Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (9): 2955-2969    DOI: 10.1016/j.jia.2023.09.007
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Impacts of high temperature, relative air humidity, and vapor pressure deficit on the seed set of contrasting maize genotypes during flowering
Xin Dong1*, Baole Li2*, Zhenzhen Yan2, Ling Guan1, Shoubing Huang2, Shujun Li1, Zhiyun Qi1, Ling Tang1, Honglin Tian1, Zhongjun Fu1#, Hua Yang1#
1 Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
2 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

热胁迫是当前和未来全球玉米生产的主要限制因素。在开花期高温胁迫下,玉米的雄性和雌性生殖器官在增加果穗结实率方面发挥着重要作用,但高温、相对空气湿度和饱和水汽压差对雌雄穗器官和结实率的贡献尚不清楚。本研究利用20个玉米自交系开展了2年的田间试验,每年包括3个播期。与第一播期相比,第三播期的结实率、穗粒数和产量都下降了80%以上。花粉活力、吐丝率和开花吐丝间隔期是影响结实的决定因素,它们与结实率的相关系数分别为0.89***0.65***-0.72***。饱和水汽压差和相对空气湿度均与花粉活力和吐丝率呈显著相关。高相对空气湿度可以通过保持高花粉活力和高吐丝率来减轻热效应对玉米结实的影响。我们对2020年到2050年的气象因子进行了模拟,发现气温将继续升高,空气湿度将增加,饱和水汽压差有降低趋势。我们根据花粉活力和吐丝率数据,将20个自交系分成了4个群。花粉活力高、吐丝率高的群在热胁迫下表现最好,可以结合开花性状的遗传改良进一步提升其耐热性,以便适应变暖的气候。



Abstract  

Heat stress is a major constraint to current and future maize production at the global scale.  Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering, but their relative contributions to seed set are unclear.  In this study, a 2-year field experiment including three sowing dates in each year and 20 inbred lines was conducted.  Seed set, kernel number per ear, and grain yield were all reduced by more than 80% in the third sowing dates compared to the first sowing dates.  Pollen viability, silk emergence ratio, and anthesis–silking interval were the key determinants of seed set under heat stress; and their correlation coefficients were 0.89***, 0.65***, and –0.72***, respectively.  Vapor pressure deficit (VPD) and relative air humidity (RH) both had significant correlations with pollen viability and the silk emergence ratio.  High RH can alleviate the impacts of heat on maize seed set by maintaining high pollen viability and a high silk emergence ratio.  Under a warming climate from 2020 to 2050, VPD will decrease due to the increased RH.  Based on their pollen viability and silk emergence ratios, the 20 genotypes fell into four different groups.  The group with high pollen viability and a high silk emergence ratio performed better under heat stress, and their performance can be further improved by combining the improved flowering pattern traits. 

Keywords:  maize        pollen viability        silk emergence        heat stress        relative humidity  
Received: 03 May 2023   Accepted: 12 July 2023
Fund: 
This work was supported by the Performance Incentive and Guidance Project for Scientific Research Institutions, China (cstc2022jxjl80028), the General Project of Chongqing Natural Science Foundation, China (cstc2021jcyj-msxmX0747), the Youth Innovation Team Project of Chongqing Academy of Agricultural Sciences, China (NKY-2018QC02), the Jiangjin Experimental Station of National Germplasm Resources Observation, China (NAES025GR05) and the Chongqing Technical Innovation and Application Development Special Project, China (CSTB2022T1AD-KPX0008).
About author:  #Correspondence Zhongjun Fu, Tel/Fax: +86-23-65717095, E-mail: world.12345@163.com; Hua Yang, E-mail: cqyangh@163.com * These authors contributed equally to this study.

Cite this article: 

Xin Dong, Baole Li, Zhenzhen Yan, Ling Guan, Shoubing Huang , Shujun Li, Zhiyun Qi, Ling Tang, Honglin Tian, Zhongjun Fu, Hua Yang. 2024. Impacts of high temperature, relative air humidity, and vapor pressure deficit on the seed set of contrasting maize genotypes during flowering. Journal of Integrative Agriculture, 23(9): 2955-2969.

