Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (5): 1618-1633    DOI: 10.1016/j.jia.2023.07.027
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |

Low-density lipoprotein receptor-related protein 2 (LRP2) is required for lipid export in the midgut of the migratory locust, Locusta migratoria

Yiyan Zhao1, 2, Weimin Liu1, Xiaoming Zhao1#, Zhitao Yu1, Hongfang Guo1, 2, Yang Yang1, 3, Hans Merzendorfer4, Kun Yan Zhu5, Jianzhen Zhang1#

1 Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan 030006, China

2 College of Life Science, Shanxi University, Taiyuan 030006, China

3 Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen 72076, Germany

4 Institute of Biology, University of Siegen, Siegen 57076, Germany

5 Department of Entomology, Kansas State University, Manhattan, KS 66506, USA

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  载脂蛋白受体相关蛋白2Lipophorin receptor-related proteinLRP2)是一类广泛分布于上皮细胞的多功能内吞性受体。哺乳动物中,LRP2通过介导细胞对载脂蛋白的摄取来维持脂质稳态,然而,关于LRP2在昆虫体内脂质稳态中的作用研究尚未见报道本文系统研究了飞蝗载脂蛋白受体相关基因2 (LmLRP2)的生物学功能。利用RT-qPCR技术分析LmLRP2在虫体不同组织部位和不同发育时期的表达特性,发现其在多种组织中均有较高的表达,包括体壁、翅芽、前肠、后肠、马氏管和脂肪体,蜕皮后表达量先降低到下次蜕皮前升高。免疫组织化学结果显示,LmLRP2蛋白主要定位于中肠和后肠的细胞膜上。进一步利用RNAi技术沉默LmLRP2的表达后,若虫出现蜕皮困难和蜕皮后短时间内死亡的表型,总致死率达到60%以上Bodipy染色结果显示,LmLRP2的沉默导致表皮和中肠细胞中性脂含量显著增加,而脂肪体中性脂含量显著减少。进一步利用脂质组学技术分析得到5种甘油二酯(DiglycerideDG)和3甘油三酯(Triglyceride,TG),其在中肠累积,而在脂肪体和血淋巴中显著降低。此外,利用甘油三酯测定试剂盒对总TG含量进行测定,发现中肠中总TG含量显著增多,而脂肪体和血淋巴中总TG含量显著减少。本文研究结果表明,主要位于中肠细胞膜上的受体LmLRP2参与中肠脂质到血淋巴和脂肪体的转运,对飞蝗的生长发育至关重要。

Abstract  

Low-density lipoprotein receptor-related protein 2 (LRP2) is a multifunctional endocytic receptor expressed in epithelial cells.  In mammals, it acts as an endocytic receptor that mediates the cellular uptake of cholesterol-containing apolipoproteins to maintain lipid homeostasis.  However, little is known about the role of LRP2 in lipid homeostasis in insects.  In the present study, we investigated the function of LRP2 in the migratory locust Locusta migratoria (LmLRP2).  The mRNA of LmLRP2 is widely distributed in various tissues, including integument, wing pads, foregut, midgut, hindgut, Malpighian tubules and fat body, and the amounts of LmLRP2 transcripts decreased gradually in the early stages and then increased in the late stages before ecdysis during the nymphal developmental stage.  Fluorescence immunohistochemistry revealed that the LmLRP2 protein is mainly located in cellular membranes of the midgut and hindgut.  Using RNAi to silence LmLRP2 caused molting defects in nymphs (more than 60%), and the neutral lipid was found to accumulate in the midgut and surface of the integument, but not in the fat body, of dsLmLRP2-treated nymphs.  The results of a lipidomics analysis showed that the main components of lipids (diglyceride and triglyceride) were significantly increased in the midgut, but decreased in the fat body and hemolymph.  Furthermore, the content of total triglyceride was significantly increased in the midgut, but markedly decreased in the fat body and hemolymph in dsLmLRP2-injected nymphs.  Our results indicate that LmLRP2 is located in the cellular membranes of midgut cells, and is required for lipid export from the midgut to the hemolymph and fat body in locusts.

