Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
GPI anchoring controls cell wall integrity, immune evasion and surface localization of ChFEM1 for infection of Cochlibolus heterostrophus

Hong Hu1*, Tiangu Liu1*, Xinyun Xie1, Fuyan Li1, Caiyun Liu2, Jintao Jiang1, Zhigang Li3, Xiaolin Chen1#

1State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

2Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

3Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570000, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

GPI(糖基磷脂酰肌醇)锚定修饰在不同物种中发挥着粘附、分子吸收、信号转导和保护、细胞壁组分的合成和重组以及细胞壁蛋白的锚定等作用,且对真菌的生长发育和致病过程发挥着重要作用。目前关于 GPI 锚定修饰在真菌中虽然已有了初步研究,但其生物学功能和致病调控机制尚需深入揭示。本文对玉米小斑病菌 (Cochlibolus heterostrophus) GPI 锚定修饰的生物学功能和致病机制进行研究。首先,探究了 GPI 锚生物合成通路关键蛋白 ChGPI7 在玉米小斑病菌生长发育和致病过程中的功能及其参与致病的调控机制。结果表明,GPI锚定蛋白在玉米小斑菌的菌丝、附着胞和侵染菌丝中广泛表达。玉米小班菌ChGPI7基因的缺失会导致玉米小斑菌生长速度和分生孢子产孢能力显著下降。同时玉米小班菌ChGPI7基因敲除体∆Chgpi7的附着胞形成和侵染过程明显受阻,导致其致病力显著下降。∆Chgpi7敲除体还表现出严重的细胞壁完整性缺陷。ChGPI7基因的缺失和HF pyridine处理都会导致玉米小斑菌的细胞壁蛋白丰度减弱和几丁质的暴露,说明GPI锚定蛋白可以保护几丁质不被宿主免疫识别。在玉米小斑菌中,共有124个蛋白质被预测为GPI锚定修饰蛋白,其中包括一种假定的细胞壁糖蛋白ChFEM1,并发现其功能受 GPI 锚定修饰调控。缺失ChFEM1也会导致玉米小斑菌的致病力显著下降、侵染结构和细胞壁完整性的缺陷。我们的研究进一步发现,在玉米小斑菌中,ChGPI7调控ChFEM1蛋白的细胞壁定位和蛋白丰度。综合以上结果可以表明,GPI锚定修饰调节了玉米小斑菌的细胞壁完整性,免疫逃避和ChFEM1蛋白的细胞壁定位。研究结果为深入研究玉米小斑病菌的致病机制提供了理论基础,同时为开发防治玉米小斑病菌的新型药剂提供了潜在的靶标。



Abstract  

Glycosylphosphatidylinositol (GPI) anchoring is one of the common post-translational modifications in eukaryotic cells. In fungi, it exerts a wide range of biological functions by targeting proteins to the cell wall, but only few studies focus on the roles of GPI anchoring in plant pathogenic fungi. Here, we reveal a role of GPI anchoring in the maize fungal pathogen Cochlibolus heterostrophus. We found that GPI-anchored proteins were widely accumulated in hyphae, appressorium and infection hyphae of C. heterostrophus. Deletion of ChGPI7, which encodes a key enzyme involved in the biosynthesis of GPI anchors, resulted in significant reduction of vegetative growth and conidiation, as well as virulence due to impairment of appressorium formation and invasive growth. The ∆Chgpi7 mutants also showed severe defects in cell wall integrity, resulting in a significant reduction of stress resistance. Deletion of ChGPI7 and hydrofluoric acid (HF) pyridine treatment both led to removal of cell wall GPI-anchored proteins and exposure of chitin, the results suggested that GPI anchored proteins could protect chitin from host immune recognition. A total of 124 proteins were predicted to be GPI anchored proteins in C. heterostrophus, including a putative cell wall glycoprotein ChFEM1. Deletion of ChFEM1 also resulted in significant reduction in virulence and defects in infection structures, as well as cell wall integrity. We further found that cell wall localization and protein abundance of ChFEM1 were affected by ChGPI7. Our results showed that GPI anchoring regulates cell wall integrity and immune evasion for infection of C. heterostrophus.

Keywords:  Cochlibolus heterostrophus              GPI anchor              immune evasion              cell wall integrity              cell wall protein              fungal infection  
Online: 26 September 2024  
Fund: 
This work was supported by the Fundamental Research Funds for the Central Universities, China (2021ZKPY007).
About author:  #Correspondence Xiaolin Chen, E-mail: chenxiaolin@mail.hzau.edu.cn *These authors contribute equal to this work.

