Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (2): 409-428    DOI: 10.1016/j.jia.2024.03.028
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Fine control of growth and thermotolerance in the plant response to heat stress
Yulong Zhao*, Song Liu*, Kaifeng Yang, Xiuli Hu#, Haifang Jiang#

State Key Laboratory of Wheat & Maize Crop Science/College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China

 Highlights 
This review systematically summarizes how plants perceive and initiate responses to high temperature stress, and elaborates on the precise regulation of plant growth and defense against heat stress, aiming to provide new insights for molecular agricultural breeding.  
The authors also provide unique insights into plant responses to heat stress, offering valuable references for future research.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  全球变暖引起气候变化,严重影响植物生长发育,并对粮食安全构成威胁。植物本身具有对适宜温度的响应能力(如热形态发生),并能承受一定范围的高温胁迫。在分子水平上,许多小分子在维持生长和防御机制之间的平衡发挥着关键作用,通过微调对外部刺激的响应来确保作物的最佳产量。因此,了解植物响应热应激的分子机制,解析植物适应热胁迫的的生物过程变得至关重要。在本综述中,我们概述了植物热响应基因网络,论述了植物如何感知高温并启动细胞和代谢反应,最终使其能够适应不利的生长条件。最后,我们还对植物生长及对热应激响应之间的权衡作出讨论,提出调控植物响应热应激的调节网络,这也将为全面挖掘耐热候选基因并应用于农业生产提供帮助。

Abstract  
Global warming impacts plant growth and development, which in turn threatens food security.  Plants can clearly respond to warm-temperature (such as by thermomorphogenesis) and high-temperature stresses.  At the molecular level, many small molecules play crucial roles in balancing growth and defense, and stable high yields can be achieved by fine-tuning the responses to external stimuli.  Therefore, it is essential to understand the molecular mechanisms underlying plant growth in response to heat stress and how plants can adjust their biological processes to survive heat stress conditions.  In this review, we summarize the heat-responsive genetic networks in plants and crop plants based on recent studies.  We focus on how plants sense the elevated temperatures and initiate the cellular and metabolic responses that allow them to adapt to the adverse growing conditions.  We also describe the trade-off between plant growth and responses to heat stress.  Specifically, we address the regulatory network of plant responses to heat stress, which will facilitate the discovery of novel thermotolerance genes and provide new opportunities for agricultural applications.
Keywords:  heat stress       signal transduction        tolerance mechanisms        trade-off  
Received: 08 November 2023   Accepted: 01 February 2024
Fund: 
This study was supported by the National Natural Science Foundation of China (32171945, 32301760), the Program for Innovative Research Team (in Science and Technology) in University of Henan Province, China (22IRTSTHN023), the Scientific and Technological Research Project of Henan Province, China (242102111116), the National Science Foundation for Postdoctoral Scientists of China (2023M731003), and the Postdoctoral Research Subsidize Fund of Henan Province, China (HN2022139).
About author:  Yulong Zhao, E-mail: zhaoyulong2009@163.com; Song Liu, E-mail: ls.hello@qq.com; #Correspondence Xiuli Hu, Tel: +86-371-68555260, E-mail: xiulihu@126.com; Haifang Jiang, Tel: +86-371-68555260, E-mail: jianghf@henau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Yulong Zhao, Song Liu, Kaifeng Yang, Xiuli Hu, Haifang Jiang. 2025. Fine control of growth and thermotolerance in the plant response to heat stress. Journal of Integrative Agriculture, 24(2): 409-428.

Andronis E, Moschou P, Toumi I, Roubelakis-Angelakis K. 2014. Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thalianaFrontiers in Plant Science5, 132.

Bahuguna R N, Jagadish K S V. 2015. Temperature regulation of plant phenological development. Environmental and Experimental Botany, 111, 83–90.

Balogi Z, Török Z, Balogh G, Jósvay K, Shigapova N, Vierling E, Vígh L, Horváth I. 2005. “Heat shock lipid” in cyanobacteria during heat/light-acclimation. Archives of Biochemistry and Biophysics436, 346–354.

Bhat J A, Ali S, Salgotra R K, Mir Z A, Dutta S, Jadon V, Tyagi A, Mushtaq M, Jain N, Singh P K, Singh G P, Prabhu K V. 2016. Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Frontiers in Genetics7, 221.

Bi H, Zhao Y, Li H, Liu W. 2020. Wheat heat shock factor TaHsfA6f increases ABA levels and enhances tolerance to multiple abiotic stresses in transgenic plants. International Journal of Molecular Sciences213121.

Box M S, Huang B E, Domijan M, Jaeger K E, Khattak A K, Yoo S J, SedivyE L, Jones D M, Hearn T J, Webb A A R, Grant A, Locke J C W, Wigge P A. 2015. ELF3 controls thermoresponsive growth in ArabidopsisCurrent Biology25, 194–199.

Buu B C, Chan C Y, Lang N T. 2021. Molecular breeding for improving heat stress tolerance in rice: Recent progress and future perspectives. In: Hossain M A, Hassan L, lfterkharuddaula K M, Kumar A, Hrnry R, eds., Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality. pp. 92–119.

Casaretto J A, El-Kereamy A, Zeng B, Stiegelmeyer S M, Chen X, Bi Y M, Rothstein S J. 2016. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance. BMC Genomics17, 312.

Che P, Bussell J D, Zhou W, Estavillo G M, Pogson B J, Smith S M. 2010. Signaling from the endoplasmic reticulum activates brassinosteroid signaling and promotes acclimation to stress in ArabidopsisScience Signaling3, ra69.

Chen Q, Yang G. 2020. Signal function studies of ROS, especially RBOH-dependent ROS, in Plant growth, development and environmental stress. Journal of Plant Growth Regulation, 39, 157–171.

Chen X, Xue H, Zhu L, Wang H, Long H, Zhao J, Meng F, Liu Y, Ye Y, Luo X, Liu Z, Xiao G, Zhu S. 2022. ERF49 mediates brassinosteroid regulation of heat stress tolerance in Arabidopsis thalianaBMC Biology20, 254.

