Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (6): 2096-2105    DOI: 10.1016/j.jia.2023.11.010
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of oil content QTLs on Arahy12 and Arahy16, and development of KASP markers in cultivated peanut (Arachis hypogaea L.)
Bingyan Huang1, Hua Liu1, Yuanjin Fang1, 2, Lijuan Miao1, Li Qin1, Ziqi Sun1, Feiyan Qi1, Lei Chen3, Fengye Zhang3, Shuanzhu Li4, Qinghuan Zheng4, Lei Shi1, Jihua Wu3, Wenzhao Dong1, Xinyou Zhang1#

1 Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Shengnong Laboratory, Henan Province/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China

2 College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China

3 Shangqiu Academy of Agriculture and Forestry, Shangqiu 476000, China

4 Nanyang Academy of Agricultural Sciences, Nanyang 473008, China

 Highlights 
Two major effect QTLs for oil content on Arahy16 and Arahy12 were identified and diagnostic KASP markers were developed.  
The superior haplotype associated with high oil content on Arahy16 is primarily conserved in plant introduction (PI) accessions.  QTLs qAh09 and qAh19 have pleiotropic effects on multiple fatty acids.  
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

高油高油酸花生品种因其富含营养、货架期长及有益于身体健康而备受消费者、加工企业和农民喜爱。花生含油量和脂肪酸含量性状由多基因控制,在不同遗传背景下鉴定其QTL将有助于分子标记辅助选择或基因组选择,提高花生品质育种效率。我们利用来源于含油量中高及油酸含量差异大的双亲、含有521个家系的RIL群体构建的高密度遗传图谱,以及2年5个环境的花生籽仁品质性状的表型数据,最终定位到两个稳定的含油量性状QTL(qOCAh12.1和qOCAh16.1),并开发了KASP标记在自然群体中得到了验证。QTL区域的单倍型分析表明,qOCAh16.1的高含油量优势单倍型仅存在于少数国外资源。此外,本研究鉴定到的qAh09和qAh19区间含有已知的脂肪酸合成关键酶FAD2基因位点,可同时影响所有7种脂肪酸含量,包括棕榈酸、硬脂酸、油酸、亚油酸、花生酸、花生烯酸和山嵛酸,并鉴定到位于第7染色体的蛋白质和长链饱和脂肪酸含量的主效QTL位点,PVE大于10%。本研究结果将有助于花生含油量的标记辅助选择育种,并为花生籽仁脂肪酸含量变异的遗传基础提供了新的认识。



Abstract  

Peanut kernels rich in oil, particularly those with oleic acid as their primary fatty acid, are in high demand among consumers, the food industry, and farmers due to their superior nutritional content, extended shelf life, and health benefits.  The oil content and fatty acid composition are governed by multiple genetic factors.  Identifying the quantitative trait loci (QTLs) related to these attributes will facilitate marker-assisted selection and genomic selection, thus enhancing quality-focused peanut breeding programs.  For this purpose, we developed a population of 521 recombinant inbred lines (RILs) and tested their kernel quality traits across five different environments.  We identified two major and stable QTLs for oil content, qOCAh12.1 and qOCAh16.1.  The markers linked to these QTLs were designed by Kompetitive allele-specific PCR (KASP) and subsequently validated.  Moreover, we found that the superior haplotype of oil content in the qOCAh16.1 region was conserved within the plant introduction (PI) germplasm cluster, as evidenced by a diverse peanut accession panel.  In addition, we determined that qAh09 and qAh19.1, which harbor the key gene encoding fatty acid desaturase 2 (FAD2), influence all seven fatty acids, palmitic, stearic, oleic, linoleic, arachidic, gadoleic, and behenic acids.  Regarding the protein content and the long-chain saturated fatty acid behenic acid, qAh07 emerged as the major and stable QTL, accounting for over 10% of the phenotypic variation explained (PVE).  These findings can enhance marker-assisted selection in peanut breeding, with the aim of improving the oil content, and deepen our understanding of the genetic mechanisms that shape fatty acid composition. 

Keywords:  peanut        QTL        oil content        fatty acid composition        molecular markers  
Received: 17 August 2023   Online: 10 November 2023   Accepted: 28 September 2023
Fund: 
This work was supported by the National Key R&D Program of China (2022YFD1200400), the earmarked fund for CARS-13, the Major Science and Technology Projects of Henan Province, China (221100110300), and the Henan Provincial R&D Program of Interregional Cooperation for Local Scientific and Technological Development Guided by Central Government, China (YDZX20214100004191).
About author:  Bingyan Huang, E-mail: huangbingyan@aliyun.com; #Correspondence Xinyou Zhang, E-mail: haasz@126.com

Cite this article: 

Bingyan Huang, Hua Liu, Yuanjin Fang, Lijuan Miao, Li Qin, Ziqi Sun, Feiyan Qi, Lei Chen, Fengye Zhang, Shuanzhu Li, Qinghuan Zheng, Lei Shi, Jihua Wu, Wenzhao Dong, Xinyou Zhang. 2025. Identification of oil content QTLs on Arahy12 and Arahy16, and development of KASP markers in cultivated peanut (Arachis hypogaea L.). Journal of Integrative Agriculture, 24(6): 2096-2105.