Alam M A, Seetharam K, Zaidi P H, Dinesh A, Vinayan M T, Nath U K. 2017. Dissecting heat stress tolerance in tropical maize (Zea mays L.). Field Crops Research204, 110–119.

Allen R G, Pereira L S, Raes D, Smith M. 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. In: Irrigation Drainage Paper 56. Food and Agriculture Organization of the United Nations, Rome. p. 330.

Aylor D E. 2003. Rate of dehydration of corn (Zea mays L.) pollen in the air. Journal of Experimental Botany, 54, 2307–2312.

Aylor D E. 2004. Survival of maize (Zea mays) pollen exposed in the atmosphere. Agricultural and Forest Meteorology123, 125–133.

Bassetti P, Westgate M E. 1993. Water deficit affects receptivity of maize silks. Crop Science33, 279–282.

Begcy K, Dresselhaus T. 2018. Epigenetic responses to abiotic stresses during reproductive development in cereals. Plant Reproduction31, 343–355.

Begcy K, Nosenko T, Zhou L Z, Fragner L, Weckwerth W, Dresselhaus T. 2019. Male sterility in maize after transient heat stress during the tetrad stage of pollen development. Plant Physiology181, 683–700.

Birthal P S, Hazrana J, Negi D S, Pandey G. 2021. Benefits of irrigation against heat stress in agriculture: Evidence from wheat crop in India. Agricultural Water Management255, 106950.

Campbell G S, Norman J M. 1998. Radiation fluxes in natural environments. In: An Introduction to Environmental Biophysics. Springer, New York.

Carberry P S, Muchow R C, McCown R L. 1989. Testing the CERES-Maize simulation model in a semi-arid tropical environment. Field Crops Research20, 297–315.

Carter E K, Melkonian J, Riha S J, Shaw S B. 2016. Separating heat stress from moisture stress: Analyzing yield response to high temperature in irrigated maize. Environmental Research Letters11, 094012.

Cicchino M, Rattalino Edreira J I, Uribelarrea M, Otegui M E. 2010. Heat stress in field-grown maize: Response of physiological determinants of grain yield. Crop Science50, 1438–1448.

Dai Z, Edwards G E, Ku M S. 1992. Control of photosynthesis and stomatal conductance in Ricinus communis L. (castor bean) by leaf to air vapor pressure deficit. Plant Physiology99, 1426–1434.

Dong X, Guan L, Zhang P, Liu X, Li S, Fu Z, Tang L, Qi Z, Qiu Z, Jin C, Huang S, Yang H. 2021. Responses of maize with different growth periods to heat stress around flowering and early grain filling. Agricultural and Forest Meteorology303, 108378.

van Doorn W G, van Meeteren U. 2003. Flower opening and closure: A review. Journal of Experimental Botany54, 1801–1812.

Duvick D N. 1977. Genetic rates of gain in hybrid maize yields during the past 40 years. Maydica22, 187–196.

Edreira J R, Carpici E B, Sammarro D, Otegui M E. 2011. Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crops Research123, 62–73.

Edreira J R, Otegui M E. 2012. Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use. Field Crops Research130, 87–98.

Feng S, Hao Z. 2020. Quantifying likelihoods of extreme occurrences causing maize yield reduction at the global scale. Science of the Total Environment704, 135250.

Fonseca A E, Westgate M E. 2005. Relationship between desiccation and viability of maize pollen. Field Crops Research94, 114–125.

Fuad-Hassan A, Tardieu F, Turc O. 2008. Drought-induced changes in anthesis–silking interval are related to silk expansion: A spatio-temporal growth analysis in maize plants subjected to soil water deficit. PlantCell & Environment31, 1349–1360.

GarcÍA C C, Nepi M, Pacini E. 2006. Structural aspects and ecophysiology of anther opening in Allium triquetrumAnnals of Botany97, 521–527.

Gradziel T M, Weinbaum S A. 1999. High relative humidity reduces anther dehiscence in apricot, peach, and almond. HortScience34, 322–325.

Grossiord C, Buckley T N, Cernusak L A, Novick K A, Poulter B, Siegwolf R T, McDowell N G. 2020. Plant responses to rising vapor pressure deficit. New Phytologist226, 1550–1566.