Choi H, Oh E. 2016. PIF4 integrates multiple environmental and hormonal signals for plant growth regulation in ArabidopsisMolecules and Cells39, 587–593.

Choudhury F K, Rivero R M, Blumwald E, Mittler R. 2017. Reactive oxygen species, abiotic stress and stress combination. The Plant Journal90, 856–867.

Chung B Y. W Balcerowicz M Di, Antonio M, Jaeger K E, Geng F, Franaszek K, Marriott P, Brierley I, Firth A E, Wigge P A. 2020. An RNA thermoswitch regulates daytime growth in ArabidopsisNature Plants6, 522–532.

Clapham D E. 2003. TRP channels as cellular sensors. Nature426, 517–524.

Coles J P, Phillips A L, Croker S J, García-Lepe R, Lewis M J, Hedden P. 1999. Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. The Plant Journal17, 547–556.

Cui Y, Lu S, Li Z, Cheng J, Hu P, Zhu T, Wang X, Jin M, Wang X, Li L, Huang S, Zou B, Hua J. 2020. Cyclic nucleotide-gated ion channels 14 and 16 promote tolerance to heat and chilling in rice. Plant Physiology183, 1794–1808.

Deng Y, Srivastava R, Howel S H. 2013. Endoplasmic reticulum (ER) stress response and its physiological roles in plants. International Journal of Molecular Sciences, 14, 8188–8212.

Dickinson P J, Kumar M, Martinho C, Yoo S J, Lan H, Artavanis G, Charoensawan V, Schöttler M A, Bock R, Jaeger K E, Wigge P A. 2018. Chloroplast signaling gates thermotolerance in ArabidopsisCell Reports, 22, 1657–1665.

Ding F, Cui P, Wang Z, Zhang S, Ali S, Xiong L. 2014. Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in ArabidopsisBMC Genomics15, 431.

Ding Y, Shi Y, Yang S. 2019. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytologist222, 1690–1704.

Ding Y, Yang S. 2022. Surviving and thriving: How plants perceive and respond to temperature stress. Developmental Cell57, 947–958.

Dodd A N, Kudla J, Sanders D. 2010. The language of calcium signaling. Annual Review of Plant Biology61, 593–620.

Dreesen F E, De Boeck H J, Janssens I A, Nijs I. 2012. Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. Environmental and Experimental Botany79, 21–30.

Driedonks N, Xu J, Peters J L, Park S, Rieu I. 2015. Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Frontiers in Plant Science6, 999.

Duszyn M, Świeżawska B, Szmidt-Jaworska A, Jaworski K. 2019. Cyclic nucleotide gated channels (CNGCs) in plant signalling - Current knowledge and perspectives. Journal of Plant Physiology241, 153035.

El Haddad N, Choukri H, Ghanem M E, Smouni A, Mentag R, Rajendran K, Hejjaoui K, Maalouf F, Kumar S. 2021. High-temperature and drought stress effects on growth, yield and nutritional quality with transpiration response to vapor pressure deficit in Lentil. Plants (Basel), 11, 95.

Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Ohshima M, Higashitani A, Watanabe M, Kawagishi-Kobayashi M. 2009. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant and Cell Physiology50, 1911–1922.

Evrard A, Kumar M, Lecourieux D, Lucks J, von Koskull-Döring P, Hirt H. 2013. Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2. PeerJ1, e59.

Favory J J, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, Albert A, Cloix C, Jenkins G I, Oakeley E J, Seidlitz H K, Nagy F, Ulm R. 2009. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in ArabidopsisThe EMBO Journal28, 591–601.

Feng B, Zhang C, Chen T, Zhang X, Tao L, Fu G. 2018. Salicylic acid reverses pollen abortion of rice caused by heat stress. BMC Plant Biology18, 245.

Feng Y, Sun F. 2024. Spatiotemporal dynamics of hot-dry winds in northern China: A multidimensional analysis using gridded datasets. Journal of Hydrometeorology25, 1577–1589.

Filichkin S A, Priest H D, Givan S A, Shen R, Bryant D W, Fox S E, Wong W K, Mockler T C. 2010. Genome-wide mapping of alternative splicing in Arabidopsis thalianaGenome Research20, 45–58.

Findlay K M, Jenkins G I. 2016. Regulation of UVR8 photoreceptor dimer/monomer photo-equilibrium in Arabidopsis plants grown under photoperiodic conditions. Plant, Cell and Environment39, 1706–1714.

Finka A, Cuendet A F H, Maathuis F J M, Saidi Y, Goloubinoff P. 2012. Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. The Plant Cell24, 3333–3348.

Finka A, Goloubinoff P. 2014. The CNGCb and CNGCd genes from Physcomitrella patens moss encode for thermosensory calcium channels responding to fluidity changes in the plasma membrane. Cell Stress and Chaperones19, 83–90.

Franklin K A, Knight H. 2010. Unravelling plant temperature signalling networks. New Phytologist185, 8–10.

Franklin K A, Lee S H, Patel D, Kumar S V, Spartz A K, Gu C, Ye S, Yu P, Breen G, Cohen J D, Wigge P A, Gray W M. 2011. Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proceedings of the National Academy of Sciences of the United States of America108, 20231–20235.

Friedrich T, Oberkofler V, Trindade I, Altmann S, Brzezinka K, Lämke J, Gorka M, Kappel C, Sokolowska E, Skirycz A, Graf A, Bäurle I. 2021. Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in ArabidopsisNature Communications12, 3426.

Fu L, Wang P, Xiong Y. 2020. TarTarget of rapamycin signaling in plant stress responses. Plant Physiology182, 1613–1623.

Furuya T, Matsuoka D, Nanmori T. 2014. Membrane rigidification functions upstream of the MEKK1-MKK2-MPK4 cascade during cold acclimation in Arabidopsis thalianaFEBS Letters588, 2025–2030.

Gangappa S N, Kumar S V. 2017. DET1 and HY5 Control PIF4-mediated thermosensory elongation growth through distinct mechanisms. Cell Reports18, 344–351.