Keywords:  Locusta migratoria        low-density lipoprotein receptor-related protein 2        midgut        lipids transport        RNAi   
Received: 23 March 2023   Accepted: 16 June 2023
Fund: This work was supported by the National Key R&D Program of China (2022YFE0196200), the National Natural Science Foundation of China–Deutsche Forschungsgemeinschaft of Germany (31761133021), the National Natural Science Foundation of China (31970469 and 31701794), the earmarked fund for Modern Agro-industry Technology Research System, China (2023CYJSTX01-20), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (2017104), and the Fund for Shanxi “1331 Project”, China.
About author:  Yiyan Zhao, E-mail: 490051225@qq.com; #Correspondence Xiaoming Zhao, E-mail: zxming@sxu.edu.cn; Jianzhen Zhang, E-mail: zjz@sxu.edu.cn

Cite this article: 

Yiyan Zhao, Weimin Liu, Xiaoming Zhao, Zhitao Yu, Hongfang Guo, Yang Yang, Hans Merzendorfer, Kun Yan Zhu, Jianzhen Zhang. 2024.

Low-density lipoprotein receptor-related protein 2 (LRP2) is required for lipid export in the midgut of the migratory locust, Locusta migratoria . Journal of Integrative Agriculture, 23(5): 1618-1633.

Van Antwerpen R, Beekwilder J, Van Heusden M C, Van der Horst D J, Beenakkers A M T. 1990. Interaction of lipophorin with the plasma membrane of locust flight muscles. Biological Chemistry Hoppe-Seyler, 371, 159–166.

Van Antwerpen R, Wynne H J A, Van der Horst D J, Beenakkers A M T. 1989. Binding of lipophorin to the fat body of the migratory locust. Insect Biochemistry, 19, 809–814.

Arrese E L, Soulages J L. 2010. Insect fat body: Energy, metabolism, and regulation. Annual Review of Entomology, 55, 207–225.

Assemat E, Vinot S, Gofflot F, Linsel-Nitschke P, Illien F, Chatelet F, Verroust P, Louvet-Vallee S, Rinninger F, Kozyraki R. 2005. Expression and role of cubilin in the internalization of nutrients during the peri-implantation development of the rodent embryo. Biology of Reproduction, 72, 1079–1086.

Christensen E I, Birn H. 2002. Megalin and cubilin: multifunctional endocytic receptors. Nature Reviews: Molecular Cell Biology, 3, 256–266.

Christensen E I, Willnow T E. 1999. Essential role of megalin in renal proximal tubule for vitamin homeostasis. Journal of the American Society of Nephrology, 10, 2224–2236.

Chu X Y, Yang S Z, Zhu M Q, Zhang D Y, Shi X C, Xia B, Yuan Y, Liu M, Wu J W. 2020. Isorhapontigenin improves diabetes in mice via regulating the activity and stability of PPARγ in adipocytes. Journal of Agricultural and Food Chemistry, 68, 3976–3985.

Crosby T, Evershed R P, Lewis D, Wigglesworth K P, Rees H H. 1986. Identification of ecdysone 22-long-chain fatty acyl esters in newly laid eggs of the cattle tick Boophilus microplus. The Biochemical Journal, 240, 131–138.

Fisher C E, Howie S E. 2006. The role of megalin (LRP-2/Gp330) during development. Developmental Biology, 296, 279–297.

Gibbons G F, Islam K, Pease R J. 2000. Mobilisation of triacylglycerol stores. Biochimica et Biophysica Acta, 1483, 37–57.

Gondim K C, Wells M A. 2000. Characterization of lipophorin binding to the midgut of larval Manduca sexta. Insect Biochemistry and Molecular Biology, 30, 405–413.

