Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (1): 157-165    DOI: 10.1016/j.jia.2024.02.018
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of Fusarium cugenangense as a causal agent of wilt disease on Pyrus pyrifolia in China

Chaohui Li1, Xiaogang Li2, Weibo Sun1, Yanan Zhao3, Yifan Jia1, Chenyang Han3, Peijie Gong1, Shutian Tao3, Yancun Zhao1#, Fengquan Liu1, 4#

1 Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China

2 Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

3 State Key Laboratory of Crop Genetics and Germplasm Enhancement/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China

4 Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China

 Highlights 
Fusarium cugenangense is identified as a novel causal agent of pear wilt in China.
Systemic infection is demonstrated via GFP-labeling and ultrastructural analysis.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
近年来,江苏多地梨园出现了一种未知病因的梨树枯死病。田间调查发现,该病害最初侵染梨树的根部,导致根部组织出现褐变。随着病程的发展,褐变症状逐渐向地上部分延伸,树干部分树皮褐变,并沿树体呈微螺旋状向上扩展,甚至高达地上两米以上。树干褐变部位的枝条枯萎死亡,而未褐变部位的枝条仍然保持正常生长。该病害引发的这些症状与目前已知的梨树病害均不相同。此外,该病害不仅会导致病树在显症的当年或次年死亡,而且还会向邻近梨树传播,对梨园构成了严重威胁。为了明确病因,我们在本研究中开展了病原物的分离、形态和分子鉴定以及柯赫氏法则验证等实验。基于菌落形态和产孢特征的观察,以及利用翻译延伸因子1-α(tef1)、钙调素(CaM)和RNA聚合酶Ⅱ第二大亚基(rpb2)基因序列进行的多基因系统发育分析,我们将病原分离物鉴定为Fusarium cugenangense。通过人工接种实验证实了F. cugenangense对梨树的致病性。此外,我们还构建了GFP荧光标记的F. cugenangense菌株,使用该菌株接种梨苗根部后,利用荧光显微镜和透射电子显微镜均能观察到病原菌在茎和叶组织中的定殖。从接种后发病的茎和叶中均能重新分离得到接种于根部的病原物,证明了该病原菌能对梨树产生系统性侵染。本文首次报道了 F. cugenangense 能够侵染梨树引发梨树枯死病,本文的研究结果为我国梨产区在该病害的病原鉴定、症状识别和制定有针对性的防控措施方面提供了理论依据。


Abstract  
In recent years, an unusual wilt disease affecting Pyrus pyrifolia has been observed in various regions of Jiangsu, China.  This disease originates from the roots and progresses with distinctive browning patterns along vascular tissues, even extending over two meters above the ground.  These symptoms set it apart from recognized pear diseases and typically lead to the death of affected trees within the same or the following year.  Furthermore, this disease exhibits a tendency to spread to neighboring trees even after the removal of affected trees, presenting a substantial threat to pear production.  To ascertain the causative agent, the present study encompassed pathogen isolation, morphological and molecular identification, as well as validation experiments adhering to Koch’s postulates.  The fungal isolates obtained were identified as Fusarium cugenangense based on characteristics of the colonies and conidia, in addition to a phylogenetic analysis using DNA sequences of the translation elongation factor 1-alpha (tef1), calmodulin (CaM), and RNA polymerase second largest subunit (rpb2) genes.  Pathogenicity of the isolated F. cugenangense on pear was confirmed by artificial inoculation.  By introducing GFP-labeled pathogens into the roots, colonization in stem and leaf tissues was observed via fluorescence microscopy and transmission electron microscopy.  Furthermore, these pathogens were successfully reisolated from stems and foliage, conclusively providing evidence of systemic infection within the pear plants.  To the best of our knowledge, this is the first report of F. cugenangense causing pear wilt disease in China.  


Keywords:  Fusarium cugenangense       pear       root rot       necrosis       infection  
Received: 16 November 2023   Accepted: 01 January 2024 Online: 29 February 2024  
Fund: 
This work was supported by the Jiangsu Agricultural Science and Technology Innovation Fund, China (CX(23)1011), the Earmarked Fund for China Agriculture Research System (CARS-28), the National Natural Science Foundation of China (31901837), the China Postdoctoral Science Foundation (2020M671389), the Basal Research Fund for the Jiangsu Academy of Agricultural Sciences, China (ZX(23)3016), and the Yafu Technology Service Project, China (KF(23)1106).
About author:  Chaohui Li, E-mail: chaohuili@yeah.net; #Correspondence Yancun Zhao, E-mail: zhaoyc27@126.com; Fengquan Liu, Tel: +86-25-84390277, E-mail: fqliu20011@sina.com

Cite this article: 

Chaohui Li, Xiaogang Li, Weibo Sun, Yanan Zhao, Yifan Jia, Chenyang Han, Peijie Gong, Shutian Tao, Yancun Zhao, Fengquan. 2026. Identification of Fusarium cugenangense as a causal agent of wilt disease on Pyrus pyrifolia in China. Journal of Integrative Agriculture, 25(1): 157-165.