Gao F, Han X, Wu J, Zheng S, Shang Z, Su, D, Zhou R, Li B. 2012. A heat-activated calcium-permeable channel - Arabidopsis cyclic nucleotide-gated ion channel 6 - is involved in heat shock responses. The Plant Journal70, 1056–1069.

Gao H, Brandizzi F, Benning C, Larkin R M. 2008. A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thalianaProceedings of the National Academy of Sciences of the United States of America105, 16398–16403.

Gao J, Wang S, Zhou Z, Wang S, Dong C, Mu C, Song Y, Ma P, Li C, Wang Z, He K, Han C, Chen J, Yu H, Wu J. 2019. Linkage mapping and genome-wide association reveal candidate genes conferring thermotolerance of seed-set in maize. Journal of Experimental Botany70, 4849–4864.

Gao X, Cox K L, Jr H P. 2014. Functions of calcium-dependent protein kinases in plant innate immunity. Plants (Basel), 3, 160–176.

Gilroy S, Białasek M, Suzuki N, Górecka M, Devireddy A R, Karpiński S, Mittler R. 2016. ROS, calcium, and electric signals: Key mediators of rapid systemic signaling in plants. Plant Physiology171, 1606–1615.

Giorno F, Wolters-Arts M, Mariani C, Rieu I. 2013. Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development. Plants (Basel), 2, 489–506.

Ginsawaeng O, Gorka M, Erban A, Heise C, Brueckner F, Hoefgen R, Kopka J, Skirycz A, Hincha D K, Zuther E. 2021. Characterization of the heat-stable proteome during seed germination in Arabidopsis with special focus on LEA proteins. International Journal of Molecular Sciences22, 8172.

Guo T, Gull S, Ali M M, Yousef A F, Ercisli S, Kalaji H M, Telesiński A, Auriga A, Wróbel J, Radwan N S, Ghareeb R Y. 2022. Heat stress mitigation in tomato (Solanum lycopersicum L.) through foliar application of gibberellic acid. Scientific Reports12, 11324.

Hahm J, Kim K, Qiu Y, Chen M. 2020. Increasing ambient temperature progressively disassembles Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities. Nature Communications11, 1660.

Hasanuzzaman M, Nahar K, Alam M M, Roychowdhury R, Fujita M. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences14, 9643–9684.

Hashimoto K, Kudla J. 2011. Calcium decoding mechanisms in plants. Biochimie93, 2054–2059.

Haworth M, Marino G, Brunetti C, Killi D, De Carlo A, Centritto M. 2018. The impact of heat stress and water deficit on the photosynthetic and stomatal physiology of olive (Olea europaea L.) - A case study of the 2017 heat wave. Plants (Basel), 7, 76.

Hayes S, Schachtschabel J, Mishkind M, Munnik T, Arisz S A. 2021. Hot topic: Thermosensing in plants. Plant, Cell and Environment44, 2018–2033.

Hayes S, Sharma A, Fraser D P, Trevisan M, Cragg-Barber C K, Tavridou E, Fankhauser C, Jenkins G I, Franklin K A. 2017. UV-B perceived by the UVR8 photoreceptor inhibits plant thermomorphogenesis. Current Biology27, 120–127.

Hentze N, Le Breton L, Wiesner J, Kempf G, Mayer M P. 2016. Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1. eLife, 5, e11576.

Huang H, Alvarez S, Bindbeutel R, Shen Z, Naldrett M J, Evans B S, Briggs S P, Hicks L M, Kay S A, Nusinow D A. 2016. Identification of evening complex associated proteins in Arabidopsis by affinity purification and mass spectrometry. Molecular and Cellular Proteomics15, 201–217.

Huang H, McLoughlin K E, Sorkin M L, Burgie E S, Bindbeutel R K, Vierstra R D, Nusinow D A. 2019. PCH1 regulates light, temperature, and circadian signaling as a structural component of phytochrome B-photobodies in ArabidopsisProceedings of the National Academy of Sciences of the United States of America116, 8603–8608.

Huber A, Bauerle T. 2016. Long-distance plant signaling pathways in response to multiple stressors: The gap in knowledge. Journal of Experimental Botany67, 2063–2079.

Hussain M, Khan T A, Yusuf M, Fariduddin Q. 2019. Silicon-mediated role of 24-epibrassinolide in wheat under high-temperature stress. Environmental Science and Pollution Research, 26, 17163–17172.

Jahan M S, Shu S, Wang Y, Hasan M M, El-Yazied A A, Alabdallah N M, Hajjar D, Altaf M A, Sun J, Guo S. 2021. Melatonin pretreatment confers heat tolerance and repression of heat-induced senescence in tomato through the modulation of ABA- and GA-mediated pathways. Frontiers in Plant Science12, 650955.

Jung J H, Barbosa A D, Hutin S, Kumita J R, Gao M, Derwort D, Silva C S, Lai X, Pierre E, Geng F, Kim S B, Baek S, Zubieta C, Jaeger K E, Wigge P A. 2020. A prion-like domain in ELF3 functions as a thermosensor in ArabidopsisNature585, 256–260.

Jung J H, Domijan M, Klose C, Biswas S, Ezer D, Gao M J, Khattak A K, Box M S, Charoensawan V, Cortijo S, Kumar M, Grant A, Locke J C W, Schäfer E, Jaeger K E, Wigge P A. 2016. Phytochromes function as thermosensors in ArabidopsisScience354, 886–889.

Khan M I, Iqbal N, Masood A, Per T S, Khan N A. 2013. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signalling and Behavior8, e26374.

Kimura S, Kaya H, Kawarazaki T, Hiraoka G, Senzaki E, Michikawa M, Kuchitsu K. 2012. Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochimica et Biophysica Acta1823, 398–405.

Kmiecik S W, Mayer M P. 2022. Molecular mechanisms of heat shock factor 1 regulation. Trends in Biochemical Sciences47, 218–234.

Koini M A, Alvey L, Allen T, Tilley C A, Harberd N P, Whitelam G C, Franklin K A. 2009. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Current Biology, 19, 408–413.

Koizumi S, Ohama N, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. 2014. Functional analysis of the Hikeshi-like protein and its interaction with HSP70 in ArabidopsisBiochemical and Biophysical Research Communications450, 396–400.