Harel D, Fadida H, Slepoy A, Gantz S, Shilo K. 2014. The effect of mean daily temperature and relative humidity on pollen, fruit set and yield of tomato grown in commercial protected cultivation. Agronomy4, 167–177.

Herrero M P, Johnson R R. 1980. High temperature stress and pollen viability of maize. Crop Science20, 796–800.

Herrero M P, Johnson R R. 1981. Drought stress and its effects on maize reproductive systems. Crop Science21, 105–110.

IPCC (Intergovernmental Panel on Climate Change). 2021. Climate change 2021: The physical science basis. In: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

Jagadish S V K. 2020. Heat stress during flowering in cereals - Effects and adaptation strategies. New Phytologist226, 1567–1572.

Khabba S, Ledent J F, Lahrouni A. 2001. Maize ear temperature. European Journal of Agronomy14, 197–208.

Lesk C, Anderson W. 2021. Decadal variability modulates trends in concurrent heat and drought over global croplands. Environmental Research Letters16, 055024.

Lesk C, Coffel E, Winter J, Ray D, Zscheischler J, Seneviratne S I, Horton R. 2021. Stronger temperature - Moisture couplings exacerbate the impact of climate warming on global crop yields. Nature Food2, 683–691.

Li Y, Guan K, Peng B, Franz T E, Wardlow B, Pan M. 2020. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Global Change Biology26, 3065–3078.

Liu D L, Zuo H. 2012. Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia. Climatic Change115, 629–666.

Liu M, Sheng D, Liu X, Wang Y, Hou X, Wang Y, Wang P, Guan L, Dong X, Huang S. 2022. Dissecting heat tolerance and yield stability in maize from greenhouse and field experiments. Journal of Agronomy and Crop Science208, 348–361.

Liu X, Wang X, Wang X, J Gao, Luo N, Meng Q, Wang P. 2020. Dissecting the critical stage in the response of maize kernel set to individual and combined drought and heat stress around flowering. Environmental and Experimental Botany179, 104213.

Lizaso J I, Ruiz-Ramos M, Rodríguez L, Gabaldon-Leal C, Oliveira J A, Lorite I J, Sánchez D, García E, Rodríguez A. 2018. Impact of high temperatures in maize: Phenology and yield components. Field Crops Research216, 129–140.

Lobell D B, Field C B. 2007. Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Research Letters2, 014002.

Luna S, Figueroa V J, Baltazar M B, Gomez M R, Townsend L R, Schoper J B. 2001. Maize pollen longevity and distance isolation requirements for effective pollen control. Crop Science41, 1551–1557.

Lysenko E A, Kozuleva M A, Klaus A A, Pshybytko N L, Kusnetsov V V. 2023. Lower air humidity reduced both the plant growth and activities of photosystems I and II under prolonged heat stress. Plant Phsiology and Biotechemistry194, 246–262.

Marceau A, Loubet B, Andrieu B, Durand B, Foueillassar X, Huber L. 2011. Modelling diurnal and seasonal patterns of maize pollen emission in relation to meteorological factors. Agricultural and Forest Meteorology151, 11–21.

Mishra V, Ambika A K, Asoka A, Aadhar S, Buzan J, Kumar R, Huber M. 2020. Moist heat stress extremes in India enhanced by irrigation. Nature Geoscience13, 722–728.

Nielsen R L. 2016. Silk development and emergence in corn. Corny News Network, Purdue University. [2022-7-3]. http://www.kingcorn.org/news/timeless/Silks.html

Ortiz-Bobea A, Ault T R, Carrillo C M, Chambers R G, Lobel D B. 2021. Anthropogenic climate change has slowed global agricultural productivity growth. Nature Climate Change11, 306–312.

Oury V, Tardieu F, Turc O. 2016. Ovary apical abortion under water deficit is caused by changes in sequential development of ovaries and in silk growth rate in maize. Plant Physiology171, 986–996.

Rahimi-Moghaddam S, Kambouzia J, Deihimfard R. 2018. Adaptation strategies to lessen negative impact of climate change on grain maize under hot climatic conditions: A model-based assessment. Agricultural and Forest Meteorology253–254, 1–14.