Aoki T, O’Donnell K, Geiser D M. 2014. Systematics of key phytopathogenic Fusarium species: Current status and future challenges. Journal of General Plant Pathology80, 189–201.

Bodah E T. 2017. Root rot diseases in plants: A review of common causal agents and management strategies. Agricultural Research & Technology: Open Access Journal5, 555661.

Garbeva P, Hol W G, Termorshuizen A J, Kowalchuk G A, De Boer W. 2011. Fungistasis and general soil biostasis - a new synthesis. Soil Biology and Biochemistry43, 469–477.

Gardes M, Bruns T D. 1993. ITS primers with enhanced specificity for basidiomycetes - Application to the identification of mycorrhizae and rusts. Molecular Ecology2, 113–118.

Geiser D M, Al-Hatmi A M, Aoki T, Arie T, Balmas V, Barnes I, Bergstrom G C, Bhattacharyya M K, Blomquist C L, Bowden R L. 2021. Phylogenomic analysis of a 55.1-kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani species complex. Phytopathology111, 1064–1079.

Gordon T R. 2017. Fusarium oxysporum and the Fusarium Wilt Syndrome. Annual Review of Phytopathology55, 23–39.

Han S L, Wang M M, Ma Z Y, Raza M, Zhao P, Liang J M, Gao M, Li Y J, Wang J W, Hu D M, Cai L. 2023. Fusarium diversity associated with diseased cereals in China, with an updated phylogenomic assessment of the genus. Studies in Mycology104, 87–148.

He J, Li D W, Zhang Y, Ju Y W, Huang L. 2021. Fusarium rosicola sp. nov. causing vascular wilt on Rosa chinensisPlant Pathology70, 2062–2073.

Ke X, Huang L, Han Q, Gao X, Kang Z. 2013. Histological and cytological investigations of the infection and colonization of apple bark by Valsa mali var. maliAustralasian Plant Pathology42, 85–93.

Kim W G, Choi H W, Park G S, Cho W D. 2021. Fusarium wilt of korean blackberry caused by Fusarium cugenangenseResearch in Plant Disease27, 187–191.

Laraba I, McCormick S P, Vaughan M M, Geiser D M, O’Donnell K. 2021. Phylogenetic diversity, trichothecene potential, and pathogenicity within Fusarium sambucinum species complex. PLoS ONE16, e0245037.

Li C, Jia Y, Tian Y, Zhou L, Sun W, Deng J, Liu F. 2020. First report of necrotic disease caused by Pantoea agglomerans on plum (Prunus salicina) in China. Plant Disease104, 1248.

Liu F, Ma Z, Hou L, Diao Y, Wu W, Damm U, Song S, Cai L. 2022. Updating species diversity of Colletotrichum, with a phylogenomic overview. Studies in Mycology101, 1–56.

Lombard L, Sandoval-Denis M, Lamprecht S C, Crous P W. 2019. Epitypification of Fusarium oxysporum-clearing the taxonomic chaos. Persoonia43, 1–47.

Ma X Y, Jiao W Q, Li H, Zhang W, Ren W C, Wu Y, Zhang Z C, Li B H, Zhou S Y. 2022. Neopestalotiopsis eucalypti, a causal agent of grapevine shoot rot in cutting nurseries in China. Journal of Integrative Agriculture21, 3684–3691.

Maryani N, Lombard L, Poerba Y S, Subandiyah S, Crous P W, Kema G H J. 2019. Phylogeny and genetic diversity of the banana Fusarium wilt pathogen Fusarium oxysporum f. sp. cubense in the Indonesian centre of origin. Studies in Mycology92, 155–194.

Nikitin D A, Ivanova E A, Semenov M V, Zhelezova A D, Ksenofontova N A, Tkhakakhova A K, Kholodov V A. 2023. Diversity, ecological characteristics and identification of some problematic phytopathogenic Fusarium in soil: A review. Diversity15, 49.

Nylander J. 2004. MrModeltest ver. 2. Evolutionary Biology Centre, Uppsala University, Sweden.

O’Donnell K, Cigelnik E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution7, 103–116.

O’Donnell K, Cigelnik E, Nirenberg H I. 1998a. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia90, 465–493.

O’Donnell K, Kistler H C, Cigelnik E, Ploetz R C. 1998b. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America95, 2044–2049.

O’Donnell K, Nirenberg H I, Aoki T, Cigelnik E. 2000. A multigene phylogeny of the Gibberella fujikuroi species complex: Detection of additional phylogenetically distinct species. Mycoscience41, 61–78.