Hayakawa Y. 1987. Characterization of lipophorin receptor in locust flight muscle. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 919, 58–63.

Hjälm G, Murray E, Crumley G, Harazim W, Lundgren S, Onyango I, Ek B, Larsson M, Juhlin C, Hellman P, Davis H, Akerström G, Rask L, Morse B. 1996. Cloning and sequencing of human gp330, a Ca2+-binding receptor with potential intracellular signaling properties. European Journal of Biochemistry, 239, 132–137.

Van der Horst D J, Rodenburg K W. 2010. Lipoprotein assembly and function in an evolutionary perspective. Biomolecular Concepts, 1, 165–183.

Van der Horst D J, Roosendaal S D, Rodenburg K W. 2009. Circulatory lipid transport: lipoprotein assembly and function from an evolutionary perspective. Molecular and Cellular Biochemistry, 326, 105–119.

Hussain M M, Strickland D K, Bakillah A. 1999. The mammalian low-density lipoprotein receptor family. Annual Review of Nutrition, 19, 141–172.

Jia S, Wan P J, Li G Q. 2015. Molecular cloning and characterization of the putative Halloween gene Phantom from the small brown planthopper Laodelphax striatellus. Insect Science, 22, 707–718.

Kerjaschki D, Farquhar M G. 1982. The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. Proceedings of the National Academy of Sciences of the United States of America, 79, 5557–5561.

Krieger M, Herz J. 1994. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annual Review of Biochemistry, 63, 601–637.

Kur E, Christa A, Veth K N, Gajera C R, Andrade-Navarro M A, Zhang J, Willer J R, Gregg R G, Abdelilah-Seyfried S, Bachmann S, Link B A, Hammes A, Willnow T E. 2011. Loss of Lrp2 in zebrafish disrupts pronephric tubular clearance but not forebrain development. Developmental Dynamics, 240, 1567–1577.

Li D T, Dai Y T, Chen X, Wang X Q, Li Z D, Moussian B, Zhang C X. 2020. Ten fatty acyl-CoA reductase family genes were essential for the survival of the destructive rice pest, Nilaparvata lugens. Pest Management Science, 76, 2304–2315.

Li K, Tian L, Guo Z, Guo S, Zhang J, Gu S H, Palli S R, Cao Y, Li S. 2016. 20-Hydroxyecdysone (20E) primary response gene E75 isoforms mediate steroidogenesis autoregulation and regulate developmental timing in Bombyx. The Journal of Biological Chemistry, 291, 18163–18175.

Liu X, Li J, Sun Y, Liang X, Zhang R, Zhao X, Zhang M, Zhang J. 2022. A nuclear receptor HR4 is essential for the formation of epidermal cuticle in the migratory locust, Locusta migratoria. Insect Biochemistry and Molecular Biology, 143, 103740.

Liu X J, Jun G, Liang X Y, Zhang X Y, Zhang T T, Liu W M, Zhang J Z, Zhang M. 2022. Silencing of transcription factor E93 inhibits adult morphogenesis and disrupts cuticle, wing and ovary development in Locusta migratoria. Insect Science, 29, 333–343.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods, 25, 402–408.

Lu K, Chen X, Li Y, Li W R, Zhou Q. 2018. Lipophorin receptor regulates Nilaparvata lugens fecundity by promoting lipid accumulation and vitellogenin biosynthesis. Comparative Biochemistry and Physiology (Part A: Molecular and Integrative Physiology), 219–220, 28–37.

Palm W, Sampaio J L, Brankatschk M, Carvalho M, Mahmoud A, Shevchenko A, Eaton S. 2012. Lipoproteins in Drosophila melanogaster- assembly, function, and influence on tissue lipid composition. PLoS Genetics, 8, e1002828.

Riedel F, Vorkel D, Eaton S. 2011. Megalin-dependent yellow endocytosis restricts melanization in the Drosophila cuticle. Development, 138, 149–158.