Ray J D, Gesch R W, Sinclair T R, Allen L H. 2002. The effect of vapor pressure deficit on maize transpiration response to a drying soil. Plant and Soil239, 113–121.

Rieu I, Twell D, Firon N. 2017. Pollen development at high temperature: From acclimation to collapse. Plant Physiology173, 1967–1976.

Sanginés de Cárcer, Yann V, Josep P, Vincent E J, Alexandre B, Constant S. 2018. Vapor-pressure deficit and extreme climatic variables limit tree growth. Global Change Biology24, 1108–1122.

Schoper J B, Lambert R J, Vasilas B L. 1987. Pollen viability, pollen shedding, and combining ability for tassel heat tolerance in maize. Crop Science27, 27–31.

Siebers M H, Slattery R A, Yendrek C R, Locke A M, Drag D, Ainsworth E A, Bernacchi C J, Ort D R. 2017. Simulated heat waves during maize reproductive stages alter reproductive growth but have no lasting effect when applied during vegetative stages. Agriculture Ecosystems & Environment240, 162–170.

Smith L M. 2019. The heat is on: Maize pollen development after a heat wave. Plant Physiology181, 387–388.

Tack J, Barkley A, Hendricks N. 2017. Irrigation offsets wheat yield reductions from warming temperatures. Environmental Research Letters12, 114027.

Tollenaar M, Lee E A. 2002. Yield potential, yield stability and stress tolerance in maize. Field Crops Research75, 161–169.

Turc O, Bouteillé M, Fuad-Hassan A, Welcker C, Tardieu F. 2016. The growth of vegetative and reproductive structures (leaves and silks) respond similarly to hydraulic cues in maize. New Phytologist212, 377–388.

Vinayan M T, Zaidi P H, Seetharam K, Alam M A, Ahmed S, Koirala K B, Arshad M, Kuchanur P, Patil A, Mandal S S. 2019. Environmental variables contributing to differential performance of tropical maize hybrids across heat stress environments in South Asia. Australian Journal of Crop Science13, 828–836.

Wang Y, Liu X, Hou X, Sheng D, Dong X, Gao Y, Wang P, Huang S. 2021. Maximum lethal temperature for flowering and seed set in maize with contrasting male and female flower sensitivities. Journal of Agronomy and Crop Science207, 679–689.

Wang Y, Sheng D, Zhang P, Dong X, Yan Y, Hou X, Wang P, Huang S. 2020. High temperature sensitivity of kernel formation in different short periods around silking in maize. Environmental and Experimental Botany183, 104343.

Wang Y, Tao H, Tian B, Sheng D, Xu C, Zhou H, Huang S, Wang P. 2019. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environmental and Experimental Botany158, 80–88.

Westgate M E, Boyer J S. 1985. Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize. Planta164, 540–549.

Westgate M E, Boyer J S. 1986. Silk and pollen water potentials in maize. Crop Science26, 947–951.

Yuan W, Zheng Y, Piao S, Ciais P, Lombardozzi D, Wang Y, Yang S. 2019. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances5, 1396.

Zhao CLiu BPiao S LWang X HLobell D BHuang YHuang M TYao Y TBassu S, Ciais P, Durand J L, Elliott J, Ewert F, Janssens I, Li T, Lin E, Liu Q, Martre P, Mülle C, Peng S, et al. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America114, 9326–9331.

[1] Peng Liu, Langlang Ma, Siyi Jian, Yao He, Guangsheng Yuan, Fei Ge, Zhong Chen, Chaoying Zou, Guangtang Pan, Thomas Lübberstedt, Yaou Shen. Population genomic analysis reveals key genetic variations and the driving force for embryonic callus induction capability in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2178-2195.
[2] Haiqing Gong, Yue Xiang, Jiechen Wu, Laichao Luo, Xiaohui Chen, Xiaoqiang Jiao, Chen Chen.

Integrating phosphorus management and cropping technology for sustainable maize production [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1369-1380.

[3] Pengcheng , Shuangyi Yin, Yunyun Wang, Tianze Zhu, Xinjie Zhu, Minggang Ji, Wenye Rui, Houmiao Wang Chenwu Xu, Zefeng Yang.

Dynamics and genetic regulation of macronutrient concentrations during grain development in maize [J]. >Journal of Integrative Agriculture, 2024, 23(3): 781-794.