Kollist H, Zandalinas S I, Sengupta S, Nuhkat M, Kangasjärvi J, Mittler R. 2019. Rapid responses to abiotic stress: Priming the landscape for the signal transduction Network. Trends in Plant Science, 24, 25–37.

Königshofer H, Tromballa H W, Löppert H G. 2008. Early events in signalling high-temperature stress in tobacco BY2 cells involve alterations in membrane fluidity and enhanced hydrogen peroxide production. Plant, Cell and Environment31, 1771–1780.

Kortmann J, Narberhaus F. 2012. Bacterial RNA thermometers: molecular zippers and switches. Nature Reviews Microbiology10, 255–265.

Kotak S, Vierling E, Bäumlein H, von Koskull-Döring P. 2007. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. The Plant Cell19, 182–195

Lafarge T, Bueno C, Frouin J, Jacquin L, Courtois B, Ahmadi N. 2017. Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLoS ONE12, e0171254.

Larkindale J, Hall J D, Knight M R, Vierling E. 2005. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology, 5, 882–897.

Lee J H, Lee J S, Ahn J H. 2008. Ambient temperature signaling in plants: An emerging field in the regulation of flowering time. Journal of Plant Biology51, 321–326.

Lee N, Choi G. 2017. Phytochrome-interacting factor from Arabidopsis to liverwort. Current Opinion in Plant Biology35, 54–60.

Lee U, Wie C, Escobar M, Williams B, Hong S W, Vierling E. 2005. Genetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the small heat shock protein chaperone system. The Plant Cell17, 559–571.

Leivar P, Quail P H. 2011. PIFs: Pivotal components in a cellular signaling hub. Trends in Plant Science16, 19–28.

Leivar P, Monte E. 2014. PIFs: systems integrators in plant development. The Plant Cell26, 56–78.

Lenzoni G, Knight M R. 2019. Increases in absolute temperature stimulate free calcium concentration elevations in the chloroplast. Plant and Cell Physiology, 60, 538–548.

Li B, Gao K, Ren H, Tang W. 2018. Molecular mechanisms governing plant responses to high temperatures. Journal of Integrative Plant Biology60, 757–779.

Li B, Liu H T, Sun D Y, Zhou R G. 2004. Ca2+ and calmodulin modulate DNA-binding activity of maize heat shock transcription factor in vitro. Plant and Cell Physiology45, 627–634.

Li N, Euring D, Cha J Y, Lin Z, Lu M, Huang L J, Kim W Y. 2021. Plant hormone-mediated regulation of heat tolerance in response to global climate change. Frontiers in Plant Science11, 627969.

Li T, Zhang X P, Liu Q, Liu J, Chen Y Q, Sui P. 2022. Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review. Journal of Integrative Agriculture21, 2465–2476.

Li X M, Chao D Y, Wu Y, Xue H H, Chen K, Cui L G, Su L, Ye W W, Chen H, Chen H, Dong N, Guo T, Feng Q, Zhang P, Han B, Shan J X, Gao J P, Lin H X. 2015. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nature Genetics, 47, 827–833.

Li Y, Humbert S, Howell S H. 2012. ZmbZIP60 mRNA is spliced in maize in response to ER stress. BMC Research Notes5, 144.

Li Z, Yue H, Xing D. 2012. MAP Kinase 6-mediated activation of vacuolar processing enzyme modulates heat shock-induced programmed cell death in ArabidopsisNew Phytologist195, 85–96.

Li Z G, Ye X Y, Qiu X M. 2019. Glutamate signaling enhances the heat tolerance of maize seedlings by plant glutamate receptor-like channels-mediated calcium signaling. Protoplasma, 256, 1165–1169.

Liang S, Sun J, Luo Y, Lv S, Chen J, Liu Y, Hu X. 2022. cAMP is a promising regulatory molecule for plant adaptation to heat stress. Life (Basel), 12, 885.

Liao C, Zheng Y, Guo Y. 2017. MYB30 transcription factor regulates oxidative and heat stress responses through ANNEXIN-mediated cytosolic calcium signaling in ArabidopsisNew Phytologist216, 163–177.

Lin F, Wani S H, Collins P J, Wen Z, Li W, Zhang N, McCoy A G, Bi Y, Tan R, Zhang S, Gu C, Chilvers M I, Wang D. 2020. QTL mapping and GWAS for identification of loci conferringpartial resistance to Pythium sylvaticum in soybean (Glycine max (L.) Merr). Molecular Breeding40, 54.

Lin J, Xu Y, Zhu Z. 2020. Emerging plant thermosensors: from RNA to protein. Trends in Plant Science25, 1187–1189.

Liu H, Gao F, Li G L, Han J L, Liu D L, Sun D, Zhou R G. 2008. The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thalianaThe Plant Journal55, 760–773.

Liu H C, Liao H T, Charng Y Y. 2011. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in ArabidopsisPlant, Cell and Environment34, 738–751.

Liu J, Hasanuzzaman M, Wen H, Zhang J, Peng T, Sun H, Zhao Q. 2019. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma256, 1217–1227.

Liu J X, Srivastava R, Che P, Howell S. 2008. An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. The Plant Cell, 19, 4111–4119.

Liu X H, Lyu Y S, Yang W, Yang Z T, Lu S J, Liu J X. 2020. A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnology Journal18, 1317–1329.

Lv W T, Lin B, Zhang M, Hua X J. 2011. Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Physiology156, 1921–1933.

Ma D, Li X, Guo Y, Chu J, Fang S, Yan C, Noel J P, Liu H. 2016. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proceedings of the National Academy of Sciences of the United States of America113, 224–229.

Malabarba J, Windels D, Xu W, Verdier J. 2021. Regulation of DNA (de)methylation positively impacts seed germination during seed development under heat stress. Genes (Basel)12, 457.

Marcec M J, Gilroy S, Poovaiah B W, Tanaka K. 2019. Mutual interplay of Ca2+ and ROS signaling in plant immune response. Plant Science283, 343–354.