Cite this article: 

Hong Hu, Tiangu Liu, Xinyun Xie, Fuyan Li, Caiyun Liu, Jintao Jiang, Zhigang Li, Xiaolin Chen. 2024. GPI anchoring controls cell wall integrity, immune evasion and surface localization of ChFEM1 for infection of Cochlibolus heterostrophus. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.09.033

Ahn N, Kim S, Choi W, Im KH, Lee Y H. 2004. Extracellular matrix protein gene, EMP1, is required for appressorium formation and pathogenicity of the rice blast fungus, Magnaporthe grisea. Molecules and Cells, 17, 166-173.

Altenbach DRobatzek S. 2007Pattern recognition receptors: from the cell surface to intracellular dynamics. Molecular Plant-Microbe Interactions, 20, 1031-1039.

Bowman SMFree SJ. 2006. The structure and synthesis of the fungal cell wall. BioEssays : news and reviews in molecularCellular and Developmental Biology, 28, 799-808.

Bowman SM, Piwowar A, Al Dabbous M, Vierula J, Free SJ. 2006. Mutational analysis of the glycosylphosphatidylinositol (GPI) anchor pathway demonstrates that GPI-anchored proteins are required for cell wall biogenesis and normal hyphal growth in Neurospora crassa. Eukaryotic Cell, 5, 587-600.

Brodsky RA, Mukhina GL, Li S, Nelson KL, Chiurazzi PL, Buckley JT, Borowitz MJ. 2000. Improved detection and characterization of paroxysmal nocturnal hemoglobinuria using fluorescent aerolysin. American Journal of Clinical Pathology, 114, 459-466.

Bueter CL, Lee CK, Rathinam VAK, Healy GJ, Taron CH, Specht CA, Levitz SM. 2011. Chitosan but not chitin activates the inflammasome by a mechanism dependent upon phagocytosis. The Journal of Biological Chemistry, 286, 35447-35455.

Chen XL, Shi T, Yang J, Shi W, Gao X, Chen D, Xu X, Xu JR, Talbot NJ, Peng YL. 2014. N-glycosylation of effector proteins by an α-1,3-mannosyltransferase is required for the rice blast fungus to evade host innate immunity. The Plant Cell, 26, 1360-1376.

Chisholm ST, Coaker G, Day B, Staskawicz BJ. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124, 803-814.

De Groot PW, Ram AF, Klis FM.2005. Features and functions of covalently linked proteins in fungal cell walls. Fungal Genetics and Biology, 42, 657-675.

De Groot PW, Bader O, de Boer AD, Weig M, Chauhan N. 2013. Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryotic Cell, 12, 470-481.

De Wit PJ. How plants recognize pathogens and defend themselves. 2007. Cellular and Molecular Life Sciences, 64, 2726-2732.

Doyle RJBirdsell DC. Interaction of concanavalin A with the cell wall of Bacillus subtilis. 1972. Journal of Bacteriology, 109, 652-658.

Eisenhaber B, Schneider G, Wildpaner M, Eisenhaber F. 2004. A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. Journal of Molecular Biology, 337, 243-253.

Esher SK, Ost KS, Kohlbrenner MA, Pianalto KM, Telzrow CL, Campuzano A, Nichols CB, Munro C, Wormley FL, Jr., Alspaugh JA. 2018. Defects in intracellular trafficking of fungal cell wall synthases lead to aberrant host immune recognition. PLoS Pathogens, 14, e1007126.

Feiz L, Irshad M, Pont-Lezica RF, Canut H, Jamet E. 2006. Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls. Plant Methods, 2, 10.

Felix G, Regenass M, Boller T. 1993. Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. The Plant Journal, 4, 307-316.

Goswami RS. 2012. Targeted gene replacement in fungi using a split-marker approach. Methods in Molecular Biology, 835, 255-269.

Hong Y, Ohishi K, Inoue N, Kang JY, Shime H, Horiguchi Y, van der Goot FG, Sugimoto N, Kinoshita T. 2002. Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum alpha-toxin. The EMBO Journal, 21, 5047-5056.

Imhof I, Flury I, Vionnet C, Roubaty C, Egger D, Conzelmann A. 2004. Glycosylphosphatidylinositol (GPI) proteins of Saccharomyces cerevisiae contain ethanolamine phosphate groups on the alpha1,4-linked mannose of the GPI anchor. The Journal of Biological Chemistry, 279, 1961419627.

Jones JDDangl JL. 2006. The plant immune system. Nature, 444, 323-329.

Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences of the United States of America, 103, 11086-11091.

Kinoshita T. 2020. Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biology, 10, 190290.

Klis FM, de Groot P, Hellingwerf K. Molecular organization of the cell wall of Candida albicans. 2001. Medical Mycology, 39, 1-8.

Klis FM, Boorsma A, De Groot PW. Cell wall construction in Saccharomyces cerevisiae. 2006. Yeast , 23, 185-202.

Kombrink A, Sánchez-Vallet A, Thomma BP. 2011. The role of chitin detection in plant--pathogen interactions. Microbes and Infection, 13, 1168-1176.