Saito A, Pietromonaco S, Loo A K, Farquhar M G. 1994. Complete cloning and sequencing of rat gp330/”megalin,” a distinctive member of the low density lipoprotein receptor gene family. Proceedings of the National Academy of Sciences of the United States of America, 91, 9725–9729.

Sieber M H, Thummel C S. 2009. The DHR96 nuclear receptor controls triacylglycerol homeostasis in Drosophila. Cell Metabolism, 10, 481–490.

Soulages J L, Wells M A. 1994. Lipophorin: The structure of an insect lipoprotein and its role in lipid transport in insects. Advances in Protein Chemistry, 45, 371–415.

Strickland D K, Kounnas M Z, Argraves W S. 1995. LDL receptor-related protein: A multiligand receptor for lipoprotein and proteinase catabolism. FASEB Journal, 9, 890–898.

Trinh I, Boulianne G L. 2013. Modeling obesity and its associated disorders in Drosophila. Physiology (Bethesda), 28, 117–124.

Wan P J, Jia S, Li N, Fan J M, Li G Q. 2014. The putative Halloween gene phantom involved in ecdysteroidogenesis in the white-backed planthopper Sogatella furcifera. Gene, 548, 112–118.

Wang X H, Fang X D, Yang P C, Jiang X T, Jiang F, Zhao D J, Li B L, Cui F, Wei J N, Ma C, Wang Y D, He J, Luo Y, Wang Z F, Guo X J, Guo W, Wang X S, Zhang Y, Yang M L, Hao S G, et al. 2014. The locust genome provides insight into swarm formation and long-distance flight. Nature Communications, 5, 2957.

Willnow T E, Hilpert J, Armstrong S A, Rohlmann A, Hammer R E, Burns D K, Herz J. 1996. Defective forebrain development in mice lacking gp330/megalin. Proceedings of the National Academy of Sciences of the United States of America, 93, 8460–8464.

Wu L X, Zhang Z F, Yu Z T, Yu R R, Ma E B, Fan Y L, Liu T X, Feyereisen R, Zhu K Y, Zhang J Z. 2020. Both LmCYP4G genes function in decreasing cuticular penetration of insecticides in Locusta migratoria. Pest Management Science, 76, 3541–3550.

Yang Q P, Li Z, Cao J J, Zhang S D, Zhang H J, Wu X Y, Zhang Q W, Liu X X. 2014. Selection and assessment of reference genes for quantitative pcr normalization in migratory locust Locusta migratoria (Orthoptera: Acrididae). PLoS ONE, 9, e98164.

Yang Y, Zhao X M, Niu N, Zhao Y Y, Liu W M, Moussian B, Zhang J Z. 2020. Two fatty acid synthase genes from the integument contribute to cuticular hydrocarbon biosynthesis and cuticle permeability in Locusta migratoria. Insect Molecular Biology, 29, 555–568.

Yochem J, Tuck S, Greenwald I, Han M. 1999. A gp330/megalin-related protein is required in the major epidermis of Caenorhabditis elegans for completion of molting. Development, 126, 597–606.

Yu R, Liu W, Li D, Zhao X, Ding G, Zhang M, Ma E, Zhu K, Li S, Moussian B, Zhang J. 2016. Helicoidal organization of chitin in the cuticle of the migratory locust requires the function of the chitin deacetylase2 enzyme (LmCDA2). The Journal of Biological Chemistry, 291, 24352–24363.

Yu Z T, Wang Y W, Zhao X M, Liu X J, Ma E B, Moussian B, Zhang J Z. 2017. The ABC transporter ABCH–9C is needed for cuticle barrier construction in Locusta migratoria. Insect Biochemistry and Molecular Biology, 87, 90–99.