Martinière A, Shvedunova M, Thomson A J, Evans N H, Penfield S, Runions J, McWatters H G. 2011. Homeostasis of plasma membrane viscosity in fluctuating temperatures. New Phytologist192, 328–337.

Martínez C, Nieto C, Prat S. 2018. Convergent regulation of PIFs and the E3 ligase COP1/SPA1 mediates thermosensory hypocotyl elongation by plant phytochromes. Current Opinion in Plant Biology45, 188–203.

Mellidou I, Karamanoli K, Beris D, Haralampidis K, Constantinidou H A, Roubelakis-Angelakis K A. 2017. Underexpression of apoplastic polyamine oxidase improves thermotolerance in Nicotiana tabacumJournal of Plant Physiology218, 171–174.

Mellidou I, Karamanoli K, Constantinidou H A, Roubelakis-Angelakis K A. 2020. Antisense-mediated S-adenosyl-L-methionine decarboxylase silencing affects heat stress responses of tobacco plants. Functional Plant Biology47, 651–658.

Mignolet-Spruyt L, Xu E, Idänheimo N, Hoeberichts F A, Mühlenbock P, Brosché M, Van Breusegem F, Kangasjärvi J. 2016. Spreading the news: subcellular and organellar reactive oxygen species production and signalling. Journal of Experimental Botany67, 3831–3844.

Miller G, Mittler R. 2006. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Annals of Botany98, 279–288.

Miller G, Schlauch K, Tam R, Cortes D, Torres M A, Shulaev V, Dangl J L, Mittler R. 2009. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Science Signaling2, ra45.

Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler, R. 2007. Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiology144, 1777–1785.

Mishkind M, Vermeer J E M, Darwish E, Munnik T. 2009. Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus. The Plant Journal60, 10–21.

Mittler R, Finka A, Goloubinoff P. 2012. How do plants feel the heat? Trends in biochemical sciences37, 118–125.

Nadarajah K K. 2020. ROS homeostasis in abiotic stress tolerance in plants. International Journal of Molecular Sciences21, 5208.

Navazio L, Formentin E, Cendron L, Szabò I. 2020. Chloroplast calcium signaling in the spotlight. Frontiers in Plant Science, 11, 186.

Ni S, Zhao H, Zhang G. 2020. Effects of post-heading high temperature on some quality traits of malt barley. Journal of Integrative Agriculture19, 2674–2679.

Nie W F, Wang M M, Xia X J, Zhou Y H, Shi K, Chen Z, Yu J Q. 2013. Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H2O2 generation and stress tolerance. Plant, Cell and Environment36, 789–803.

Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K, Furuichi T, Takebayashi K, Sugimoto T, Sano S, Suwastika I N, Fukusaki E, Yoshioka H, Nakahira Y, Shiina T. 2012. Chloroplast-mediated activation of plant immune signalling in ArabidopsisNature Communications3, 926.

Ogweno J O, Song X S, Shi K, Hu W H, Mao W H, Zhou Y H, Yu J Q, Nogués S. 2008. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentumJournal of Plant Growth Regulation27, 49–57.

Oshino T, Abiko M, Saito R, Ichiishi E, Endo M, Kawagishi-Kobayashi M, Higashitani A. 2007. Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Molecular Genetics and Genomics278, 31–42.

Pedmale U V, Huang S S C, Zander M, Cole B J, Hetzel J, Ljung K, Reis P A B, Sridevi P, Nito K, Nery J R, Ecker J R, Chory J. 2016. Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell164, 233–245.

Peterson M E, Daniel R M, Danson M J, Eisenthal R. 2007. The dependence of enzyme activity on temperature: Determination and validation of parameters. Biochemical Journal402, 331–337.

Qiu Y. 2020. Regulation of PIF4-mediated thermosensory growth. Plant Science297, 110541.

Queitsch C. 2000. Heat shock protein 101 plays a crucial role in thermotolerance in ArabidopsisThe Plant Cell12, 479–492.

Rezaul I M, Feng B H, Chen T T, Fu W M, Zhang C X, Tao L X, Fu G G. 2019. Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets. Physiologia Plantarum165, 644–663.

Ruelland E, Zachowski A. 2010. How plants sense temperature. Environmental and Experimental Botany69, 225–232.

Rupwate S D, Rajasekharan R. 2012. Plant phosphoinositide-specific phospholipase C: An insight. Plant Signaling and Behavior7, 1281–1283.

Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss Y G, Maathuis F J M, Goloubinoff P. 2009. The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. The Plant Cell21, 2829–2843.

Saidi Y, Peter M, Finka A, Cicekli C, Vigh L, Goloubinoff P. 2010. Membrane lipid composition affects plant heat sensing and modulates Ca2+-dependent heat shock response. Plant Signaling and Behavior5, 1530–1533.

Sakai Y, Suriyasak C, Inoue M, Hamaoka N, Ishibashi Y. 2022. Heat stress during grain filling regulates seed germination through alterations of DNA methylation in barley (Hordeum vulgare L.). Plant Molecular Biology110, 325–332.

Samakovli D, Roka L, Plitsi P K, Kaltsa I, Daras G, Milioni D, Hatzopoulos P. 2022. Active BR signalling adjusts the subcellular localisation of BES1/HSP90 complex formation. Plant Biology (Stuttg), 22, 129–133.

Sedaghatmehr M, Thirumalaikumar V P, Kamranfar I, Marmagne A, Masclaux-Daubresse C, Balazadeh S. 2019. A regulatory role of autophagy for resetting the memory of heat stress in plants. Plant, Cell and Environment, 42, 1054–1064.

Shamovsky I, Ivannikov M, Kandel E S, Gershon D, Nudler E. 2006. RNA-mediated response to heat shock in mammalian cells. Nature440, 556–560.

Sharma M, Banday Z Z, Shukla B N, Laxmi A. 2019. Glucose-regulated HLP1 acts as a key molecule in governing thermomemory. Plant Physiology180, 1081–1100.

Sharma M, Jamsheer K M, Shukla B N, Sharma M, Awasthi P, Mahtha S K, Yadav G, Laxmi A. 2021. Arabidopsis target of Rapamycin coordinates with transcriptional and epigenetic machinery to regulate thermotolerance. Frontiers in Plant Science12, 741965.

Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q. 2006. Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regulation48, 127–135.

Shi S, Li S, Asim M, Mao J, Xu D, Ullah Z, Liu G, Wang Q, Liu H. 2018. The Arabidopsis calcium-dependent protein kinases (CDPKs) and their roles in plant growth regulation and abiotic stress responses. International Journal of Molecular Sciences19, 1900.

Sita K, Sehgal A, HanumanthaRao B, Nair R M, Prasad P V V, Kumar S, Gaur P M, Farooq M, Siddique K H M, Varshney R K, Nayyar H. 2017. Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Frontiers in Plant Science8, 1658.

Snedden W A, Fromm H. 2011. Calmodulin as a versatile calcium signal transducer in plants. New Phytologist151, 35–66.

Somero G N. 1995. Proteins and temperature. Annual Review of Physiology57, 43–68.

Somero G N. 2018. RNA thermosensors: how might animals exploit their regulatory potential? Journal of Experimental Biology221, jeb162842.

Song J, Liu Q, Hu B, Wu W. 2017. Photoreceptor phyB involved in Arabidopsis temperature perception and heat-tolerance formation. International Journal of Molecular Sciences, 18, 1194.

Song Y, Miao Y, Song Y. 2013. Behind the scenes: The roles of reactive oxygen species in guard cells. New Phytologist201, 1121–1140.

Spindel J, Iwata H. 2018. Genomic selection in rice breeding. In: Rice Genomics, Genetics and Breeding. Springer, Singapore. pp. 473–496.

Stavang J A, Gallego-Bartolomé J, Gómez M D, Yoshida S, Asami T, Olsen J E, García-Martínez J L, Alabadí D, Blázquez M A. 2009. Hormonal regulation of temperature-induced growth in ArabidopsisThe Plant Journal, 60, 589–601.

Suriyasak C, Oyama Y, Ishida T, Mashiguchi K, Yamaguchi S, Hamaoka N, Iwaya-Inoue M, Ishibashi Y. 2020. Mechanism of delayed seed germination caused by high temperature during grain filling in rice (Oryza sativa L.). Scientific Reports10, 17378.

Suzuki I, Kanesaki Y, Hayashi H, Hall J J, Simon W J, Slabas A R, Murata N. 2005. The histidine kinase Hik34 is involved in thermotolerance by regulating the expression of heat shock genes in synechocystisPlant Physiology138, 1409–1421.

Suzuki N. 2019. Temperature stress and responses in plants. International Journal of Molecular Sciences, 20, 2001.

Suzuki N, Bassil E, Hamilton J S, Inupakutika M A, Zandalinas S I, Tripathy D, Luo Y, Dion E, Fukui G, Kumazaki A, Nakano R, Rivero R M, Verbeck G F, Azad R K, Blumwald E, Mittler R. 2016. ABA is required for plant acclimation to a combination of salt and heat stress. PLoS ONE11, e0147625.

Suzuki N, Miller G, Morales J, Shulaev V, Torres M A, Mittler R. 2011. Respiratory burst oxidases: The engines of ROS signaling. Current Opinion in Plant Biology, 14, 691–699.

Tang R H, Han S, Zheng H, Cook C W, Choi C S, Woerner T E, Jackson R B, Pei Z M. 2007. Coupling diurnal cytosolic Ca2+ oscillations to the CAS-IP3 pathway in ArabidopsisScience315, 1423–1426.

Tavakol A, Rahmani V, Harrington J. 2020. Temporal and spatial variations in the frequency of compound hot, dry, and windy events in the central United States. Scientific Reports10, 15691.

Teardo E, Carraretto L, Moscatiello R, Cortese E, Vicario M, Festa M, Maso L, De Bortoli S, Calì T, Vothknecht U C, Formentin E, Cendron L, Navazio L, Szabo I. 2019. A chloroplast-localized mitochondrial calcium uniporter transduces osmotic stress in ArabidopsisNature Plants5, 581–588.

Thomas L, Marondedze C, Ederli L, Pasqualini S, Gehring C. 2013. Proteomic signatures implicate cAMP in light and temperature responses in Arabidopsis thalianaJournal of Proteomics, 83, 47–59.

Toumi I, Pagoulatou M G, Margaritopoulou T, Milioni D, Roubelakis-Angelakis K A. 2019. Genetically modi-fied heat shock Protein90s and polyamine oxidases in Arabidopsis reveal their interaction under heat stress af-fecting polyamine acetylation, oxidation and homeostasis of reactive oxygen species. Plants-Basel8, 323.

UI Haq S I, Shang J, Xie H, Qiu Q S. 2022. Roles of TOR signaling in nutrient deprivation and abiotic stress. Journal of Plant Physiology274, 153716.

Vaahtera L, Brosché M, Wrzaczek M, Kangasjärvi J. 2014. Specificity in ROS signaling and transcript signatures. Antioxidants and Redox Signaling, 21, 1422–1441.

Vierling E. 2003. The roles of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology42, 579–620.

Vigh L, Nakamoto H, Landry J, Gomez-Munoz A, Harwood J L, Horvath I. 2007. Membrane regulation of the stress response from prokaryotic models to mammalian cells. Annals of the New York Academy of Sciences, 1113, 40–51.

Vu L D, Gevaert K, De Smet I. 2019. Feeling the heat: Searching for plant thermosensors. Trends in Plant Science24, 210–219.

Wang H, Feng M, Jiang Y, Du D, Dong C, Zhang Z, Wang W, Liu J, Liu X, Li S, Chen Y, Guo W, Xin M, Yao Y, Ni Z, Sun Q, Peng H, Liu J. 2023. Thermosensitive SUMOylation of TaHsfA1 defines a dynamic ON/OFF molecular switch for the heat stress response in wheat. The Plant Cell. 35, 3889–3910.

Wang W, Vinocur B, Shoseyov O, Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science9, 244–252.

