Ali M I, Luttrell R G. 2007. Susceptibility of bollworm
and tobacco budworm (Lepidoptera: Noctuidae) to Cry2Ab2 insecticidal protein. Journal of Economic Entomology, 100, 921–931.
Anilkumar K J, Rodrigo-Simón A, Ferré J, Pusztai-Care M,
Sivasupramaniam S, Moar W J. 2008. Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie). Applied and Environmental Microbiology, 74,
462–469.
Baxter S W, Badenes-Pérez F R, Morrison A, Vogel H,
Crickmore N, Kain W, Wang P, Heckel D G, Jiggins C D. 2011. Parallel evolution
of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics, 189, 675–679.
Bretschneider A, Heckel D G, Pauchet Y. 2016. Three
toxins, two receptors, one mechanism: Mode of action of Cry1A toxins from Bacillus thuringiensis in Heliothis virescens. Insect Biochemistry and Molecular Biology, 76, 109–117.
Brévault T, Heuberger S, Zhang M, Ellers-Kirk C, Ni X Z,
Masson L, Li X C, Tabashnik B E, Carrière Y. 2013. Potential shortfall of
pyramided transgenic cotton for insect resistance management. Proceedings of the National Academy of Sciences of the United States of America, 110,
5806–5811.
Burd A D, Gould F, Bradley J R, Van D J W, Moar W J.
2003. Estimated frequency of nonrecessive Bt resistance genes in bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in eastern North Carolina. Journal of Economic Entomology, 96, 137–142.
Caccia S, Hernández-Rodríguez C S, Mahon R J, Downes S,
James W, Bautsoens N, Rie J V, Ferré J. 2010. Binding site alteration is
responsible for field-isolated resistance to Bacillus thuringiensis Cry2A insecticidal proteins in two Helicoverpa species. PLoS ONE, 5, e9975.
Chang X L, Wu Q L, Wang S L, Wang R, Yang Z X, Chen D F,
Jiao X G, Mao Z C, Zhang Y J. 2012. Determining the involvement of two
aminopeptidase Ns in the resistance of Plutella xylostella to the
Bt toxin Cry1Ac: Cloning and study of in vitro function. Journal of Biochemical and Molecular Toxicology, 2,
60–70.
Chen L, Wei J Z, Liu C, Zhang W N, Wang B J, Niu L L,
Liang G M. 2018. Specific binding protein ABCC1 is associated with Cry2Ab
toxicity in Helicoverpa armigera. Frontiers in Physiology, 9, 745.
Chen W B, Liu C X, Xiao Y T, Zhang D D, Zhang Y D, Li X
C, Tabashnik B E, Wu K M. 2015. A toxin-binding alkaline phosphatase fragment
synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera. PLoS ONE, 4, e0126288.
Dively G P, Venugopal P D, Finkenbinder C. 2016.
Field-evolved resistance in corn earworm to Cry proteins expressed by
transgenic sweet corn. PLoS ONE, 11, e0169115.
Fabrick J A, Heu C C, LeRoy D M, DeGain B A, Yelich A J,
Unnithan G C, Wu Y D, Li X C, Carrière Y, Tabashnik B E. 2022. Knockout of ABC
transporter gene ABCA2 confers resistance to Bt toxin Cry2Ab in Helicoverpa zea. Scientific Reports, 12, 16706.
Fabrick J A, Tabashnik B E. 2012. Similar genetic basis
of resistance to Bt toxin Cry1Ac in boll-selected and diet-selected strains of
pink bollworm. PLoS ONE, 7, e35658.
Fabrick J A, Unnithan G C, Yelich A J, DeGain B, Masson
L, Zhang J, Carrière Y, Tabashnik B E. 2015. Multi-toxin resistance enables
pink bollworm survival on pyramided Bt cotton. Scientific Reports, 5, 16554.
FarmProgress 2018. Experts: Cotton farmers may face
increased bollworm pressure this season. [2018-04-26].
https://www.farmprogress.com/cotton/experts-cotton-farmers-may-face-increased-bollworm-pressure-this-season
Ferré J, Van R J. 2002. Biochemistry and genetics of
insect resistance to Bacillus thuringiensis. Annual Review of Entomology, 47, 501–533.