O’Donnell K, Whitaker B K, Laraba I, Proctor R H, Brown D W, Broders K, Kim H S, McCormick S P, Busman M, Aoki T, Torres-Cruz T J, Geiser D M. 2022. DNA sequence-based identification of Fusarium: A work in progress. Plant Disease106, 1597–1609.

Reeb V, Lutzoni F, Roux C. 2004. Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Molecular Phylogenetics and Evolution32, 1036–1060.

Ronquist F, Teslenko M, van der Mark P, Ayres D L, Darling A, Höhna S, Larget B, Liu L, Suchard M A, Huelsenbeck J P. 2012. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology61, 539–542.

Sardella D, Muscat A, Brincat J P, Gatt R, Decelis S, Valdramidis V. 2016. A comprehensive review of the pear fungal diseases. International Journal of Fruit Science16, 351–377.

Soleha S, Muslim A, Suwandi S, Kadir S, Pratama R. 2022. The identification and pathogenicity of Fusarium oxysporum causing acacia seedling wilt disease. Journal of Forestry Research33, 711–719.

Sun M, Zhang M, Kumar S, Qin M, Liu Y, Wang R, Qi K, Zhang S, Chang W, Li J, Wu J. 2023. Genomic selection of eight fruit traits in pear. Horticultural Plant Journal10, 318–326.

Türkölmez Ş, Çiftçi O, Derviş S, Serçe Ç. 2016. First report of Phytophthora palmivora causing crown and root rot on pear (Pyrus communis) trees in Turkey. Plant Disease100, 519.

Vaidya G, Lohman D J, Meier R. 2011. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics27, 171–180.

Waalwijk C, de Koning J R, Baayen R P, Gams W. 1996. Discordant groupings of Fusarium spp. from sections Elegans, Liseola and Dlaminia based on ribosomal ITS1 and ITS2 sequences. Mycologia88, 361–368.

Wang G, Hong N, Wang J. 2013. Pear root diseases caused by fungi. In: Zhang S, ed., Pear Study. China Agriculture Press, China. pp. 590–592.

Wang M, Crous P W, Sandoval-Denis M, Han S L, Liu F, Liang J, Duan W, Cai L. 2022. Fusarium and allied genera from China: Species diversity and distribution. Persoonia - Molecular Phylogeny and Evolution of Fungi48, 1–53.

Williamson-Benavides B A, Dhingra A. 2021. Understanding root rot disease in agricultural crops. Horticulturae7, 33.

Wu J, Wang Y, Xu J, Korban S S, Fei Z, Tao S, Ming R, Tai S, Khan A M, Postman J D, Gu C, Yin H, Zheng D, Qi K, Li Y, Wang R, Deng C H, Kumar S, Chagne D, Li X, et al. 2018. Diversification and independent domestication of Asian and European pears. Genome Biology19, 77.

Wulff E G, Sorensen J L, Lubeck M, Nielsen K F, Thrane U, Torp J. 2010. Fusarium spp. associated with rice Bakanae: Ecology, genetic diversity, pathogenicity and toxigenicity. Environmental Microbiology12, 649–657.

Yang Y, Yang X, Zhang Y, Ren Z, Zhong J, Hu Q, Tan L. 2023. First report of Fusarium cugenangense causing root rot of tea plants (Camellia sinensis) in China. Plant Disease108, 214.

Zhou X, Li G, Xu J R. 2011. Efficient approaches for generating GFP fusion and epitope-tagging constructs in filamentous fungi. Methods in Molecular Biology722, 199–212.

Zhu L W, Tang X M, Lin T Y, Zhou S S, Liu P, Ye Z F, Wang D S, Wu Z Y. 2017. First report of Fusarium root rot in Asian pear caused by Fusarium solani in China. Plant Disease101, 252.