Wang X, Ma X, Wang H, Li B, Clark G, Guo Y, Roux S, Sun D, Tang W. 2015. Proteomic study of microsomal proteins reveals a key role for Arabidopsis Annexin 1 in mediating heat stress-induced increase in intracellular calcium levels. Molecular and Cellular Proteomics14, 686–694.

Wang Y, Yu Q, Tang X, Wang L. 2009. Calcium pretreatment increases thermotolerance of Laminaria japonica sporophytes. Progress in Natural Science19, 435–442.

Wassie M, Zhang W, Zhang Q, Ji K, Cao L, Chen L. 2020. Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.). Ecotoxicology and Environmental Safety191, 110206.

Wen W, Li D, Li X, Gao Y, Li W, Li H, Liu J, Liu H, Chen W, Luo J, Yan J. 2014. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nature Communications5, 3438.

Wijewardene I, Shen G, Zhang H. 2021. Enhancing crop yield by using Rubisco activase to improve photosynthesis under elevated temperatures. Stress Biology1, 2.

Wu X, Yao X, Chen J, Zhu Z, Zhang H, Zha D. 2014. Brassinosteroids protect photosynthesis and antioxidant system of eggplant seedlings from high-temperature stress. Acta Physiologiae Plantarum36, 251–261.

Xu X, Wang Q, Li W, Hu T, Wang Q, Yin Y, Liu X, He S, Zhang M, Liang Y, Zhu J, Zhan X. 2022. Overexpression of SlBBX17 affects plant growth and enhances heat tolerance in tomato. International Journal of Biological Macromolecules206, 799–811.

Xu Y, Wu Y, Han Y, Song J, Zhang W, Han W, Liu B, Bai W. 2024. Effect of chemical regulators on the recovery of leaf physiology, dry matter accumulation and translocation, and yield-related characteristics in winter wheat following dry-hot wind. Journal of Integrative Agriculture23, 108–121.

Xu Y, Zhang L, Ou S, Wang R, Wang Y, Chu C, Yao S. 2020. Natural variations of SLG1 confer high-temperature tolerance in indica rice. Nature Communications11, 5441.

Xu Y, Zhang J, Wan Z, Huang S, Di H, He Y, Jin S. 2023. Physiological and transcriptome analyses provide new insights into the mechanism mediating the enhanced tolerance of melatonin-treated rhododendron plants to heat stress. Journal of Integrative Agriculture22, 2397–2411.

Xue G P, Drenth J, McIntyre C L. 2015. TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. Journal of Experimental Botany66, 1025–1039.

Yang H, Zhao Y L, Chen N, Liu Y P, Yang S, Du H, Wang W, Wu J, Tai F, Chen F, Hu, X L. 2021. A new adenylyl cyclase, putative disease-resistance RPP13-like protein 3, participates in abscisic acid-mediated resistance to heat stress in maize. Journal of Experimental Botany72, 283–301.

Yang Z T, Wang M J, Sun L, Lu S J, Bi D L, Sun L, Song Z T, Zhang S S, Zhou S F, Liu J X. 2014. The membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants. PLoS Genetics10, e1004243.

Yángüez E, Castro-Sanz A B, Fernández-Bautista N, Oliveros J C, Castellano M M. 2013. Analysis of genome-wide changes in the translatome of Arabidopsis seedlings subjected to heat stress. PLoS ONE8, e71425.

Yao J, Liu B, Qin F. 2011. Modular thermal sensors in temperature-gated transient receptor potential (TRP) channels. Proceedings of the National Academy of Sciences of the United States of America108, 11109–11114.

Yin Y, Qin K, Song X, Zhang Q, Zhou Y, Xia X, Yu J. 2018. BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato. Plant and Cell Physiology, 59, 2239–2254.

Zhang F, Zhang L, Qi Y, Xu H. 2016. Mitochondrial cAMP signaling. Cellular and Molecular Life Sciences, 73, 4577–4590.

Zhang H, Zhao Y, Zhu J K. 2020. Thriving under stress: How plants balance growth and the stress response. Developmental Cell, 55, 529–543.

Zhang H, Zhou J F, Kan Y, Shan J X, Ye W W, Dong N Q, Guo T, Xiang Y H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Guo S Q, Lei J J, Liao B Mu X R, Cao Y J, Yu J J, Lin Y, Lin H X. 2022. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science376, 1293–1300.

Zhang L L, Shao Y J, Ding L, Wang M J, Davis S J, Liu J X. 2021. XBAT31 regulates thermoresponsive hypocotyl growth through mediating degradation of the thermosensor ELF3 in ArabidopsisScience Advances7, eabf4427.

Zhang S, Wang X. 2011. Overexpression of GASA5 increases the sensitivity of Arabidopsis to heat stress. Journal of Plant Physiology168, 2093–2101.

Zhang S S, Yang H, Ding L, Song Z T, Ma H, Chang F, Liu J X. 2017. Tissue-specific transcriptomics reveals an important role of the unfolded protein response in maintaining fertility upon heat stress in ArabidopsisThe Plant Cell29, 1007–1023.

Zhang W, Zhou R G, Gao Y J, Zheng S Z, Xu P, Zhang S Q, Sun D Y. 2009. Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in ArabidopsisPlant Physiology149, 1773–1784.

Zhang X, Wang X, Zhuang L, Gao Y, Huang B. 2019. Abscisic acid mediation of drought priming-enhanced heat tolerance in tall fescue (Festuca arundinacea) and ArabidopsisPhysiologia Plantarum167, 488–501.

Zhang Y P, Zhu X H, Ding H D, Yang S J, Chen Y Y. 2013. Foliar application of 24-epibrassinolide alleviates high-temperature-induced inhibition of photosynthesis in seedlings of two melon cultivars. Photosynthetica51, 341–349.

Zhao C, Liu B, Piao S, Wang X, Lobell D B, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, Durand J L, Elliott J, Ewert F, Janssens I A, Li T, Lin E, Liu Q, Martre P, Muller C, Peng S, et al. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 114, 9326–9331.