Baring M R, Wilson J N, Burrow M D, Simpson C E, Aters J L, Cason J M. 2013. Variability of total oil content in peanut across the state of Texas. Journal of Crop Improvement27, 125–136.

Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K S, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth A E, Umale P, Araújo A C G, et al. 2016. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut, Nature Genetics48, 438–446.

Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, et al. 2019. The genome sequence of segmental allotetraploid peanut Arachis hypogaeaNature Genetics5, 1877–1884.

Cater N B, Denke M A. 2001. Behenic acid is a cholesterol-raising saturated fatty acid in humans. American Journal of Clinical Nutrition73, 41–44.

Chen X, Lu Q, Liu H, Zhang J, Hong Y, Lan H, Li H, Wang J, Liu H, Li S, Pandey M K, Zhang Z, Zhou G, Yu J, Zhang G, Yuan J, Li X, Wen S, Meng F, Yu S, et al. 2019. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Molecular Plant12, 920–934.

Cingolani P, Platts A, Wang L, Coon M, Nguyen T, Wang L, Land S J, Lu X, Ruden D M. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly6, 80–92.

Dean L L, Hendrix K W, Holbrook C C, Sanders T H. 2009. The control of some nutrient in the core of the core of peanut germplasm collection. Peanut Science36, 104–120.

Eskandari M, Cober E R, Rajcan I. 2013. Genetic control of soybean seed oil: I. QTL and genes associated with oil concentration in RIL populations derived from crossing moderately high oil parents. Theoretical and Applied Genetics126, 483–495.

Guo J, Liu N, Li W, Wu B, Chen W, Huang L, Chen W, Luo H, Zhou X, Jiang H. 2021. Identification of two major loci and linked marker for oil content in peanut (Arachis hypogaea L.). Euphytica217, 29.

Hu X H, Zhang S Z, Miao H R, Cui F G, Shen Y, Yang W Q, Xu T T, Chen N, Chi X Y, Zhang Z M, Chen J. 2018. High-density genetic map construction and identification of QTL controlling oleic and linoleic acid in peanut using SLAFseq and SSRs. Scientific Reports8, 5479.

Huang B, Qi F, Sun Z, Miao L, Zhang Z, Liu H, Fang Y, Dong W, Tang F, Zheng Z, Zhang X. 2019. Marker-assisted backcrossing to improve seed oleic acid content in four elite and popular peanut (Arachis hypogaea L.) cultivars with high oil content. Breeding Science69, 234–243.

Huang L, He H, Chen W, Ren X, Chen Y, Zhou X , Xia Y, Wang X, Jiang X, Liao B, Jiang H. 2015. Quantitative trait locus analysis of agronomic and quality related traits in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics128, 1103–1115.

Jadhav M P, Gangurde S S, Hake A A, Yadawad A, Mahadevaiah S S, Pattanashetti S K, Gowda M V C, Shirasawa K, Varshney R K, Pandey M K, Bhat R S. 2021. Genotyping-by-sequencing based genetic mapping identified major and consistent genomic regions for productivity and kernel quality traits in peanut. Frontiers in Plant Science12, 668020.

Jung S, Powell G, Moore K, Abbott A. 2000a. The high oleate trait in the cultivated peanut [Arachis hypogaea L.]. II. molecular basis and genetics of the trait. Molecular and General Genetics263, 806–811.

Jung S, Swift D, Sengoku E, Patel M, Teulé F, Powell G, Moore K, Abbott A. 2000b. The high oleate trait in the cultivated peanut [Arachis hypogaea L.] I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Molecular and General Genetics263, 796–805.

Kris-Eterton M P, Pearson A T, Wan Y, Hargrove R L, Moriarty K, Fishell V, Etherton D T. 1999. High monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. American Journal of Clinical Nutrition70, 1009–1015.

Li H H, Ye G, Wang J K. 2007. A modified algorithm for the improvement of composite interval mapping. Genetics175, 361–374.

Liu N, Chen H, Huai D, Xia F, Huang L, Chen W, Wu B, Ren X, Luo H, Zhou X, Chen Y, Lei Y, Liao B, Jiang H. 2019. Four QTL clusters containing major and stable QTLs for saturated fatty acid contents in a dense genetic map of cultivated peanut (Arachis hypogaea L.). Molecular Breeding39, 23.