Forcada C, Alcácer E, Garcerá M D, Martinez R. 1996.
Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins. Archives of Insect Biochemistry and Physiology, 31, 257–272.
Gahan L J, Gould F, Heckel D G. 2001. Identification of
a gene associated with Bt resistance in Heliothis virescens. Science, 293, 857–860.
Gahan L J, Ma Y T, Coble M L M, Gould F, Moar W J,
Heckel D G. 2005. Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera: Noctuidae). Journal of Economic Entomology, 9, 1357–1368.
Gao Y, Wu K, Gould F, Shen Z. 2009. Tolerance response
of Helicoverpa armigera (Lepidoptera: Noctuidae) populations
from Cry1Ac cotton planting region. Journal of Economic Entomology, 102,
1217–1223.
González-Cabrera J, Escriche B, Tabashnik B E, Ferré J.
2003. Binding of Bacillus thuringiensis toxins in resistant and
susceptible strains of pink bollworm (Pectinophora gossypiella). Insect Biochemistry and Molecular Biology, 33,
929–935.
Goodman C L, Wang A A, Nabli H, McIntosh A H, Wittmeyer
J L, Grasela J J. 2004. Development and partial characterization of Heliothine cell lines from embryonic and differentiated tissues. In Vitro Cellular and Developmental Biology - Animal, 40,
89–94.
Gould F, Anderson A, Reynolds A, Bumgarner L, Moar W.
1995. Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. Journal of Economic Entomology, 88, 1545–1559.
Gould F, Martinez-Ramirez A, Anderson A, Ferre J, Silva
F J, Moar W J. 1992. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proceedings of the National Academy of Sciences of the United States of America, 89, 7986–7988.
Heckel D G. 2012. Learning the ABCs of Bt: ABC
transporters and insect resistance to Bacillus thuringiensis provide clues to a crucial step in toxin mode of action. Pesticide and Biochemistry and Physiology, 104, 103–110.
Hernández C S, Ferré J. 2005. Common receptor for Bacillus thuringiensis toxins Cry1Ac, Cry1Fa, and Cry1Ja in Helicoverpa armigera, Helicoverpa zea, and Spodoptera exigua. Applied and Environmental Microbiology, 71, 5627–5629.
Hernández-Rodríguez C S, Van V A, Bautsoens N, Van R J,
Ferré J. 2008. Specific binding of Bacillus thuringiensis Cry2A
insecticidal proteins to a common site in the midgut of Helicoverpa species. Applied and Environmental Microbiology, 74,
7654–7659.
Huang F N, Andow D A, Buschman L L. 2011. Success of the
high dose/refuge resistance management strategy after 15 years of Bt crop use
in North America. Entomologia Expermentalis et Applicata, 140, 1–16.
Jackson R E, Gould F, Bradley J R J, Van D J W. 2006.
Genetic variation for resistance to Bacillus thuringiensis toxins
in Helicoverpa zea (Lepidoptera: Noctuidae) in eastern North
Carolina. Journal of Economic Entomology, 99,
1790–1797.
Jin L, Wei Y Y, Zhang L, Yang Y H, Tabashnik B E, Wu Y
D. 2013. Dominant resistance to Bt cotton and minor cross-resistance to Bt
toxin Cry2Ab in cotton bollworm from China. Evolutionary Applications, 6. 1222–1235.
Jurat-Fuentes J L, Gahan L J, Gould F L, Heckel D G,
Adang M J. 2004a. The HevCaLP protein mediates binding specificity of the Cry1A
class of Bacillus thuringiensis toxins in Heliothis virescens. Biochemistry, 43, 14299–14305.
Jurat-Fuentes J L, Gould F L, Adang M J. 2003. Dual
resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance. Applied and Environmental Microbiology, 69, 5898–5906.
Jurat-Fuentes J L, Gould F L, Adang M J. 2004b.
Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and
resistant Heliothis virescens larvae. Applied and Environmental Microbiology, 271, 3127–3135.
Jurat-Fuentes J L, Karumbaiah L, Jakka S R, Ning C M,
Liu C X, Wu K M, Jackson J, Gould F, Blanco C, Portilla M, Perera O, Adang M.
2011. Reduced levels of membrane-bound alkaline phosphatase are common to
Lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis. PLoS ONE, 6, e17606.
