评价不同氮处理下氮吸收、氮利用、植株生长和根系生理之间的关系。与N0相比,随着氮投入的增加,根生物量、吐丝后氮吸收量和籽粒产量显著提高,而推荐氮和高氮之间没有观察到显著差异。高氮施用增加了根长和根表面积,但降低了根活力(通过TTC(2,3,5-氯化三苯基四氮唑)法测定)、硝酸还原酶活性和根系活跃吸收面积,与基因型无关。根长和根冠比与氮吸收呈负相关(分别为-1.2%和-24.6%),而根表面积、根活性、硝酸还原酶活性和根系活跃吸收面积与氮吸收呈正相关。品种与施氮量的互作效应显著响应NUE。XY335通过较高的根表面积(23.6%)、根活性(12.5%)、硝酸还原酶活性(8.3%)和根系活跃吸收面积(6.9%)获得了最高的NUE(11.6%)和氮回收效率(18.4%)。总体而言,推荐施氮量通过提高根表面积、根系活力、硝酸还原酶活性和根系活跃吸收面积促进氮吸收、NUE和籽粒产量,而高施氮量通过降低根表面积、根系活力、硝酸还原酶活性和根系活跃吸收面积不增加甚至降低NUE。我们的试验研究成功地揭示了根表面积、根活性、硝酸还原酶活性和根系活跃吸收面积是高氮条件下NUE增加的限制因素。


Abstract  
Long-term excessive nitrogen (N) application neither increases nor enhances grain yield and N use efficiency (NUE) of maize, yet the mechanisms involving root morphological and physiological characteristics remain unclear.  This study aimed to elucidate the mechanisms underlying stagnant grain yield under excessive N application by examining root morphological and physiological characteristics.  A 10-year N fertilizer trial was conducted in Jilin Province, Northeast China, cultivating maize at three N fertilizer levels (zero N, N0; recommended N, N2; and high N level, N4) from 2019 to 2021.  Two widely cultivated maize genotypes, ‘Xianyu 335’ (XY335) and ‘Zhengdan 958’ (ZD958), were evaluated.  Grain yield, N content, root morphology, and physiological characteristics were analyzed to assess the relationships between N uptake, N utilization, plant growth, and root systems under different N treatments.  Compared to N0, root biomass, post-silking N uptake, and grain yield improved significantly with increased N input, while no significant differences emerged between recommended N and high N.  High N application enhanced root length and root surface area but decreased root activity (measured by TTC (2,3,5-triphenyltetrazolium chloride) method), nitrate reductase activity, and root activity absorbing area across genotypes.  Root length and root to shoot ratio negatively affected N uptake (by –1.2 and –24.6%), while root surface area, root activity, nitrate reductase activity, and root activity absorbing area contributed positively.  The interaction between cultivar and N application significantly influenced NUE.  XY335 achieved the highest NUE (11.6%) and N recovery efficiency (18.4%) through superior root surface area (23.6%), root activity (12.5%), nitrate reductase activity (8.3%), and root activity absorbing area (6.9%) compared to other treatments.  Recommended N application enhanced Post N uptake, NUE, and grain yield through improved root characteristics, while high N application failed to increase or decreased NUE by reducing these parameters.  This study demonstrates that root surface area, root activity, nitrate reductase activity, and root activity absorbing area limit NUE increase under high N application.
Keywords:  maize       nitrogen level        root characteristics        genotypic difference        nitrogen use efficiency  
Received: 17 October 2023   Accepted: 22 April 2024 Online: 27 May 2024  
Fund: This research is supported by the National Key Research and Development Program of China (2023YFD2301702), the earmarked Fund for China Agriculture Research System (CARS-02), and the National Natural Science Foundation of China (31971852).
About author:  Hong Ren, E-mail: renhong1235@163.com; #Correspondence Congfeng Li, Tel: +86-10-82108756, E-mail: licongfeng@caas.cn

Cite this article: 

Hong Ren, Zheng Liu, Xinbing Wang, Wenbin Zhou, Baoyuan Zhou, Ming Zhao, Congfeng Li. 2025. Long-term excessive nitrogen application decreases spring maize nitrogen use efficiency via suppressing root physiological characteristics. Journal of Integrative Agriculture, 24(11): 4195-4210.