[4] Peng Wang, Lan Yang, Xichao Sun, Wenjun Shi, Rui Dong, Yuanhua Wu, Guohua Mi.

Lateral root elongation in maize is related to auxin synthesis and transportation mediated by N metabolism under a mixed NO3 and NH4+ supply [J]. >Journal of Integrative Agriculture, 2024, 23(3): 1048-1060.

[5] Weina Zhang, Zhigan Zhao, Di He, Junhe Liu, Haigang Li, Enli Wang.

Combining field data and modeling to better understand maize growth response to phosphorus (P) fertilizer application and soil P dynamics in calcareous soils [J]. >Journal of Integrative Agriculture, 2024, 23(3): 1006-1021.

[6] Binbin Li, Xianmin Chen, Tao Deng, Xue Zhao, Fang Li, Bingchao Zhang, Xin Wang, Si Shen, Shunli Zhou.

Timing effect of high temperature exposure on the plasticity of internode and plant architecture in maize [J]. >Journal of Integrative Agriculture, 2024, 23(2): 551-565.

[7] WANG Peng, WANG Cheng-dong, WANG Xiao-lin, WU Yuan-hua, ZHANG Yan, SUN Yan-guo, SHI Yi, MI Guo-hua. Increasing nitrogen absorption and assimilation ability under mixed NO3 and NH4+ supply is a driver to promote growth of maize seedlings[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1896-1908.
[8] LIU Min-guo, Thomas CAMPBELL, LI Wei, WANG Xi-qing. Analyzing architectural diversity in maize plants using the skeletonimage- based method[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3804-3809.
[9] XU Meng-ze, WANG Yu-hong, NIE Cai-e, SONG Gui-pei, XIN Su-ning, LU Yan-li, BAI You-lu, ZHANG Yin-jie, WANG Lei. Identifying the critical phosphorus balance for optimizing phosphorus input and regulating soil phosphorus effectiveness in a typical winter wheat-summer maize rotation system in North China[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3769-3782.
[10] SHA Xiao-qian, GUAN Hong-hui, ZHOU Yu-qian, SU Er-hu, GUO Jian, LI Yong-xiang, ZHANG Deng-feng, LIU Xu-yang, HE Guan-hua, LI Yu, WANG Tian-yu, ZOU Hua-wen, LI Chun-hui. Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3394-3407.
[11] XIE Si-di, TIAN Ran, ZHANG Jun-jie, LIU Han-mei, LI Yang-ping, HU Yu-feng, YU Guo-wu, HUANG Yu-bi, LIU Ying-hong. Dek219 encodes the DICER-LIKE1 protein that affects chromatin accessibility and kernel development in maize[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2961-2980.
[12] LI Peng-cheng, YANG Xiao-yi, WANG Hou-miao, PAN Ting, YANG Ji-yuan, WANG Yun-yun, XU Yang, YANG Ze-feng, XU Chen-wu. Metabolic responses to combined water deficit and salt stress in maize primary roots[J]. >Journal of Integrative Agriculture, 2021, 20(1): 109-119.
[13] Sooyeon Lim, Gibum Yi. Investigating seed mineral composition in Korean landrace maize (Zea mays L.) and its kernel texture specificity[J]. >Journal of Integrative Agriculture, 2019, 18(9): 1996-2005.
[14] LI Xiang-ling, GUO Li-guo, ZHOU Bao-yuan, TANG Xiang-ming, CHEN Cong-cong, ZHANG Lei, ZHANG Shao-yun, LI Chong-feng, XIAO Kai, DONG Wei-xin, YIN Bao-zhong, ZHANG Yue-chen . Characterization of low-N responses in maize (Zea mays L.) cultivars with contrasting nitrogen use efficiency in the North China Plain[J]. >Journal of Integrative Agriculture, 2019, 18(9): 2141-2152.
[15] GU Ri-liang, HUANG Ran, JIA Guang-yao, YUAN Zhi-peng, REN Li-sha, LI Li, WANG Jian-hua. Effect of mechanical threshing on damage and vigor of maize seed threshed at different moisture contents[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1571-1578.
No Suggested Reading articles found!