Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (11): 2976-2985    DOI: 10.1016/S2095-3119(20)63365-2
Special Issue: 昆虫合辑Plant Protection—Entomolgy 害虫抗药性和毒理学合辑Pest Toxicology
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
The sex peptide receptor in the Asian gypsy moth, Lymantria dispar, is involved in development and stress resistance
DU Hui, SUN Li-li, LIU Peng, CAO Chuan-wang
Key Laboratory of Sustainable Forest Ecosystem Management of Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, P.R.Chin
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

G蛋白偶联受体(GPCR)通过与异源三聚体G蛋白结合来调控下游基因。然而,大多数鳞翅目物种中性肽受体的功能未知。了解昆虫性肽受体生理功能对于开发新型杀虫剂作用靶标至关重要。本文研究了亚洲型舞毒蛾性肽受体(LdSPR)功能。舞毒蛾6龄幼虫LdSPR基因表达量最高,雌雄成虫之间的表达量存在显著性差异。LdSPR基因沉默后,舞毒蛾幼虫对高温、饥饿和氧化应激的敏感性增强,表明LdSPR基因增强了其抗逆性。这些研究结果丰富了我们对昆虫性肽受体功能的认识,有助于更好地了解其它昆虫中的G蛋白偶联受体家族成员,并为开发环境友好型农药鉴定新的作用靶标。




Abstract  
The G protein-coupled receptor (GPCR) regulates downstream genes by binding to a heterotrimeric G protein.  However, the function of sex peptide receptor (SPR) in lepidopteran species is mostly unknown.  Understanding the physiological functions of SPR in insects is essential for exploring new insecticidal targets.  In the present study, the functions of an SPR in Lymantria dispar (Asian gypsy moth; LdSPR) were investigated.  The expression of LdSPR was the highest in the 6th instar larval stage, and there was a large difference in expression between male and female adults.  After LdSPR gene silencing, L.?dispar larvae showed increased sensitivity to high temperature, starvation, and oxidative stress, indicating that LdSPR enhances stress resistance.  These results enrich our knowledge of the function of the insect SPRs, which will lead to a better understanding of other insect GPCR family members and the identification of new targets for the development of environmentally friendly pesticides.
 
Keywords:  Lymantria dispar        sex peptide receptor        RNAi        physiological function        stress resistance  
Received: 20 May 2020   Accepted:
Fund: This work was supported by grants from the National Key R&D Program of China (2018YFC1200400), the National Natural Science Foundation of China (31570642), the Fundamental Research Funds for the Central Universities, China (2572019CG04) and the Heilongjiang Touyan Innovation Team Program, China (Tree Genetics and Breeding Innovation Team).
Corresponding Authors:  Correspondence CAO Chuan-wang, Tel: +86-451-82191822, E-mail: chuanwangcao@nefu.edu.cn   
About author:  DU Hui, E-mail: 854894037@qq.com;

Cite this article: 

DU Hui, SUN Li-li, LIU Peng, CAO Chuan-wang. 2021. The sex peptide receptor in the Asian gypsy moth, Lymantria dispar, is involved in development and stress resistance. Journal of Integrative Agriculture, 20(11): 2976-2985.