Amos B, Walters D T. 2006. Maize root biomass and net rhizodeposited carbon. Soil Science Society of America Journal70, 1489–1503.

Anderson E L. 1988. Tillage and N fertilization effects on maize root growth and root:shoot ratio. Plant and Soil108, 245–251.

Andrews M. 1986. The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell and Environment9, 511–519.

Aslam M, Travis R L, Rains D W. 2001. Enhancement of nitrate reductase activity and metabolic nitrate concentration by methionine sulfoximine in barley roots. Plant Science, 161, 133–142.

Berenguer P F, Santiveri J, Boixadera L J. 2009. Nitrogen fertilisation of irrigated maize under Mediterranean conditions. European Journal of Agronomy30, 163–171.

Bremner J M, Tabatabai M A. 1972. Use of an ammonia electrode for determination of ammonium in Kjeldahl analysis of soils. Communications in Soil Science and Plant Analysis3, 159–165.

Cassman K G, Dobermann A, Walters D T, Yang H. 2003. Meeting cereal demand while protecting natural resources and improving environmental quality. Annual Review of Environment and Resources28, 315–358.

Chen Y L, Xiao C X, Wu D L, Xia T T, Chen Q W, Chen F J, Mi G H. 2015a. Effects of nitrogen application rate on grain yield and grain nitrogen concentration in two maize hybrids with contrasting nitrogen remobilization efficiency. European Journal of Agronomy62, 79–89.

Chen Y L, Zhang J, Li Q, He X L, Su X P, Chen F J, Yuan L X, Mi G H. 2015b. Effects of nitrogen application on post-silking root senescence and yield of maize. Agronomy Journal107, 835–842.

Chen Z, Ren W, Yi X, Li Q, Cai H G, Ali F H, Yuan L X, Mi G H, Chen F J. 2023. Local nitrogen application increases maize post-silking nitrogen uptake of responsive genotypes via enhanced deep root growth. Journal of Integrative Agriculture, 22, 235–250.

Chun L, Chen F J, Zhang F S, Mi G H. 2005. Root growth, nitrogen uptake and yield formation of hybrid maize with different N efficiency. Plant Nutrition and Fertitizer Science11, 615–619.

Ciampitti I A, Vyn T J. 2011. A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crops Research121, 2–18.

Ciampitti I A, Vyn T J. 2012. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crops Research133, 48–67.

DaSilva P, Strieder M L, Coser R, Rambo L, Sangoi L, Argenta G, Forsthofer E L. DaSilva A A. 2005. Grain yield and kernel crude protein content increases of maize hybrids with late nitrogen side-dressing. Scientia Agricola62, 487–492.

Dobermann A, Cassman K G. 2004. Environmental dimensions of fertilizer N: What can be done to increase nitrogen use efficiency and ensure global food security? In: Mosier A R, Syers J K, Freney J R, et al. eds., Agriculture and the Nitrogen Cycle: Assessing the Impacts of Fertilizer Use on Food Production and the EnvironmentSCOPE 65. Island Press, Washington, D.C., USA. pp. 261–278.

Duncan D R, Widholm J M. 2004. Osmotic induced stimulation of the reduction of the viability dye 2,3,5-triphenyltetrazolium chloride by maize roots and callus cultures. Journal of Plant Physiology161, 397–403.

Durieux R P, Kamprath E J, Jackson W A, Moll R H. 1994. Root distribution of corn: The effect of nitrogen fertilization. Agronomy Journal86, 958–962.

Eghball B, Maranville J W. 1993. Root development and nitrogen influx of corn genotypes grown under combined drought and N stress. Agronomy Journal85, 147–152.

Eichelberger K D, Lambert R J, Below F E, Hageman R H. 1989b. Divergent phenotypic recurrent selection for nitrate reductase activity in maize. II. Efficient use of fertilizer nitrogen. Crop Science29, 1398–1402.

Feng G, Zhang Y, Chen Y, Li Q, Chen F, Gao Q, Mi G. 2016. Effects of nitrogen application on root length and grain yield of rain-fed maize under different soil type. Agronomy Journal108, 1656–1665.