Jurat-Fuentes J L, Michael J A. 2007. A proteomic
approach to study Cry1Ac binding proteins and their alterations in resistant Heliothis virescens larvae. Journal of Invertebrate Pathology, 95, 187–191.
Karumbaiah L, Oppert B, Jurat-Fuentes J L, Adang M J.
2007. Analysis of midgut proteinases from Bacillus thuringiensis-susceptible
and -resistant Heliothis virescens (Lepidoptera: Noctuidae). Comparative Biochemistrry and Physiology (Part B), 146,
139–146.
Kaur G. 2018. Susceptibility of field-collected
pupations of the corn earworm, Helicoverpa zea (Boddie)
(Lepidoptera: Noctuidae) from three Southern States of the U.S. to Cry1A.105
and Cry2Ab2 proteins. MSc thesis, Louisiana State University, USA.
Kaur G, Guo J G, Brown S, Head G P, Price P A,
Paula-Moraes, S, Ni X Z, Dimase M, Huang F. 2019. Field-evolved resistance of Helicoverpa zea (Boddie) to transgenic maize expressing pyramided Cry1A.105/Cry2Ab2
proteins in northeast Louisiana, the United States. Journal of Invertebrate Pathology, 163, 11–20.
Lee M K, Rajamohan F, Gould F, Dean D H. 1995.
Resistance to Bacillus thuringiensis Cry1A-endotoxins in a
laboratory-selected Heliothis virescens strain is related to
receptor alteration. Applied and Environmental Microbiology, 61, 3836–3842.
Liu C X, Xiao Y T, Li X C, Oppert B E, Tabashnik B E, Wu
K M. 2014. Cis-mediated down-regulation of a trypsin gene associated
with Bt resistance in cotton bollworm. Scientific Reports, 4,
07219.
Liu L P, Gao M J, Yang S, Liu S Y, Wu Y D, Carrière Y,
Yang Y H. 2017. Resistance to Bacillus thuringiensis toxin Cry2Ab
and survival on single-toxin and pyramided cotton in cotton bollworm from
China. Evolutionary Applications, 10, 170–179.
Liu S S, Wang M, Li X C. 2015. Overexpression of
Tyrosine hydroxylase and Dopa decarboxylase associated with pupal melanization
in Spodoptera exigua. Scientific Reports, 5,
11273.
Luo S D, Wu K M, Tian Y, Liang G M, Feng X, Zhang J, Guo
Y Y. 2007. Cross-resistance studies of Cry1Ac-resistant strains of Helicoverpa armigera (Lepidoptera: Noctuidae) to Cry2Ab. Economic Entomology, 100, 909–915.
Mahon R J, Olsen K M, Garsia K A, Young S R. 2007.
Resistance to Bacillus thuringiensis toxin Cry2Ab in a strain of Helicoverpa armigera (Lepidoptera: Noctuidae) in Australia. Economic Entomology, 10, 894–902.
Mathew L G, Ponnuraj J, Mallappa B, Chowdary L R, Zhang
J W, Tay W T, Walsh T K, Gordon K H J, Heckel D G, Downes S, Carrière Y, Li X
C, Tabashnik B E, Fabrick J A. 2018. ABC transporter mis-splicing associated
with resistance to Bt toxin Cry2Ab in laboratory- and field-selected pink
bollworm. Scientific Reports, 8, 13531.
Morin S, Biggs R W, Sisterson M S, Shriver L,
Ellers-Kirk C, Higginson D, Holley D, Gahan L J, Heckel D G, Carrière Y,
Dennehy T J, Brown J K, Tabashnik B E. 2003. Three cadherin alleles associated
with resistance to Bacillus thuringiensis in pink bollworm. Proceedings of the National Academy of Sciences of the United States of America, 100,
5004–5009.
Ocelotl J, Sánchez J, Gómez I, Tabashnik B E, Bravo A,
Soberón M. 2017. ABCC2 is associated with Bacillus thuringiensis Cry1Ac toxin oligomerization and membrane insertion in diamondback moth. Scientific Reports, 7, 2386.
Pan Z Z, Xu L, Liu B, Zhang, Chen Z, Chen Q X, Zhu Y J.