Arking R, Buck S, Berrios A, Dwyer S, Baker G T III. 1991. Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain of Drosophila. Developmental Genetics, 12, 362–370.
Audsley N, Down R E. 2015. G protein coupled receptors as targets for next generation pesticides. Insect Biochemistry and Molecular Biology, 67, 27–37.
Cao C W, Liu G F, Wang Z Y, Yan S C, Ma L, Yang C P. 2010. Response of the gypsy moth, Lymantria dispar to transgenic poplar, Populus simonii× P. nigra, expressing fusion protein gene of the spider insecticidal peptide and Bt-toxin C-peptide. Journal of Insect Science, 10, 200.
Cao C W, Sun L L, Du H, Moural T W, Bai H, Liu P, Zhu F. 2019. Physiological functions of a methuselah-like G protein coupled receptor in Lymantria dispar Linnaeus. Pesticide Biochemistry and Physiology, 160, 1–10.
Cao C W, Sun L L, Wen R R, Shang Q, Ma L, Wang Z Y. 2015. Characterization of the transcriptome of the Asian gypsy moth Lymantria dispar identifies numerous transcripts associated with insecticide resistance. Pesticide Biochemistry and Physiology, 119, 54–61.
Carvalho G B, Kapahi P, Anderson D J, Benzer S. 2006. Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Current Biology, 16, 692–696.
Chapman T, Bangham J, Vinti G, Seifried B, Lung O, Wolfner M F, Smith H K, Partridge L. 2003. The sex peptide of Drosophila melanogaster, female post-mating responses analyzed by using RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 100, 9923–9928.
Chen P S, Stumm-Zollinger E, Aigaki T, Balmer J, Bienz M, Bohlen P. 1988. A male accessory gland peptide that regulates reproductive behavior of female D.?melanogaster. Cell, 54, 291–298.
Domanitskaya E V, Liu H, Chen S, Kubli E. 2007. The hydroxyproline motif of male sex peptide elicits the innate immune response in Drosophila females. FEBS Journal, 274, 5659–5668.
Fricke C, Wigby S, Hobbs R, Chapman T. 2009. The benefits of male ejaculate sex peptide transfer in Drosophila melanogaster. Journal of Evolutionary Biology, 22, 275–286.
Haussmann I U, Hemani Y, Wijesekera T, Dauwalder B, Soller M. 2013. Multiple pathways mediate the sex-peptide-regulated switch in female Drosophila reproductive behaviours. Proceedings of the Royal Society (B: Biological Sciences), 280, 20131938.
He X B, Zang J S, Yang H P, Huang H S, Shi Y, Zhu C G, Zhou N M. 2015. Bombyx mori prothoracicostatic peptide receptor is allosterically activated via a Gαi/o-protein-biased signalling cascade by Drosophila sex peptide. Biochemical Journal, 466, 391–400.
Herskowitz I. 1995. MAP kinase pathways in yeast, for mating and more. Cell, 80, 187–197.
Hou Y Q, Nan N, Li Z Y. 2009. Research advances of Lymantria dispar. Hebei Journal of Forestry and Orchard Research, 24, 439–444. (in Chinese)
Isaac R E, Li C, Leedale A E, Shirras A D. 2010. Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female. Proceedings of the Royal Society of Medicine, 277, 65–70.
Ja W W, Carvalho G B, Madrigal M, Roberts R W, Benzer S. 2009. The Drosophila G protein-coupled receptor, Methuselah, exhibits a promiscuous response to peptides. Protein Science, 18, 2203–2208.
Ja W W, West Jr P A, Delker S L, Delker S L, Bjorkman P J, Benzer S, Roberts R W. 2007. Extension of Drosophila melanogaster life-span with a GPCR peptide inhibitor. Nature Chemical Biology, 3, 415–419.
Kim Y H, Soumaila I M, Cooper A M, Zhu K Y. 2015. RNA interference, applications and advances in insect toxicology and insect pest management. Pesticide Biochemistry and Physiology, 120, 109–117.
Kim Y J, Bartalska K, Audsley N, Yamanaka N, Yapici N, Lee J Y, Kim Y C, Markovic M, Isaac E, Tanaka Y, Dickson B J. 2010. MIPs are ancestral ligands for the sex peptide receptor. Proceedings of the National Academy of Sciences of the United States of America, 107, 6520–6525.
Lappano R, Maggiolini M. 2011. G protein-coupled receptors, novel targets for drug discovery in cancer. Nature Reviews Drug Discovery, 10, 4711.
Lazarevic J, Peric-mataruga V, Ivanovic J, Andjelkovic M. 1998. Host plant effects on the genetic variation and correlations in the individual performance of the gypsy moth. Functional Ecology, 12, 141–148.
Lin Y J, Seroude L, Benzer S. 1998. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science, 282, 943–946.
Liu H, Kubli E. 2003. Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 100, 9929–9933.
