Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (7): 2255-2269    DOI: 10.1016/j.jia.2024.03.067
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Physiological and transcriptome analyses of Chinese cabbage in response to drought stress

Lin Chen1, Chao Li1, Jiahao Zhang1, Zongrui Li1, Qi Zeng1, Qingguo Sun1, Xiaowu Wang2, Limin Zhao1, Lugang Zhang1, Baohua Li1#

1 State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, China

2 Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
大白菜是重要的叶菜作物,需水量高,易受干旱胁迫。为了探索大白菜干旱响应的分子机制,我们对干旱胁迫下的大白菜耐旱品种和干旱敏感品种进行了转录组分析,揭示了核心的干旱响应基因和关键的信号通路。通过加权基因共表达网络分析(WGCNA)构建了共表达网络,并鉴定了潜在的参与耐旱性的枢纽基因。此外,我们探索了大白菜叶片脱落酸的合成与信号通路及其干旱响应。我们还发现干旱处理显著提高了抗氧化酶活性和芥子油苷的含量。这些结果大大丰富了人们对大白菜响应干旱胁迫分子机制的了解。


Abstract  

Chinese cabbage is an important leafy vegetable crop with high water demand and susceptibility to drought stress.  To explore the molecular mechanisms underlying the response to drought, we performed a transcriptome analysis of drought-tolerant and -sensitive Chinese cabbage genotypes under drought stress, and uncovered core drought-responsive genes and key signaling pathways.  A co-expression network was constructed by a weighted gene co-expression network analysis (WGCNA) and candidate hub genes involved in drought tolerance were identified.  Furthermore, abscisic acid (ABA) biosynthesis and signaling pathways and their drought responses in Chinese cabbage leaves were systemically explored.  We also found that drought treatment increased the antioxidant enzyme activities and glucosinolate contents significantly.  These results substantially enhance our understanding of the molecular mechanisms underlying drought responses in Chinese cabbage.


Keywords:  Chinese cabbage        drought stress        abscisic acid        weighted gene co-expression network analysis        glucosinolate  
Received: 07 June 2023   Accepted: 19 December 2023
Fund: 
This work was supported by the National Key Research and Development Program of China (2022YFF1003003), the National Natural Science Foundation of China (32070333), and the Startup Funding (Z111021922) from Northwest A&F University, China.  
About author:  Lin Chen, E-mail: chenlin1995@nwafu.edu.cn; #Correspondence Baohua Li, E-mail: baohuali@nwafu.edu.cn

Cite this article: 

Lin Chen, Chao Li, Jiahao Zhang, Zongrui Li, Qi Zeng, Qingguo Sun, Xiaowu Wang, Limin Zhao, Lugang Zhang, Baohua Li. 2024. Physiological and transcriptome analyses of Chinese cabbage in response to drought stress. Journal of Integrative Agriculture, 23(7): 2255-2269.

Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant13, 1194−1202.

Chen C X, Shang X L, Sun M Y, Tang S Y, Khan A, Zhang D, Yan H D, Jiang Y X, Yu F F, Wu Y R, Xie Q. 2022. Comparative transcriptome analysis of two sweet sorghum genotypes with different salt tolerance abilities to reveal the mechanism of salt tolerance. International Journal of Molecular Sciences23, 2272.

Chen H X, Wang T P, He X N, Cai X, Lin R M, Liang J L, Wu J, King G, Wang X W. 2022. BRAD V3.0: An upgraded Brassicaceae database. Nucleic Acids Research50, D1432−D1441.

Chen L, Shen Y R, Yang W J, Pan Q M, Li C, Sun Q G, Zeng Q, Li B H, Zhang L G. 2022. Comparative metabolic study of two contrasting Chinese cabbage genotypes under mild and severe drought stress. International Journal of Molecular Sciences23, 5947.

Chen Y, Feng L, Wei N, Liu Z H, Hu S, Li X B. 2017. Overexpression of cotton PYL genes in Arabidopsis enhances the transgenic plant tolerance to drought stress. Plant Physiology and Biochemistry115, 229−238.

Chin C H, Chen S H, Wu H H, Ho C W, Ko M T, Lin C Y. 2014. CytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology8, S11.