Gao Q, Feng G Z, Wang Z G. 2010. Present situation of fertilizer application on spring maize in Northeast China. Chinese Agricultural Science Bulletin26, 229–231. (in Chinese)

Garnett T, Conn V, Kaiser B N. 2009. Root based approaches to improving nitrogen use efficiency in plants. Plant Cell and Environment, 32, 1272–1283.

Guana D H, Mahdi M A, Zhang Y S, Duana LS, Tana W M, Mingcai M G, Zhao H Li. 2014. Tillage practices affect biomass and grain yield through regulating root growth, root-bleeding sap and nutrients uptake in summer maize. Field Crops Research157, 89–97.

Hammer G L, Dong Z S, Greg M, Doherty A, Carlos M, Jeff S, Zinselmeier C, Paszkiewica S, Cooper M. 2009. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. Corn Belt? Crop Science49, 299–312.

Herder G D, Isterdael G N, Beeckman T, Smet I D. 2010. The roots of a new green revolution. Trends in Plant Science15, 600–607.

Jia X C,Wu G J, Strock C, Li L, Dong S T, Zhang J W, Zhao B, Lynch G P, Liu P. 2022. Root anatomical phenotypes related to growth under low nitrogen availability in maize (Zea mays L.) hybrids. Plant and Soil477, 843–844.

Ju C X, Buresh R J, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H. 2015. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Research175, 47–55.

Kichey T, Heumez E, Pocholle D, Pageau K, Vanacker H, Dubois F, Le Gouis J, Hirel B. 2006. Combined agronomic and physiological aspects of nitrogen management in wheat highlight a central role for glutamine synthetase. New Phytologist169, 265–278.

Ladha J K, Pathak H J. Krupnik T, Six J, van Kessel C. 2005. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Advances in Agronomy87, 85–156.

Lam H M, Coschigano K T, Oliveira I C, Melo-Oliveira R, Coruzzi G M. 1996. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology47, 569–593.

Li X L, Wang R, Zhou B Y, Wang X B, Wang J, Zhao M, Li C F. 2022. Characterization of root morphology and anatomical structure of spring maize under varying N application rates and their effects on yield. Agronomy Basel12, 2671.

Liu J L, Zhan A, Bu L D, Zhu L, Luo S S, Chen X P, Gui Z L, Li S Q, Hill R L, Zhao Y. 2014. Understanding dry matter and nitrogen accumulation for high-yielding film-mulched maize. Agronomy Journal106, 390.

Liu J X, Chen F J, Olokhnuud C L, Glass A D M, Tong Y P, Zhang F S, Mi G H. 2009. Root size and nitrogen-uptake activity in two maize (Zea mays) inbred lines differing in nitrogen-use efficiency. Journal of Plant Nutrition and Soil Science17, 230–236.

Liu Y, Pan X, Li J. 2015. A 1961–2010 record of fertilizer use, pesticide application and cereal yields: A review. Agronomy for Sustainable Development35, 83–93.

Lynch J P. 2013. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Annals of Botany112, 347–357.

Marschner H. 1998. Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crops Research56, 203–207.

Mi G H, Chen F J, Wu Q P, Lai N W, Yuan L X, Zhang F S. 2010. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Science China (Life Sciences), 53, 1369–1373.

Mi G H, Liu J A, Chen F J, Zhang F S, Cui Z L, Liu X S. 2003. Nitrogen uptake and remobilization in maize hybrids differing in leaf senescence. Journal of Soil Science and Plant Nutrition26, 237–247.

Moll R H, Kamprath E J, Jackson W A. 1982. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agronomy Journal74, 562.

Mu X H, Chen F J, Wu Q P, Chen Q W, Wang J F, Yuan L X, Mi G H. 2015. Genetic improvement of root growth increases maize yield via enhanced post-silking nitrogen uptake. European Journal of Agronomy63, 55–61.

Niu J F, Peng Y F, Li C J, Zhang F S. 2010. Changes in root length at the reproductive stage of maize plants grown in the field and quartz sand. Journal of Soil Science and Plant Nutrition, 173, 306–314.