Morris A J, Malbon C C. 1999. Physiological regulation of G protein-linked signaling. Physiological Reviews, 79, 1373–1430.
Naoki Y, Yue J H, Ladislav R, Ivana S V, Akira M, Hiroshi K, Tanaka Y. 2010. Bombyx prothoracicostatic peptides activate the sex peptide receptor to regulate ecdysteroid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 107, 2060–2065.
Oh Y, Yoon S E, Zhang Q, Chae H S, Daubnerova I, Shafer O T, Choe J, Kim Y J. 2014. A homeostatic sleep-stabilizing pathway in Drosophila composed of the sex peptide receptor and its ligand, the myoinhibitory peptide. PLoS Biology, 12, e1001974.
Peng J, Zipperlen P, Kubli E. 2005. Drosophila sex-peptide stimulates female innate immune system after mating via the Toll and Imd pathways. Current Biology, 15, 1690–1694.
Pfaffl M W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45.
Poels J, Loy T V, Vandersmissen H P, Hiel B V, Soest S V, Nachman R J, Broeck J V. 2010. Myoinhibiting peptides are the ancestral ligands of the promiscuous Drosophila sex peptide receptor. Cellular and Molecular Life Sciences, 67, 3511–3522.
Ribeiro C, Dickson B J. 2010. Sex peptide receptor and neuronal TOR/S6 K signaling modulate nutrient balancing in Drosophila. Current Biology, 20, 1000–1005.
Roy A S, McNamara D G, Smith I M. 1995. Situation of Lymantria dispar in Europe. Bulletin OEPP, 25, 611–616.
Soller M, Bownes M, Kubli E. 1999. Control of oocyte maturation in sexually mature Drosophila females. Developmental Biology, 208, 337–351.
Strader C D, Fong T M, Tota M R, Underwood D, Dixon R A F. 1994. The structure and function of G protein-coupled receptors. Annual Review of Biochemistry, 63, 101–132.
Sun L L, Wang Z Y, Zou C S, Cao C W. 2014. Transcription profiling of 12 Asian gypsy moth (Lymantria dispar) cytochrome P450 genes in response to insecticides. Archives of Insect Biochemistry and Physiology, 85, 181–194.
Tsuda M, Aigaki T. 2016. Evolution of sex-peptide in Drosophila. Fly, 10, 172–177.
Tsuda M, Peyre J B, Asano T, Aigaki T. 2015. Visualizing molecular functions and cross-species activity of sex-peptide in Drosophila. Genetics, 200, 1161–1169.
Tu Q, Yu L, Zhang P. 2000. Cloning, characterization and mapping of the human ATP5E gene, identification of pseudogene ATP5EP1, and definition of the ATP5E motif. Biochemical Journal, 347, 17.
Vettraino J, Buck S, Arking R. 2001. Direct selection for paraquat resistance in Drosophila results in a different extended longevity phenotype. Journal of Gerontology, 56, B415–B425.
Waldbauer G P. 1964. The consumption, digestion and utilization of solanaceous and non-solanaceous plants by larvae of the tobacco hornworm, Protoparce sexta (Johan.) (Lepidoptera, Sphingidae). Entomologia Experimentaliset Applicata, 7, 253–269.
Yapici N, Kim Y J, Ribeiro C, Dickson B J. 2008. A receptor that mediates the post-mating switch in Drosophila reproductive behavior. Nature, 451, 33–37.
[1] MA Mei-qi, HE Wan-wan, XU Shi-jing, XU Le-tian, ZHANG Jiang.
RNA interference in Colorado potato beetle (Leptinotarsa decemlineata): A potential strategy for pest control
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 428-427.
[2] ZHOU Xue, HU Jia, FU Mei-li, JIN Ping, ZHANG Yun-ye, XIANG Ying, LI Yao, MA Fei . Identification and characterization of a TLR13 gene homologue from Laodelphax striatellus involved in the immune response induced by rice stripe virus[J]. >Journal of Integrative Agriculture, 2020, 19(1): 183-192.
[3] HE Wei, ZHAO Hui-min, YANG Xiao-wei, ZHANG Rui, WANG Jing-jing. Patent analysis provides insights into the history of cotton molecular breeding worldwide over the last 50 years[J]. >Journal of Integrative Agriculture, 2019, 18(3): 539-552.
[4] FAN Yan-hui, HOU Bing-qian, SU Pei-sen, WU Hong-yan, WANG Gui-ping, KONG Ling-rang, MA Xin, WANG Hong-wei. Application of virus-induced gene silencing for identification of FHB resistant genes[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2183-2192.
[5] LIANG Chao, LIU Ting-hui, HAN Shi-peng, HE Yun-zhuan. Molecular cloning, expression profiling and RNA interference of a vitellogenin gene from Harmonia axyridis (Coleoptera: Coccinellidae)[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2311-2320.
No Suggested Reading articles found!