Dhindsa R S, Plumb-Dhindsa P, Thorpe T A. 1981. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany32, 93–101.

Dong T, Park Y, Hwang I. 2015. Abscisic acid: Biosynthesis, inactivation, homoeostasis and signalling. Plant Hormone Signalling58, 29−48.

Eom S H, Baek S A, Kim J K, Hyun T K. 2018. Transcriptome analysis in Chinese cabbage (Brassica rapa ssp. pekinensis) provides the role of glucosinolate metabolism in response to drought stress. Molecules23, 1186.

Gill S S, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry48, 909–930.

Gonzalez-Guzman M, Rodriguez L, Lorenzo-Orts L, Pons C, Sarrion-Perdigones A, Fernandez M A, Peirats-Llobet M, Forment J, Moreno-Alvero M, Cutler S R, Albert A, Granell A, Rodriguez P L. 2014. Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. Journal of Experimental Botany65, 4451−4464.

Guo Y M, Samans B, Chen S, Kibret K B, Hatzig S, Turner N C, Nelson M N, Cowling W A, Snowdon R J. 2017. Drought-tolerant Brassica rapa shows rapid expression of gene networks for general stress responses and programmed cell death under simulated drought stress. Plant Molecular Biology Reporter35, 416−430.

Gupta A, Rico-Medina A, Cano-Delgado A I. 2020. The physiology of plant responses to drought. Science368, 266−269.

Halkier B A, Gershenzon J. 2006. Biology and biochemistry of glucosinolates. Annual Review of Plant Biology57, 303–333.

Hammerschmidt R, Nuckles E M, Kuć J. 1982. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenariumPhysiological Plant Pathology20, 73–82.

Harun S, Abdullah-Zawawi M R, Goh H H, Mohamed-Hussein Z A. 2020. A comprehensive gene inventory for glucosinolate biosynthetic pathway in Arabidopsis thalianaJournal of Agricultural and Food Chemistry68, 7281–7297.

Hu H C, Liu Y H, He B B, Chen X, Ma L, Luo Y L, Fei X T, Wei A Z. 2022. Integrative physiological, transcriptome, and metabolome analysis uncovers the drought responses of two Zanthoxylum bungeanum cultivars. Industrial Crops and Products189, 115812.

Jia H X, Zhang J, Li J B, Sun P, Zhang Y H, Xin X B, Lu M Z, Hu J J. 2019. Genome-wide transcriptomic analysis of a desert willow, Salix psammophila, reveals the function of hub genes SpMDP1 and SpWRKY33 in drought tolerance. BMC Plant Biology19, 356.

Joshi R, Wani S H, Singh B, Bohra A, Dar Z A, Lone A A, Pareek A, Singla-Pareek S L. 2016. Transcription factors and plants response to drought stress: Current understanding and future directions. Frontiers in Plant Science7, 1029.

Kliebenstein D J, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T. 2001. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiology126, 811–825.

Langfelder P, Horvath S. 2008. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics9, 559.

Lee S, Lee E J, Yang E J, Lee J E, Park A R, Song W H, Park O K. 2004. Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. The Plant Cell16, 1378−1391.

Li P, Zhang B, Su T B, Li P R, Xin X Y, Wang W H, Zhao X Y, Yu Y J, Zhang D H, Yu S C, Zhang F L. 2018. BrLAS, a GRAS transcription factor from Brassica rapa, is involved in drought stress tolerance in transgenic Arabidopsis. Frontiers in Plant Science9, 1792.

Liu Q B, Ding Y L, Shi Y T, Ma L, Wang Y, Song C P, Wilkins K A, Davies J M, Knight H, Knight M R, Gong Z Z, Guo Y, Yang S H. 2021. The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants. EMBO Journal40, e104559.

Liu S T, Zenda T, Dong A Y, Yang Y T, Wang N, Duan H J. 2021. Global transcriptome and weighted gene co-expression network analyses of growth-stage-specific drought stress responses in maize. Frontiers in Genetics12, 645443.

Liu Z N, Kong L J, Zhang M, Lv Y X, Liu Y P, Zou M H, Lu G, Cao J S, Yu X L. 2013. Genome-wide identification, phylogeny, evolution and expression patterns of AP2/ERF genes and cytokinin response factors in Brassica rapa ssp. pekinensisPLoS ONE8, e83444.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402−408.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15, 550.

Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science324, 1064−1068.

Mega R, Abe F, Kim J S, Tsuboi Y, Tanaka K, Kobayashi H, Sakata Y, Hanada K, Tsujimoto H, Kikuchi J, Cutler S R, Okamoto M. 2019. Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors. Nature Plants5, 153−159.

Min H W, Chen C X, Wei S W, Shang X L, Sun M Y, Xia R, Liu X G, Hao D, Chen H B, Xie Q. 2016. Identification of drought tolerant mechanisms in maize seedlings based on transcriptome analysis of recombination inbred lines. Frontiers in Plant Science7, 1080.

Mittler R. 2006. Abiotic stress, the field environment and stress combination. Trends in Plant Science11, 15−19.

Naumann G, Alfieri L, Wyser K, Mentaschi L, Betts R A, Carrao H, Spinoni J, Vogt J, Feyen L. 2018. Global changes in drought conditions under different levels of warming. Geophysical Research Letters45, 3285−3296.

Oladosu Y, Rafii M Y, Samuel C, Fatai A, Magaji U, Kareem I, Kamarudin Z S, Muhammad I I, Kolapo K. 2019. Drought resistance in rice from conventional to molecular breeding: A review. International Journal of Molecular Sciences20, 3519.

Park S Y, Fung P, Nishimura N, Jensen D R, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow T F, Alfred S E, Bonetta D, Finkelstein R, Provart N J, Desveaux D, Rodriguez P L, McCourt P, Zhu J K, Schroeder J I, Volkman B F, et al. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science324, 1068−1071.

Pavlovic I, Petrik I, Tarkowska D, Lepedus H, Bok V V, Brkanac S R, Novak O, Salopek-Sondi B. 2018. Correlations between phytohormones and drought tolerance in selected Brassica crops: Chinese cabbage, white cabbage and kale. International Journal of Molecular Sciences19, 2866.

Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology33, 290−295.

Raghavendra A S, Gonugunta V K, Christmann A, Grill E. 2010. ABA perception and signalling. Trends in Plant Science15, 395−401.

Richards S L, Laohavisit A, Mortimer J C, Shabala L, Swarbreck S M, Shabala S, Davies J M. 2014. Annexin 1 regulates the H2O2-induced calcium signature in Arabidopsis thaliana roots. The Plant Journal77, 136−145.

Salehin M, Li B H, Tang M, Katz E, Song L, Ecker J R, Kliebenstein D J, Estelle M. 2019. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nature Communications10, 4021.

Seo Y J, Park J B, Cho Y J, Jung C, Seo H S, Park S K, Nahm B H, Song J T. 2010. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Molecules and Cells30, 271−277.

Shawon R A, Kang B S, Lee S G, Kim S K, Lee H J, Katrich E, Gorinstein S, Ku Y G. 2020. Influence of drought stress on bioactive compounds, antioxidant enzymes and glucosinolate contents of Chinese cabbage (Brassica rapa). Food Chemistry308, 125657.

Valdes A E, Overnas E, Johansson H, Rada-Iglesias A, Engstrom P. 2012. The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities. Plant Molecular Biology80, 405−418.

Wang B K, Wang J, Yang T, Wang J X, Dai Q, Zhang F L, Xi R, Yu Q H, Li N. 2023. The transcriptional regulatory network of hormones and genes under salt stress in tomato plants (Solanum lycopersicum L.). Frontiers in Plant Science14, 1115593.

Wang W L, Lin Y H, Teng F, Ji D H, Xu Y, Chen C S, Xie C T. 2018. Comparative transcriptome analysis between heat−tolerant and sensitive Pyropia haitanensis strains in response to high temperature stress. Algal Research−Biomass Biofuels and Bioproducts29, 104−112.

Wu Y, Wang Y R, Shi H M, Hu H B, Yi L X, Hou J H. 2022a. Time-course transcriptome and WGCNA analysis revealed the drought response mechanism of two sunflower inbred lines. PLoS ONE17, e0265447.