2017. PxAPN5 serves as a functional receptor of Cry2Ab in Plutella xylostella (L.) and its binding domain analysis. International Journal of Biology Macromolecules, 105, 516–521.
Qi L X, Dai H Y, Jin Z, Shen H W, Guan F, Yang Y H,
Tabashnik B E, Wu Y D. 2021. Evaluating cross-resistance to Cry and Vip toxins
in four strains of Helicoverpa armigera with different genetic
mechanisms of resistance to Bt toxin Cry1Ac. Frontiers in Microbiology, 12, 939
Qiu L, Hou L, Zhang B, Liu L, Li B, Deng P, Ma W, Wang X
P, Fabrick J A, Chen L Z, Lei C L. 2015. Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua. Journal of Invertebrate Pathology, 127,
47–53.
Rajagopal R, Arora N, Sivakumar S, Rao N G V, Nimbalkar
S A, Bhatnagar R K. 2009. Resistance of Helicoverpa armigera to
Cry1Ac toxin from Bacillus thuringiensis is due to improper
processing of the protoxin. Biochemical Journal, 419,
309–316.
Reay-Jones F P F. 2019. Pest status and management of
corn earworm (Lepidoptera: Noctuidae) in field corn in the United States. Journal of Integrated Pest Management, 10, 1–9.
Reisig D D, Huseth A S, Bacheler J S, Aghaee M A,
Braswell L, Burrack H J, Flanders K, Greene J K, Herbert D A, Jacobson A,
Paula-Moraes S V, Roberts P, Taylor S V. 2018. Long-term empirical and
observational evidence of practical Helicoverpa zea resistance to
cotton with pyramided Bt toxins. Journal of Economic Entomology, 111, 1824–1833.
Santiago-González J C, Kerns D L, Head G P, Yang F.
2023. A modified F2 screen for estimating Cry1Ac and Cry2Ab
resistance allele frequencies in Helicoverpa zea (Lepidoptera:
Noctuidae). Journal of Economic Entomology, 116,
289–296.
Siegfried B D, Spencer T, Nearman J. 2000. Baseline
susceptibility of the corn earworm (Lepidoptera: Noctuidae) to the Cry1Ab toxin
from Bacillus thuringiensis. Journal of Economic Entomology, 93, 1265–1268.
Tabashnik B E, Carrière Y. 2017. Surge in insect
resistance to transgenic crops and prospects for sustainability. Nature Biotechnology, 35, 926–935.
Tabashnik B E, Unnithan G C, Masson L, Crowder D W, Li X
C, Carrière Y. 2009. Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm. Proceedings of the National Academy of Sciences of the United States of America, 106, 11889–11894.
Tanaka S, Endo H, Adegawa S, Iizuka A, Imamura K, Kikuta
S, Sato R. 2017. Bombyx mori ABC transporter C2 structures
responsible for the receptor function of Bacillus thuringiensis Cry1Aa toxin. Insect Biochemistry and Molecular Biology, 91, 44–54.
Tanaka S, Miyamoto K, Noda H, Jurat-Fuentes J L,
Yoshizawa Y, Endo H, Sato R. 2013. The ATP-binding cassette transporter
subfamily C member 2 in Bombyx mori larvae is a functional
receptor for Cry toxins from Bacillus thuringiensis. The FEBS Journal, 280, 1782–1794.
Tay W T, Mahon R J, Heckel D G, Walsh T K, Downes S,
James W J, Lee S F, Reineke A, Williams A K, Gordon K H J. 2015. Insect
resistance to Bacillus thuringiensis toxin Cry2Ab is conferred by
mutations in an ABC transporter subfamily A protein. PLoS Genetics, 11, e1005534.
Tiewsiri K, Wang P. 2011. Differential alteration of two
aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper. Proceedings of the National Academy of Sciences of the United States of America, 108, 14037–14042.
US EPA (Environmental Protection Agency). 2018. White
Paper on Resistance in Lepidopteran Pests of Bacillus Thuringiensis (Bt) Plant
Incorporated Protectants in the United States. Environmental Protection
Agency, USA.