Latgé J-PBeauvais A. Functional duality of the cell wall. 2014. Current Opinion in Microbiology, 20, 111-117.

Latgé JP. 2010. Tasting the fungal cell wall. Cellular Microbiology, 12, 863-872.

Leidich SD, Kostova Z, Latek RR, Costello LC, Drapp DA, Gray W, Fassler JS, Orlean P. 1995. Temperature-sensitive yeast GPI anchoring mutants gpi2 and gpi3 are defective in the synthesis of N-acetylglucosaminyl phosphatidylinositol. Cloning of the GPI2 gene. The Journal of Biological Chemistry, 270, 13029-13035.

Li H, Zhou H, Luo Y, Ouyang H, Hu H, Jin C. 2007. Glycosylphosphatidylinositol (GPI) anchor is required in Aspergillus fumigatus for morphogenesis and virulence. Molecular Microbiology, 64, 1014-1027.

Liu C, Xing J, Cai X, Hendy A, He W, Yang J, Huang J, Peng YL, Ryder L, Chen XL. 2020. GPI7-mediated glycosylphosphatidylinositol anchoring regulates appressorial penetration and immune evasion during infection of Magnaporthe oryzae. Environmental microbiology, 22, 2581-2595.

Mayor SRiezman H. Sorting GPI-anchored proteins. 2004. Nature Reviews Molecular Cell Biology, 5, 110-120.

Mei J, Ning N, Wu H, Chen X, Li Z, Liu W. 2022. Glycosylphosphatidylinositol anchor biosynthesis pathway-related protein GPI7 is required for the vegetative growth and pathogenicity of Colletotrichum graminicola. International Journal of Molecular Sciences, 23, 2985.

Nozaki M, Ohishi K, Yamada N, Kinoshita T, Nagy A, Takeda J. 1999. Developmental abnormalities of glycosylphosphatidylinositol-anchor-deficient embryos revealed by Cre/loxP system. Laboratory Investigation; a Journal of Technical Methods and Pathology, 79, 293-299.

Park S, Lee C, Sabharwal P, Zhang M, Meyers CL, Sockanathan S. 2013. GDE2 promotes neurogenesis by glycosylphosphatidylinositol-anchor cleavage of RECK. Science , 339, 324-328.

Pérez-García LA, Díaz-Jiménez DF, López-Esparza A, Mora-Montes HM. 2012. Role of cell wall polysaccharides during recognition of Candida albicans by the innate immune system. Journal of Glycobiology, 1, 1-8.

Pittet MConzelmann A. 2007. Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 1771, 405-420.

Richard ML, de Groot PWJ, Courtin O, Poulain D, Klis F, Gaillardin C. 2002. GPI7 affects cell-wall protein anchorage in Saccharomyces cerevisiae and Candida albicans. Microbiology, 7 , 2125-2133.

Ride JPBarber MS. 1990. Purification and characterization of multiple forms of endochitinase from wheat leaves. Plant Science, 71, 185-197.

Rittenour WRHarris SD. 2013. Glycosylphosphatidylinositol-anchored proteins in Fusarium graminearum: inventory, variability, and virulence. PloS One, 8, e81603.

Samalova M, Mélida H, Vilaplana F, Bulone V, Soanes DM, Talbot NJ, Gurr SJ. 2017. The β-1,3-glucanosyltransferases (Gels) affect the structure of the rice blast fungal cell wall during appressorium-mediated plant infection. Cellular Microbiology, 19, e12659.

Sánchez-Vallet A, Mesters JR, Thomma BP. 2015. The battle for chitin recognition in plant-microbe interactions. FEMS Microbiology Reviews, 39, 171-183.

Schoffelmeer EA, Vossen JH, van Doorn AA, Cornelissen BJ, Haring MA. 2001. FEM1, a Fusarium oxysporum glycoprotein that is covalently linked to the cell wall matrix and is conserved in filamentous fungi. Molecular Genetics and Genomics, 265, 143-152.

Shen H, Chen SM, Liu W, Zhu F, He LJ, Zhang JD, Zhang SQ, Yan L, Xu Z, Xu GT, An MM, Jiang YY. 2015. Abolishing cell wall glycosylphosphatidylinositol-anchored proteins in Candida albicans enhances recognition by Host Dectin-1. Infect Immun, 83, 2694-2704.

Tatum LA. The southern corn leaf blight epidemic. 1971. Science, 171, 1113-1116.

Thomma BP, Nürnberger T, Joosten MH. 2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. The Plant Cell, 23, 4-15.

Yin QY, de Groot PW, Dekker HL, de Jong L, Klis FM, de Koster CG. 2005. Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. The Journal of Biological Chemistry, 280, 20894-20901.

 

No related articles found!
No Suggested Reading articles found!