Ogle K, Wolpert R L, Reynolds J F. 2004. Reconstructing plant root area and water uptake profiles. Ecology, 85, 1967–1978.

Oikeh S O, Kling J G, Horst W J, Chude V O, Carsky R J. 1999. Growth and distribution of maize roots under nitrogen fertilization in plinthite soil. Field Crops Research62, 1–13.

Ordóñez R A, Castellano M J, Danalatos G N, Wright E E, Hatfield J L, Burras L, Archontoulis S V. 2021. Insufficient and excessive N fertilizer input reduces maize root mass across soil types. Field Crops Research267, 108142.

Palansooriya K N, Ok Y S, Awad Y M, Lee S S, Sung J K, Koutsospyros A, Moon D H. 2019. Impacts of biochar application on upland agriculture: A review. Journal of Environmental Management234, 52–64.

Passioura J B.1983. Roots and drought resistance. Agricultural Water Management, 7, 265–280.

Peng Y F, Niu J F, Peng Z P, Zhang F S, Li C J. 2010. Shoot growth potential drives N uptake in maize plants and correlates with root growth in the soil. Field Crops Research115, 85–93.

Peuke A D. 2000. The chemical composition of xylem sap Invitis vinifera L. cv., riesling during vegetative vineyard soils and as influenced by nitrogen fertilizer. American Journal of Enology and Viticulture51, 329–339.

Quaggiotti S, Trentin A R, Dalla Vecchia F, Ghisi R. 2004. Response of maize (Zea mays L.) nitrate reductase to UV-B radiation. Plant Science167, 107–116.

Rais I, Masood A, Inam A, Khan N. 2013. Sulfur and nitrogen coordinately improve photosynthetic efficiency, growth and proline accumulation in two cultivars of mustard under salt stress. Journal of Plant Biochemistry & Physiology1, 1000101.

Raun W R, Johnson G V. 1999. Improving nitrogen use efficiency for cereal production. Agronomy Journal91, 357–363.

Saengwilai P, Nord E A, Chimungu J G, Brow K M, Lynch J P. 2014. Root Cortical aerenchyma enhances nitrogen acquisition from low-nitrogen soils in maize. Plant Physiology166, 726–735.

Saiz-Fernández I, De Diego N, Brzobohatý B, Muñoz-Rueda A, Lacuesta M. 2017. The imbalance between C and N metabolism during high nitrate supply inhibits photosynthesis and overall growth in maize (Zea mays L.). Plant Physiology and Biochemistry120, 213–222.

Salvagiotti F, Castellarin J M, Miralles D J, Pedrol H M. 2009. Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crops Research113, 170–177.

Sánchez E, Rivero R M, Ruiz J M, Romero L. 2004. Changes in biomass, enzymatic activity and protein concentration in roots and leaves of green bean plants (Phaseolus vulgaris L. cv. Strike) under high NH4NO3 application rates. Scienta Horticultrae9, 237–248.

Schneider H M, Lynch J P. 2021. Root traits for improving N acquisition efficiency. In: Ricroch A, Chopra S, Kuntz M, eds., Plant Biotechnology: Experience and Future Prospects. Springer International Publishing, Cham. pp. 163–180.

SGAC (State Grain Administration of China). 2017. China Grain Yearbook. China Social Press, Beijing. (in Chinese)

Sha X Q, Guan H H, Zhou Y Q, Su E H, Guo J, Li Y X, Zhang D F, Liu X Y, He G H, Li Y, Wang T Y, Zou H W, Li C H. 2023. Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize. Journal of Integrative Agriculture22, 3394–3407.

Shao H, Shi D F, Shi W J, Ban X B, Chen Y C, Ren W, Chen F J, Mi G H. 2019. Genotypic difference in the plasticity of root system architecture of field-grown maize in response to plant density. Plant and Soil439, 201–217.

Shao Z Q, Zheng C C, Johannes A P, Lu W L, Gao Q, Gao Y Z, Zhang J J. 2021. Nitrogen acquisition, fixation and transfer in maize/alfalfa intercrops are increased through root contact and morphological responses to interspecies competition. Journal of Integrative Agriculture20, 2240–2254.