Yu Z T, Zhang X Y, Wang Y W, Moussian B, Zhu K Y, Li S, Ma E B, Zhang J Z. 2016. LmCYP4G102: An oenocyte-specific cytochrome P450 gene required for cuticular waterproofing in the migratory locust, Locusta migratoria. Scientific Reports, 6, 29980.

Zhao X M, Gou X, Liu W M, Ma E B, Moussian B, Li S, Zhu K Y, Zhang J Z. 2019. The wing-specific cuticular protein LmACP7 is essential for normal wing morphogenesis in the migratory locust. Insect Biochemistry and Molecular Biology, 112, 103206.

Zhao X M, Gou X, Qin Z Y, Li D Q, Wang Y, Ma E B, Li S, Zhang J Z. 2017. Identification and expression of cuticular protein genes based on Locusta migratoria transcriptome. Scientific Reports, 7, 45462.

Zhao X M, Qin Z Y, Liu W M, Liu X J, Moussian B, Ma E B, Li S, Zhang J Z. 2018. Nuclear receptor HR3 controls locust molt by regulating chitin synthesis and degradation genes of Locusta migratoria. Insect Biochemistry and Molecular Biology, 92, 1–11.

Zhao X M, Yang Y, Niu N, Zhao Y Y, Liu W M, Ma E B, Moussian B, Zhang J Z. 2020. The fatty acid elongase gene LmELO7 is required for hydrocarbon biosynthesis and cuticle permeability in the migratory locust, Locusta migratoria. Journal of Insect Physiology, 123, 104052.

Zhao Y Y, Liu W M, Zhao X M, Yu Z T, Guo H F, Yang Y, Zhang J Q, Moussian B, Zhang J Z. 2020. Apolipophorin-II/I contributes to cuticular hydrocarbon transport and cuticle barrier construction in Locusta migratoria. Frontiers in Physiology, 11, 790.

[1] FENG Shi-qian, ZHANG Neng, CHEN Jun, ZHANG Dao-gang, ZHU Kai-hui, CAI Ni, TU Xiong-bing, ZHANG Ze-hua. Serine protease inhibitors LmSPN2 and LmSPN3 co-regulate embryonic diapause in Locusta migratoria manilensis (Meyen) via the Toll pathway[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3720-3730.
[2] DU Hui, SUN Li-li, LIU Peng, CAO Chuan-wang. The sex peptide receptor in the Asian gypsy moth, Lymantria dispar, is involved in development and stress resistance[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2976-2985.
[3] MA Mei-qi, HE Wan-wan, XU Shi-jing, XU Le-tian, ZHANG Jiang.
RNA interference in Colorado potato beetle (Leptinotarsa decemlineata): A potential strategy for pest control
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 428-427.
[4] ZHOU Xue, HU Jia, FU Mei-li, JIN Ping, ZHANG Yun-ye, XIANG Ying, LI Yao, MA Fei . Identification and characterization of a TLR13 gene homologue from Laodelphax striatellus involved in the immune response induced by rice stripe virus[J]. >Journal of Integrative Agriculture, 2020, 19(1): 183-192.
[5] HE Wei, ZHAO Hui-min, YANG Xiao-wei, ZHANG Rui, WANG Jing-jing. Patent analysis provides insights into the history of cotton molecular breeding worldwide over the last 50 years[J]. >Journal of Integrative Agriculture, 2019, 18(3): 539-552.
[6] FAN Yan-hui, HOU Bing-qian, SU Pei-sen, WU Hong-yan, WANG Gui-ping, KONG Ling-rang, MA Xin, WANG Hong-wei. Application of virus-induced gene silencing for identification of FHB resistant genes[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2183-2192.
[7] LIANG Chao, LIU Ting-hui, HAN Shi-peng, HE Yun-zhuan. Molecular cloning, expression profiling and RNA interference of a vitellogenin gene from Harmonia axyridis (Coleoptera: Coccinellidae)[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2311-2320.
No Suggested Reading articles found!