[1] Xue Wang, Hefeng Chen, Xianfeng Zhang, Zhengshuang Wu, Shuai Zhang, Lei Shuai, Lulu Wang, Weijie Li, Jinliang Wang, Wenxing Liu, Xijun Wang, Zhiyuan Wen, Jinying Ge, Yuntao Guan, Xijun He, Weiye Chen, Zhigao Bu. Establishment of goat infection model of the peste des petits ruminants virus isolated in China for vaccine efficacy evaluation[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3199-3211.
[2] Min Tu, Zhongfeng Zhu, Xinyang Zhao, Haibin Cai, Yikun Zhang, Yichao Yan, Ke Yin, Zhimin Sha, Yi Zhou, Gongyou Chen, Lifang Zou. The versatile plant probiotic bacterium Bacillus velezensis SF305 reduces red root rot disease severity in the rubber tree by degrading the mycelia of Ganoderma pseudoferreum[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3112-3126.
[3] Shuran Li, Chunqing Ou, Fei Wang, Yanjie Zhang, Omayma Ismail, Yasser S. G. Abd Elaziz, Sherif Edris, , He Li, Shuling Jiang. Ppbbx24-del mutant positively regulates light-induced anthocyanin accumulation in the ‘Red Zaosu’ pear (Pyrus pyrifolia White Pear Group)[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2619-2639.
[4] Jun Wang, Feiyu Zhao, Wenfei Bai, Shiping Yu, Xu Yang, Hansong Li, Fanbo Shen, Xingyang Guo, Xinglin Wang, Wei Zhou, Qinghe Zhu, Xiaoxu Xing, Chunqiu Li, Dongbo Sun. Metabolite of Clostridium perfringens type A, palmitic acid, enhances porcine enteric coronavirus porcine epidemic diarrhea virus infection[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2770-2791.
[5] Congrui Sun, Runze Wang, Jiaming Li, Xiaolong Li, Bobo Song, David Edwards, Jun Wu. Pan-transcriptome analysis provides insights into resistance and fruit quality breeding of pear (Pyrus pyrifolia)[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1813-1830.
[6] Jiage Li, Rongling Qin, Yongchen Fang, Yuhao Gao, Yang Jiao, Jia Wei, Songling Bai, Junbei Ni, Yuanwen Teng. PpMYB114 partially depends on PpMYB10 for the promotion of anthocyanin accumulation in pear[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4630-4642.
[7] Hong Hu, Tiangu Liu, Xinyun Xie, Fuyan Li, Caiyun Liu, Jintao Jiang, Zhigang Li, Xiaolin Chen. Glycosylphosphatidylinositol (GPI) anchoring controls cell wall integrity, immune evasion and surface localization of ChFEM1 for infection of Cochlibolus heterostrophus[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4310-4323.
[8] Xiaomei Tang, Yue Wang, Yuqing Guo, Luoluo Xie, Wei Song, Ziwen Xiao, Ruichang Yin, Zhe Ye, Xueqiu Sun, Wenming Wang, Lun Liu, Zhenfeng Ye, Zhenghui Gao, Bing Jia. Integrated transcriptomic and metabolomic analyses reveal a novel mechanism of resistance to Colletotrichum fructicola in pear[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3851-3865.
[9] Fuli Gao, Zidong Wang, Wankun Liu, Min Liu, Baoyi Wang, Yingjie Yang, Jiankun Song, Zhenhua Cui, Chenglin Liang, Dingli Li, Ran Wang, Jianlong Liu. Dehydrin PbDHN3 regulates ethylene synthesis and signal transduction to improve salt tolerance in pear[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3838-3850.
[10] Tong Shen, Mengdi Ye, Yeping Xu, Bohan Ding, Hongtao Li, Li Zhang, Jun Wang, Yanli Tian, Baishi Hu, Youfu Zhao. Cytospora pyri promotes Erwinia amylovora virulence by providing metabolites and hyphae[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3045-3054.
[11] Guoling Guo, Haiyan Zhang, Weiyu Dong, Bo Xu, Youyu Wang, Qingchen Zhao, Lun Liu, Xiaomei Tang, Li Liu, Zhenfeng Ye, Wei Heng, Liwu Zhu, Bing Jia. Overexpression of PbrGA2ox1 enhances pear drought tolerance through the regulation of GA3-inhibited reactive oxygen species detoxification and abscisic acid signaling[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2989-3011.
[12] Wanting Yu, Xinnan Zhang, Weiwei Yan, Xiaonan Sun, Yang Wang, Xiaohui Jia. Effects of 1-methylcyclopropene on skin greasiness and quality of ‘Yuluxiang’ pear during storage at 20°C[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2476-2490.
[13] Dong Deng, Wenqi Wu, Canxing Duan, Suli Sun, Zhendong Zhu.

A novel pathogen Fusarium cuneirostrum causing common bean (Phaseolus vulgaris) root rot in China [J]. >Journal of Integrative Agriculture, 2024, 23(1): 166-176.

[14] Berhane S. GEBREGZIABHER, ZHANG Sheng-rui, Muhammad AZAM, QI Jie, Kwadwo G. AGYENIM-BOATENG, FENG Yue, LIU Yi-tian, LI Jing, LI Bin, SUN Jun-ming. Natural variations and geographical distributions of seed carotenoids and chlorophylls in 1 167 Chinese soybean accessions[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2632-2647.
[15] Meagan J. STOTTS, Yangzi ZHANG, Shuwen ZHANG, Jennifer J. MICHAL, Juan VELEZ, Bothe HANS, Martin MAQUIVAR, Zhihua JIANG.

Alternative polyadenylation events in epithelial cells sense endometritis progression in dairy cows [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1820-1832.

No Suggested Reading articles found!