Liu N, Guo J B, Zhou X J, Wu B, Huang L, Luo H Y, Chen Y N, Chen W G, Lei Y, Huang Y, Liao B S, Jiang H F. 2020. High-resolution mapping of a major and consensus quantitative trait locus for oil content to a ~0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theoretical and Applied Genetics133, 37–49.

Meng L, Li H, Zhang L, Wang J. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations. The Crop Journal3, 169–173.

Norden A J, Gorbet D W, Knauft A, Young C T. 1987. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Science14, 7–11.

O’Byne D J, Knauft D A, Shireman R B. 1997. Low fat monounsaturated rich diets containing high-oleic peanuts improve serum lipoprotein profiles. Lipids32, 687–695.

Ohlrogge J, Browse J. 1995. Lipid biosynthesis. Plant Cell, 7, 957–970.

O’Keefe S F, Wiley V A, Knauft D A. 1993. Comparison of oxidative stability of high and normal-oleic peanut oils. Journal of the American Oil Chemists Society70, 489–492.

Van Ooijen J W. 2018. JoinMap® Software for the calculation of genetic linkage maps in experimental populations of diploid species. Kyazma B.V., Wageningen.

Pandey M K, Gautami B, Jayakumar T, Sriswathi M, Upadhyaya H D, Gowda M V C, Radhakrishnan T, Bertioli D J, Knapp S J, Cook D R, Varshney R K. 2012. Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut (Arachis hypogaea). Plant Breeding131, 139–147.

Pandey M K, Wang M L, Qiao L X, Feng S P, Khera P, Wang H, Tonnis B, Barkley N A, Wang J P, Holbrook C C, Culbreath A K, Varshney R K, Guo B. 2014a. Identification of QTL associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genetics15, 133.

Pandey M K, Ypadhyaya H D, Rathore A, Vadez V, Shehshayee M S, Sriswathi M, Govil M, Kumar A, Gowda M V C, Shama S, Hamidou F, Kumar V A, Khera P, Bhat R, Khan A W, Singh S, Li H, Monyo E, Nadaf H L, Mukri G, et al. 2014b. Genome-wide association studies for 50 agronomic traits in peanut using the ‘reference set’ comprising 300 genotypes from 48 countries of semi-arid tropics of the world. PLoS ONE9, e0105228.

Qi F, Sun Z, Liu H, Zheng Z, Qin L, Shi L, Chen Q, Liu H, Lin X, Miao L, Tian M, Wang X, Huang B, Dong W, Zhang X. 2022. QTL identification, fine mapping, and marker development for breeding peanut (Arachis hypogaea L.) resistant to bacterial wilt. Theoretical and Applied Genetics135, 1319–1330.

Sarvamangala C, Gowda M V C, Varshney R K. 2011. Identification of QTL for protein content, oil content and oil quality for groundnut. Field Crop Research122, 49–59.

Shasidhar Y, Vishwakarma M K, Pandey M K, Janila P, Variath M T, Manohar S S, Nigam S N B, Varshney R K. 2017. Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Frontiers in Plant Science8, 794.

Sun Z, Qi F, Liu H, Qin L, Xu J, Shi L, Zhang Z, Miao L, Huang B, Dong W, Wang X, Tian M, Geng J, Zhao R, Zhang X, Zheng Z. 2022. QTL mapping of quality traits in peanut using whole-genome resequencing. The Crop Journal10, 177–184.

Wang J, Long C, Zhang H, Zhang Y, Wang H, Yue H, Wang X, Wu S, Qi G. 2016. Genetic variant in Flavin-containing monooxygenase 3 alters lipid metabolism in laying hens in a diet-specific manner. International Journal of Biological Sciences12, 1382–1393.

Wang M L, Chen C Y, Tonnis B, Barkley N A, Pinnow D L, Pittman R N, Davis J, Holbrook C C, Stalker H T, Pederson G A. 2013. Oil, fatty acid, flavonoid, and resveratrol content variability and FAD2A functional SNP genotypes in the U.S. peanut mini-core collection. Journal of Agricultural and Food Chemistry61, 2875–2882.

Wang M L, Khera P, Pandey M K, Wang H, Qiao L, Feng S, Tonnis B, Barkley N A, Pinnow D, Holbrook C C, Culbreath A K, Varshney R K, Guo B. 2015. Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLoS ONE10, e0119454.

Wilson J N, Chopra R, Baring M R, Selvaraj M G, Simpson C E, Chagoya I, Burow M D. 2017. Advanced backcross quantitative trait loci (QTL) analysis of oil concentration and oil quality traits in peanut (Arachis hypogaea L.). Tropical Plant Biology10, 1–17.