Uribelarrea M, Moose S P, Below F E. 2007. Divergent selection for grain protein affects nitrogen use efficiency in maize hybrids. Field Crops Research100, 82–90.

Waines J G, Ehdaie B. 2007. Domestication and crop physiology: Roots of green-revolution wheat. Annals of Botany100, 991–998.

Wang G Y, Zhang Y T, Chen A Q, Liu H B, Zhai L M, Lei B K, Ren T Z. 2017. An optimal regional nitrogen application thresh old for wheat in the North China Plain considering yield and environmental effects. Field Crops Research207, 52–61.

Wang X, Feng J, White P J, Shen J, Chen L. 2020. Heterogeneous phosphate supply influences maize lateral root proliferation by regulating auxin redistribution. Annals of Botany125, 119–130.

Wang Y, Mi G H, Chen F J, Zhang J H, Zhang F S. 2004. Response of root morphology to nitrate supply and its contribution to nitrogen accumulation in maize. Journal of Soil Science and Plant Nutrition27, 2189–2202.

Wang Y, Zhang X, Chen J, Chen A, Wang L, Guo X, Niu Y, Liu S, Mi G, Gao Q. 2019. Reducing basal nitrogen rate to improve maize seedling growth, water and nitrogen use efficiencies under drought stress by optimizing root morphology and distribution. Agricultural Water Management212, 328–337.

Wei H Y, Hu L, Zhu Y, Xu D, Zheng L M, Chen Z F, Hu Y J, Cui P Y, Guo B W, Dai Q G, Zhang H C. 2018. Different characteristics of nutrient absorption and utilization between inbred japonica super rice and inter-sub-specific hybrid super rice. Field Crops Research218, 88–96.

Wu L, Mcgechan M B, Watson C A, Baddeley J A. 2005. Developing existing plant root system architecture models to meet future agricultural challenges. Advances in Agronomy85, 181–219.

Xu G, Lu D K, Wang H Z, Li Y. 2018. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agricultural Water Management203, 385–394.

Yang C M, Yang L Z, Yang Y X, Ouyang Z. 2004. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agricultural Water Management70, 67–81.

Yang L X, Wang Y L, Kobayashi K Z, Zhu J G, Huang J N, Yang H G, Wang Y X Dong, G C, Liu G, Han Y, Shan Y H, Hu J, Zhou J A. 2008. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization. Global Change Biology14, 1–10.

Yu H L, Gao Q, Shao Z Q, Ying A N, Sun Y Y, Liu J W, Mao W, Zhang B. 2016. Decreasing nitrogen fertilizer input had little effect on microbial communities in three types of soils. PLoS ONE11, e0151622.

Yu P, White P J, Hochholdinger F, Li C J. 2014. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. Planta240, 667–678.

Zeng J, Liu X, Song L, Lin X, Zhang H, Shen C, Chu H. 2016. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biology & Biochemistry92, 41–49.

Zhang H, Zhang J H, Yang J C. 2023. Improving nitrogen use efficiency of rice crop through an optimized root system and agronomic practices. Crop and Environment2, 192–201.

Zhang H, Zhang S F, Yang J C, Zhang J H, Wang Z Q. 2008. Postanthesis moderate wetting drying improves both quality and quantity of rice yield. Agronomy Journal100, 726–734.

Zhang G Q, Liu C W, Xiao C H, Xie R Z, Ming B, Hou P, Liu G Z, Xu W J, Shen D P, Wang K R, Li S K. 2017. Optimizing water use efficiency and economic return of super high yield spring maize under drip irrigation and plastic mulching in arid areas of China. Field Crops Research211, 137–146.

Zhang J H, Sui X Z, Li B, Su B L, Li J M, Zhou D X. 1998. An improved water-use efficiency for winter wheat grown under reduced irrigation. Field Crops Research59, 91–98.

Zheng C Y, Li C L, Tian L B, Shen Z Y, Feng G Z, Hou W F, Liu F L, Gao Q, Wang Y. 2023. Mixture of controlled-release and normal urea to improve maize root development, post-silking plant growth, and grain filling. European Journal of Agronomy151, 126994.