Wu Y, Zhang L T, Nie L B, Zheng Y S, Zhu S D, Hou J F, Li R J, Chen G H, Tang X Y, Wang C G, Yuan L Y. 2022b. Genome-wide analysis of the DREB family genes and functional identification of the involvement of BrDREB2B in abiotic stress in wucai (Brassica campestris L.). BMC Genomics23, 598.

Yu S C, Zhang F L, Yu Y J, Zhang D S, Zhao X Y, Wang W H. 2012. Transcriptome profiling of dehydration stress in the Chinese cabbage (Brassica rapa L. ssp. pekinensis) by tag sequencing. Plant Molecular Biology Reporter30, 17–28.

Yuan J P, Liu T K, Yu Z H, Li Y, Ren H B, Hou X L, Li Y. 2019. Genome-wide analysis of the Chinese cabbage IQD gene family and the response of BrIQD5 in drought resistance. Plant Molecular Biology99, 603−620.

Zhang H M, Zhu J H, Gong Z Z, Zhu J K. 2022. Abiotic stress responses in plants. Nature Reviews Genetics23, 104−119.

Zhang L, Cai X, Wu J, Liu M, Grob S, Cheng F, Liang J L, Cai C C, Liu Z Y, Liu B, Wang F, Li S, Liu F Y, Li X M, Cheng L, Yang W C, Li M H, Grossniklaus U, Zheng H K, Wang X W. 2018. ImproveBrassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Horticulture Research5, 124.

Zhao Y, Chan Z L, Gao J H, Xing L, Cao M J, Yu C M, Hu Y L, You J, Shi H T, Zhu Y F, Gong Y H, Mu Z X, Wang H Q, Deng X, Wang P C, Bressan R A, Zhu J K. 2016. ABA receptor PYL9 promotes drought resistance and leaf senescence. Proceedings of the National Academy of Sciences of the United States of America113, 1949−1954.

Zheng Y, Jiao C, Sun H H, Rosli H G, Pombo M A, Zhang P F, Banf M, Dai X B, Martin G B, Giovannoni J J, Zhao P X, Rhee S Y, Fei Z J. 2016. iTAK: A program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Molecular Plant9, 1667−1670.

[1] Liping Song, Xia Li, Liguang Tang, Chuying Yu, Bincai Wang, Changbin Gao, Yanfeng Xie, Xueli Zhang, Junliang Wang, Chufa Lin, Aihua Wang.

Fine mapping and cloning of the sterility gene Bra2Ms in non-heading Chinese cabbage (Brassica rapa ssp. chinensis) [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1195-1204.

[2] ZHANG Rui-xing, ZHANG Ni-nan, WANG Ya-xiu, Khan ABID, MA Shuai, BAI Xue, ZENG Qi, PAN Qi-ming, LI Bao-hua, ZHANG Lu-gang. Blue light induces leaf color change by modulating carotenoid metabolites in orange-head Chinese cabbage (Brassica rapa L. ssp. pekinensis)[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3296-3311.
[3] SU He-nan, YUAN Yu-xiang, YANG Shuang-juan, WEI Xiao-chun, ZHAO Yan-yan, WANG Zhi-yong, QIN Liu-yue, YANG Zhi-yuan, NIU Liu-jing, LI Lin, ZHANG Xiao-wei. Comprehensive analysis of the full-length transcripts and alternative splicing involved in clubroot resistance in Chinese cabbage[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3284-3295.
[4] XU Yu-chao, HOU Xi-lin, XU Wei-wei, SHEN Lu-lu, Lü Shan-wu, ZHANG Shi-lin, HU Chun-mei. Isolation and characterization of an ERF-B3 gene associated with flower abnormalities in non-heading Chinese cabbage[J]. >Journal of Integrative Agriculture, 2016, 15(3): 528-536.
[5] WANG Li, GE Ting-ting, PENG Hai-tao, WANG Cheng, LIU Tong-kun, HOU Xi-lin. Molecular Cloning, Expression Analysis and Localization of Exo70A1 Related to Self Incompatibility in Non-Heading Chinese Cabbage (Brassica campestris ssp. chinensis)[J]. >Journal of Integrative Agriculture, 2013, 12(12): 2149-2156.
No Suggested Reading articles found!