Yang Y, Li Y, Cheng Z, Su Q, Jin X, Song Y, Wang J. 2023. Genetic analysis and exploration of major effect QTLs underlying oil content in peanut. Theoretical and Applied Genetics136, 97.

Zhang R, Jia G, Diao X. 2023. GeneHapR: An R package for gene haplotypic statistics and visualization. BMC Bioinformatics24, 199.

Zhong Y W, Li X G, Wang S S, Li S S, Zeng Y H, Cheng Y B, Ma Q B, Wang Y Y, Pang Y T, Nian H, Wen K. 2024. Mapping and identification of QTLs for seed fatty acids in soybean (Glycine max L.). Journal of Integrative Agriculture23, 3966–3982.

Zhuang W, Chen H, Yang M, Wang J, Pandey M K, Zhang C, Chang W C, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow C N, Wang J, Deng Y, Wang D, Khan A W, Yang Q, Cai T, et al. 2019. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics51, 865–876.

[1] Mingming Wang, Jia Geng, Zhe Zhang, Zihan Zhang, Lingfeng Miao, Tian Ma, Jiewen Xing, Baoyun Li, Qixin Sun, Yufeng Zhang, Zhongfu Ni. Fine mapping and characterization of a major QTL for grain length, QGl.cau-2D.1, that has pleiotropic effects in synthetic allohexaploid wheat[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2911-2922.
[2] Yiwang Zhong, Xingang Li, Shasha Wang, Sansan Li, Yuhong Zeng, Yanbo Cheng, Qibin Ma, Yanyan Wang, Yuanting Pang, Hai Nian, Ke Wen. Mapping and identification of QTLs for seed fatty acids in soybean (Glycine max L.)[J]. >Journal of Integrative Agriculture, 2024, 23(12): 3966-3982.
[3] Lihua Liu, Pingping Qu, Yue Zhou, Hongbo Li, Yangna Liu, Mingming Zhang, Liping Zhang, Changping Zhao, Shengquan Zhang, Binshuang Pang. Consensus linkage map construction and QTL mapping for eight yield-related traits in wheat using BAAFS 90K SNP array[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3641-3656.
[4] Akmaral Baidyussen, Gulmira Khassanova, Maral Utebayev, Satyvaldy Jatayev, Rystay Kushanova, Sholpan Khalbayeva, Aigul Amangeldiyeva, Raushan Yerzhebayeva, Kulpash Bulatova, Carly Schramm, Peter Anderson, Colin L. D. Jenkins, Kathleen L. Soole, Yuri Shavrukov. Assessment of molecular markers and marker-assisted selection for drought tolerance in barley (Hordeum vulgare L.)[J]. >Journal of Integrative Agriculture, 2024, 23(1): 20-38.
[5] LIU Lei, WANG Heng-bo, LI Yi-han, CHEN Shu-qi, WU Ming-xing, DOU Mei-jie, QI Yi-yin, FANG Jing-ping, ZHANG Ji-sen. Genome-wide development of interspecific microsatellite markers for Saccharum officinarum and Saccharum spontaneum[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3230-3244.
[6] CHEN Hong-xin, HAN Hai-ming, LI Qing-feng, ZHANG Jin-peng, LU Yu-qing, YANG Xin-ming, LI Xiuquan, LIU Wei-hua, LI Li-hui. Identification and genetic analysis of multiple P chromosomes of Agropyron cristatum in the background of common wheat[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1697-1705.
[7] Syed Adeel Zafar, Amjad Hameed, Muhammad Amjad Nawaz, MA Wei, Mehmood Ali Noor, Muzammil Hussain, Mehboob-ur-Rahman. Mechanisms and molecular approaches for heat tolerance in rice (Oryza sativa L.) under climate change scenario[J]. >Journal of Integrative Agriculture, 2018, 17(04): 726-738.
[8] Ghulam Shabir, Kashif Aslam, Abdul Rehman Khan, Muhammad Shahid, Hamid Manzoor, Sibgha Noreen, Mueen Alam Khan, Muhammad Baber, Muhammad Sabar, Shahid Masood Shah, Muhammad Arif. Rice molecular markers and genetic mapping: Current status and prospects[J]. >Journal of Integrative Agriculture, 2017, 16(09): 1879-1891.
[9] LIU Guo-xiang, ZHANG Li-chao, XIA Chuan, JIA Ji-zeng, ZHANG Jun-cheng, ZHANG Qiang, DONG Chun-hao, KONG Xiu-ying, LIU Xu. Mapping of the heading date gene HdAey2280 in Aegilops tauschii[J]. >Journal of Integrative Agriculture, 2016, 15(12): 2719-2725.
No Suggested Reading articles found!