Zhu K Y, Yan J Q, Shen Y, Zhang W Y, Xu Y J, Wang Z Q, Yang J C. 2022. Deciphering the morpho-physiological traits for high yield potential in nitrogen efficient varieties (NEVs): A japonica rice case study. Journal of Integrative Agriculture21, 947–963.

[1] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[2] Ling Ai, Ju Qiu, Jiuguang Wang, Mengya Qian, Tingting Liu, Wan Cao, Fangyu Xing, Hameed Gul, Yingyi Zhang, Xiangling Gong, Jing Li, Hong Duan, Qianlin Xiao, Zhizhai Liu. A naturally occurring 31 bp deletion in TEOSINTE BRANCHED1 causes branched ears in maize[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3322-3333.
[3] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
[4] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[5] Lihua Xie, Lingling Li, Junhong Xie, Jinbin Wang, Zechariah Effah, Setor Kwami Fudjoe, Muhammad Zahid Mumtaz. A suitable organic fertilizer substitution ratio stabilizes rainfed maize yields and reduces gaseous nitrogen loss in the Loess Plateau, China[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2138-2154.
[6] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[7] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[8] Xiaoxia Guo, Wanmao Liu, Yunshan Yang, Guangzhou Liu, Bo Ming, Ruizhi Xie, Keru Wang, Shaokun Li, Peng Hou. Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1424-1435.
[9] Yang Wang, Chunhua Mu, Xiangdong Li, Canxing Duan, Jianjun Wang, Xin Lu, Wangshu Li, Zhennan Xu, Shufeng Sun, Ao Zhang, Zhiqiang Zhou, Shenghui Wen, Zhuanfang Hao, Jienan Han, Jianzhou Qu, Wanli Du, Fenghai Li, Jianfeng Weng. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize[J]. >Journal of Integrative Agriculture, 2025, 24(2): 453-466.
[10] Qingyun Tang, Guodong Wang, Lei Zhao, Zhiwen Song, Yuxiang Li.
Responses of yield, root traits and their plasticity to the nitrogen environment in nitrogen-efficient cultivars of drip-irrigated rice
[J]. >Journal of Integrative Agriculture, 2025, 24(2): 480-496.
[11] Yulong Wang, Aizhong Yu, Pengfei Wang, Yongpan Shang, Feng Wang, Hanqiang Lü, Xiaoneng Pang, Yue Li, Yalong Liu, Bo Yin, Dongling Zhang, Jianzhe Huo, Keqiang Jiang, Qiang Chai. No-tillage with total green manure mulching increases maize yield through improved soil moisture and temperature environment and enhanced maize root structure and photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4211-4224.
[12] Fei Bao, Ping Zhang, Qiying Yu, Yunfei Cai, Bin Chen, Heping Tan, Hailiang Han, Junfeng Hou, Fucheng Zhao. Response of fresh maize yield to nitrogen application rates and  characteristics of nitrogen-efficient varieties[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3803-3818.
[13] Tianqi Wang, Jihui Tian, Xing Lu, Chang Liu, Junhua Ao, Huafu Mai, Jinglin Tan, Bingbing Zhang, Cuiyue Liang, Jiang Tian. Soybean variety influences the advantages of nutrient uptake and yield in soybean/maize intercropping via regulating root-root interaction and rhizobacterial composition[J]. >Journal of Integrative Agriculture, 2025, 24(10): 4048-4062.
[14] Zijuan Ding, Ren Hu, Yuxian Cao, Jintao Li, Dakang Xiao, Jun Hou, Xuexia Wang. Integrated assessment of yield, nitrogen use efficiency and ecosystem economic benefits of use of controlled-release and common urea in ratoon rice production[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3186-3199.
[15] Xin Dong, Baole Li, Zhenzhen Yan, Ling Guan, Shoubing Huang , Shujun Li, Zhiyun Qi, Ling Tang, Honglin Tian, Zhongjun Fu, Hua Yang. Impacts of high temperature, relative air humidity, and vapor pressure deficit on the seed set of contrasting maize genotypes during flowering[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2955-2969.
No Suggested Reading articles found!