Zhao Y, Du H, Wang Y, Wang H, Yang S, Li C, Chen N, Yang H, Zhang Y, Zhu Y, Yang L, Hu X. 2021a. The calcium-dependent protein kinase ZmCDPK7 functions in heat-stress tolerance in maize. Journal of Integrative Plant Biology63, 510–527.

Zhao Y, Liu Y, Ji X, Sun J, Lv S, Yang H, Zhao X, Hu X. 2021b. Physiological and proteomic analyses reveal cAMP-regulated key factors in maize root tolerance to heat stress. Food and Energy Security10, e309.

Zheng H, Wang W, Xu K, Xu Y, Ji D, Chen C, Xie C. 2020. Ca2+ influences heat shock signal transduction in Pyropia haitanensisAquaculture516, 734618.

Zhou Y, Xun Q, Zhang D, Lv M, Ou Y, Li J. 2019. TCP Transcription factors associate with PHYTOCHROME INTERACTING FACTOR 4 and CRYPTOCHROME 1 to regulate thermomorphogenesis in Arabidopsis thalianaiScience15, 600–610.

Zhu J K. 2016. Abiotic stress signaling and responses in plants. Cell167, 313–324.

Zulfiqar F, Ashraf M. 2021. Bioregulators: Unlocking their potential role in regulation of the plant oxidative defense system. Plant Molecular Biology105, 11–41.

[1] Xin Dong, Baole Li, Zhenzhen Yan, Ling Guan, Shoubing Huang , Shujun Li, Zhiyun Qi, Ling Tang, Honglin Tian, Zhongjun Fu, Hua Yang. Impacts of high temperature, relative air humidity, and vapor pressure deficit on the seed set of contrasting maize genotypes during flowering[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2955-2969.
[2] Dan Sun, Hongfeng Wang, Jiahui Zeng, Qiuchen Xu, Mingyun Wang, Xiaoping Yu, Xuping Shentu. The life-history trait trade-offs mediated by reproduction and immunity in the brown planthopper, Nilaparvata lugens Stål[J]. >Journal of Integrative Agriculture, 2024, 23(6): 2018-2032.
[3] LI Teng, ZHANG Xue-peng, LIU Qing, LIU Jin, CHEN Yuan-quan, SUI Peng. Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2465-2476.
[4] XUAN Jing-li, XIAO Yue, YE Fu-yu, ZHANG Yi-bo, TAO Shu-xia, GUO Jian-yang, LIU Wan-xue. High temperatures do not decrease biocontrol potential for the host-killing parasitoid Neochrysocharis formosa (Hymenoptera: Eulophidae) on agromyzid leafminers[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1722-1730.
[5] NI sheng-jing, ZHAO Hui-fang, ZHANG Guo-ping. Effects of post-heading high temperature on some quality traits of malt barley[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2674-2679.
[6] YANG Huan, GU Xiao-tian, DING Meng-qiu, LU Wei-ping, LU Da-lei. Weakened carbon and nitrogen metabolisms under post-silking heat stress reduce the yield and dry matter accumulation in waxy maize[J]. >Journal of Integrative Agriculture, 2020, 19(1): 78-88.
[7] LIU Xiu-ming, WU Xiang-li, GAO Wei, QU Ji-bin, CHEN Qiang, HUANG Chen-yang, ZHANG Jin-xia. Protective roles of trehalose in Pleurotus pulmonarius during heat stress response[J]. >Journal of Integrative Agriculture, 2019, 18(2): 428-437.
[8] FAN Cai-yun, SU Di, TIAN He, HU Rui-ting, RAN Lei, YANG Ying, SU Yan-jing, CHENG Jian-bo. Milk production and composition and metabolic alterations in the mammary gland of heat-stressed lactating dairy cows[J]. >Journal of Integrative Agriculture, 2019, 18(12): 2844-2854.
[9] ZHANG Kun, CHEN Bai-hong, HAO Yan, YANG Rui, WANG Yu-an. Effects of short-term heat stress on PSII and subsequent recovery for senescent leaves of Vitis vinifera L. cv. Red Globe[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2683-2693.
[10] Syed Adeel Zafar, Amjad Hameed, Muhammad Amjad Nawaz, MA Wei, Mehmood Ali Noor, Muzammil Hussain, Mehboob-ur-Rahman. Mechanisms and molecular approaches for heat tolerance in rice (Oryza sativa L.) under climate change scenario[J]. >Journal of Integrative Agriculture, 2018, 17(04): 726-738.
[11] CHENG Jian-bo, FAN Cai-yun, SUN Xian-zhi, WANG Jia-qi, ZHENG Nan, ZHANG Xing-kai, QIN Junjie, WANG Xiu-min. Effects of Bupleurum extract on blood metabolism, antioxidant status and immune function in heat-stressed dairy cows[J]. >Journal of Integrative Agriculture, 2018, 17(03): 657-663.
[12] LU Da-lei, YANG Huan, SHEN Xin, LU Wei-ping. Effects of high temperature during grain filling on physicochemical properties of waxy maize starch[J]. >Journal of Integrative Agriculture, 2016, 15(2): 309-316.
[13] YANG Min, QIN Bao-ping, MA Xue-li, WANG Ping, LI Mei-ling, CHEN Lu-lu, CHEN Lei-tai, SUN Aiqing, WANG Zhen-lin, YIN Yan-ping. Foliar application of sodium hydrosulfide (NaHS), a hydrogen sulfide (H2S) donor, can protect seedlings against heat stress in wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2016, 15(12): 2745-2758.
[14] ZHANG Shao-shuai, SU Hong-guang, ZHOU Ying, LI Xiu-mei, FENG Jing-hai, ZHANG Min-hong. Effects of sustained cold and heat stress on energy intake, growth and mitochondrial function of broiler chickens[J]. >Journal of Integrative Agriculture, 2016, 15(10): 2336-2342.
[15] ZHOU Bei-bei, SUN Jian, LIU Song-zhong, JIN Wan-mei, ZHANG Qiang, WEI Qin-ping. Dwarfing apple rootstock responses to elevated temperatures: A study on plant physiological features and transcription level of related genes[J]. >Journal of Integrative Agriculture, 2016, 15(05): 1025-1033.
No Suggested Reading articles found!