Wang G R, Liang G M, Wu K M, Guo Y Y. 2005a. Gene
cloning and sequencing of aminopeptidase N3, a putative receptor for Bacillus thuringiensis insecticidal Cry1Ac toxin in Helicoverpa armigera (Lepidoptera: Noctuidae). European Journal of Entomology, 102, 13–19.
Wang G R, Wu K M. Liang G M, Guo Y Y. 2005b. Gene
cloning and expression of cadherin in midgut of Helicoverpa armigera and its Cry1A binding region. Science in China, 48,
346–356.
Wang J, Ma H H, Zhao S, Huang J L, Yang Y H, Tabashnik B
E, Wu Y D. 2020a. Functional redundancy of two ABC transporter proteins in
mediating toxicity of Bacillus thuringiensis to cotton bollworm. PLoS Pathogens, 16, e1008427.
Wang J, Wang H D, Liu S Y, Liu L P, Tay W T, Walsh T K,
Yang Y H, Wu Y D. 2017. CRISPR/Cas9 mediated genome editing of Helicoverpa armigera with mutations of an ABC transporter gene HaABCA2 confers
resistance to Bacillus thuringiensis Cry2A toxins. Insect Biochemistry and Molecular Biology, 87,147–153.
Wang J, Zhang H N, Wang H D, Zhao S, Zuo Y Y, Yang Y H,
Wu Y D. 2016a. Functional validation of cadherin as a receptor of Bt toxin
Cry1Ac in Helicoverpa armigera utilizing the CRISPR/Cas9 system. Insect Biochemistry and Molecular Biology, 76,
11–17.
Wang J, Zuo Y Y, Li L L, Wang H, Liu S Y, Yang Y H, Wu Y
D. 2020b. Knockout of three aminopeptidase N genes does not affect
susceptibility of Helicoverpa armigera larvae to Bacillus thuringiensis Cry1A and Cry2A toxins. Insect Science, 27, 440–448.
Wang L, Ma Y M, Guo X Q, Wan P, Liu K Y, Cong S B, Wang
J T, Xu D, Xiao Y T, Li X C, Tabashnik B E, Wu K M. 2019. Bollworm resistance
to Bt toxin Cry1Ac associated with an insertion in cadherin exon 20. Toxins, 11, 186.
Wang L, Ma Y M, Wan P, Liu K Y, Xiao Y T, Wang J T, Cong
S B, Xu D, Wu K M, Fabrick J A. 2018. Resistance to Bacillus thuringiensis linked with a cadherin transmembrane mutation affecting cellular trafficking in
pink bollworm from China. Insect Biochemistry and Molecular Biology, 94, 28–35.
Wang P, Zhao J Z, Rodrigo-Simón A, Kain W, Janmaat A F,
Shelton A M, Ferré J, Myers J. 2007. Mechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of the cabbage
looper, Trichoplusia ni.
Applied and Environmental Microbiology, 73,
1199–1207.
Wang R, Tetreau G, Wang P. 2016b. Effect of crop plants
on fitness costs associated with resistance to Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in cabbage loopers. Scientific Reports, 6,
20959.
Wei J Z, Guo Y Y, Liang G M, Wu K M, Zhang J, Tabashnik
B E, Li X C. 2015. Cross-resistance and interactions between Bt toxins Cry1Ac
and Cry2Ab against the cotton bollworm. Scientific Reports, 5,
7714.
Wei J Z, Liang G M, Wu K M, Gu S H, Guo Y Y, Ni X Z, Li
X C. 2018. Cytotoxicity and binding profiles of activated Cry1Ac and Cry2Ab to
three insect cell lines. Insect Science, 25, 655–666.
Wei J Z, Yang S, Zhou S, Liu S K, Cao P, Liu X G, Du M
F, An S H. 2021a. Suppressing calcineurin activity increases the toxicity of
Cry2Ab to Helicoverpa armigera. Pest Management Science, 77, 2142–2150.
Wei J Z, Yao X, Yang S, Liu S K, Zhou S, Cen J J, Liu X
G, Du M F, Tang Q B, An S H. 2021b. Suppression of calcineurin enhances the
toxicity of Cry1Ac to Helicoverpa armigera. Frontiers in Microbiology, 12, 634619.
Wei J Z, Zhang M, Liang G M, Li X C. 2019. Alkaline
phosphatase 2 is a functional receptor of Cry1Ac but not Cry2Ab in Helicoverpa zea. Insect Molecular Biology, 28, 372–379.
Wei J Z, Zhang M, Liang G M, Wu K M, Guo Y Y, Ni X Z, Li
X C. 2016. APN1 is a functional receptor of Cry1Ac but not Cry2Ab in Helicoverpa zea. Scientific Reports, 6, 19179.
Welch K L, Unnithan G C, Degain B A, Wei J Z, Zhang J,
Li X C, Tabashnik B E, Carrière Y. 2015. Cross-resistance to toxins used in
pyramided Bt crops and resistance to Bt sprays in Helicoverpa zea. Journal of Invertebrate Pathology, 132,
149–156.
Xu L, Gao H J, Pan Z Z, Zhu Y J, Chen Q X, Liu B. 2014.
Cloning, prokaryotic expression and homology modeling analysis of midgut
aminopeptidase gene PxAPN5 in Plutella xylostella (Lepidoptera: Plutellidae). Acta Entomologica Sinica, 57,
1272–1280. (in Chinese)
Yang F, González J C S, Williams J, Cook D C, Gilreath R
T, Kerns D L. 2019. Occurrence and ear damage of Helicoverpa zea on transgenic Bacillus thuringiensis maize in the field in Texas,
U.S. and its susceptibility to Vip3A protein. Toxins, 11, 102.
Yang F, Kerns D, Gore J, Catchot A, Lorenz G, Stewart S.
2017. Susceptibility of field populations of the cotton bollworm in the
southern U.S. to four individual Bt proteins. In: Proceedings of the Beltwide Cotton Conference. National Cotton Council of
America, USA. pp. 786–797.
Yang F, Kerns D L, Little N, Brown S A, Stewart S D,
Catchot A L, Tabashnik, B E. 2022. Practical resistance to Cry toxins and
efficacy of Vip3Aa in Bt cotton against Helicoverpa zea. Pest Management Science, 78, 5234–5242.
Yang Y H, Yang Y J, Gao W Y, Guo J J, Wu Y H, Wu Y D.
2009. Introgression of a disrupted cadherin gene enables susceptible Helicoverpa armigera to obtain resistance to Bacillus thuringiensis toxin Cry1Ac. Bulletin Entomological Research, 99,
175–181.
Yuan J S, Reed A, Chen F, Stewart C N. 2006. Statistical
analysis of real-time PCR data. BMC Bioinformatics, 7, 85.
Yuan X, Zhao M, Wei J Z, Zhang W N, Wang B J, Khaing M
M, Liang G M. 2017. New insights on the role of alkaline phosphatase 2 from Spodoptera exigua (Hübner) in the action mechanism of Bt toxin Cry2Aa. Journal of Insect Physiology, 98, 101–107.
Zhang M. 2014. Mechanisms of field-evolved Cry1Ac
resistance in Helicoverpa zea. Ph D thesis, University of
Arizona, USA.
Zhang M, Wei J Z, Ni X Z, Zhang J, Jurat-Fuentes J L,
Fabrick J A, Carrière Y, Tabashnik B E, Li X C. 2019. Decreased Cry1Ac
activation by midgut proteases associated with Cry1Ac resistance in Helicoverpa zea. Pest Management Science, 75, 1099–1106.
Zhang S P, Cheng H M, Gao Y L, Wang G R, Liang G M, Wu K
M. 2009. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac
toxin. Insect Biochemistry and Molecular Biology, 39, 421–429.
Zhang Z, Teng X L, Ma W H, Li F. 2017. Knockdown of two
cadherin genes confers resistance to Cry2A and Cry1C in Chilo suppressalis. Scientific Reports, 7, 5992.
Zhao J, Jin L, Yang Y H, Wu Y D. 2010. Diverse cadherin
mutations conferring resistance to Bacillus thuringiensis toxin
Cry1Ac in Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 40, 113–118.
Zhao M, Yuan X D, Wei J Z, Zhang W N, Wang B J, Khaing M
M, Liang G M. 2017. Functional roles of cadherin, aminopeptidase-N and alkaline
phosphatase from Helicoverpa armigera (Hübner) in the action
mechanism of Bacillus thuringiensis Cry2Aa. Scientific Reports, 7, 46555.
|