Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (6): 1910-1928    DOI: 10.1016/j.jia.2023.06.035
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |

Coordinated responses of leaf and nodule traits contribute to the accumulation of N in relay intercropped soybean

Ping Chen1, Qing Du1, Benchuan Zheng2, Huan Yang1, Zhidan Fu1, Kai Luo1, Ping Lin1, Yilin Li1, Tian Pu1, Taiwen Yong1#, Wenyu Yang1

1College of Agronomy, Sichuan Agricultural University/Sichuan Engineering Research Center for Crop Strip Intercropping System/ Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China

2 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

玉米(Zea Mays L.)-大豆(Glycerine Max L.Merr.)套种提供了一种提高土地生产力的方法。然而,晚播大豆受到玉米遮荫的影响。玉米收获后,恢复生长对叶片和根瘤性状的影响尚不清楚。通过为期3年的田间试验,研究了超结瘤大豆(nts1007)、南豆12(ND12)和桂夏3号(GX3)和不同种植模式:种间距45(I45)、60(I60)、75 cm(I75)和单作大豆(SS)对大豆恢复生长和固氮的影响。结果表明,与对照相比,套作通过降低叶片数量(LN)和小叶面积(LUA)降低了大豆总叶面积(LA),套作降低根瘤数(NN)和根瘤直径(ND)来降低根瘤干重(NW)。相关分析和主成分分析(PCA)表明,叶片和根瘤性状对大豆基因型和作物种植模式互作的响应具有协变性。在恢复生长阶段,补偿生长促进了套作大豆生长,缩小了套作与单作间叶片和根瘤性状的差距。间作下大豆酰脲(RGR_U)和氮素(RGR_N)积累的相对增长速率高于单作。套作处理的蔗糖和淀粉含量显著高于单作ND12和GX3在套作中表现出比nts1007更强劲的补偿生长。虽然套作大豆恢复生长改善了生物量和氮素积累,但ND12比GX3获得了更显著的偏土地当量比(pLER)。与其他种植模式相比,I60处理对生物量和氮素积累的补偿作用更强。同时,I60的根瘤蔗糖含量高于单作,地上部酰脲和N的积累量也高于单作。最终,ND12与玉米间作60 cm种间距距有利于实现产量优势和氮素积累。



Abstract  

Maize (Zea mays L.)–soybean (Glycine max L. Merr.) relay intercropping provides a way to enhance land productivity.  However, the late-planted soybean suffers from shading by the maize.  After maize harvest, how the recovery growth influences the leaf and nodule traits remains unclear.  A three-year field experiment was conducted to evaluate the effects of genotypes, i.e., supernodulating (nts1007), Nandou 12 (ND12), and Guixia 3 (GX3), and crop configurations, i.e., the interspecific row spacing of 45 (I45), 60 (I60), 75 cm (I75), and sole soybean (SS), on soybean recovery growth and N fixation.  The results showed that intercropping reduced the soybean total leaf area (LA) by reducing both the leaf number (LN) and unit leaflet area (LUA), and it reduced the nodule dry weight (NW) by reducing both the nodule number (NN) and nodule diameter (ND) compared with the SS.  The correlation and principal component analysis (PCA) indicated a co-variability of the leaf and nodule traits in response to the genotype and crop configuration interactions.  During the recovery growth stages, the compensatory growth promoted soybean growth to reduce the gaps of leaf and nodule traits between intercropping and SS.  The relative growth rates of ureide (RGR_U) and nitrogen (RGR_N) accumulation were higher in intercropping than in SS.  Intercropping achieved more significant sucrose and starch contents compared with SS.  ND12 and GX3 showed more robust compensatory growth than nts1007 in intercropping.  Although the recovery growth of relay intercropping soybean improved biomass and nitrogen accumulation, ND12 gained a more significant partial land equivalent ratio (pLER) than GX3.  The I60 treatment achieved more robust compensation effects on biomass and N accumulation than the other configurations.  Meanwhile, I60 showed a higher nodule sucrose content and greater shoot ureide and N accumulation than SS.  Finally, intercropping ND12 with maize using an interspecific row spacing of 60 cm was optimal for both yield advantage and N accumulation.

Keywords:  relay intercropping        genotype        crop configuration        symbiotic nitrogen fixation        soybean        nodule   
Received: 27 March 2023   Accepted: 09 June 2023
Fund: The research was supported by the China Agriculture Research System of MOF and MARA (Soybean, CARS-04-PS20) and the National Natural Science Foundation of China (3187101212 and 31671625).
About author:  #Correspondence Taiwen Yong, Mobile: +86-13980173140, E-mail: yongtaiwen@sicau.edu.cn, scndytw@qq.com

Cite this article: 

Ping Chen, Qing Du, Benchuan Zheng, Huan Yang, Zhidan Fu, Kai Luo, Ping Lin, Yilin Li, Tian Pu, Taiwen Yong, Wenyu Yang. 2024.

Coordinated responses of leaf and nodule traits contribute to the accumulation of N in relay intercropped soybean . Journal of Integrative Agriculture, 23(6): 1910-1928.

Araujo K E C, Vergara C, Guimarães A P, Rouws J R C, Jantalia C P, Urquiaga S, Alves B J R, Boddey R M. 2018. Changes in 15N natural abundance of biologically fixed N2 in soybean due to shading, rhizobium strain and plant growth stage. Plant and Soil, 426, 413–428.

Brewin N J. 1991. Development of the legume root nodule. Annual Review of Cell Biology, 7, 191–226.

Caetano-Anolles G, Gresshoff P M. 1991. Efficiency of nodule initiation and autoregulatory responses in a supernodulating soybean mutant. Applied and Environmental Microbiology, 57, 2205–2210.

Chen J, Engbersen N, Stefan L, Schmid B, Sun H, Schöb C. 2021. Diversity increases yield but reduces harvest index in crop mixtures. Nature Plants, 7, 893–898.

Chen P, Du Q, Liu X, Zhou L, Hussain S, Lei L, Song C, Wang X, Liu W, Yang F, Shu K, Liu J, Du J, Yang W, Yong T. 2017. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize–soybean relay strip intercropping system. PLoS ONE, 12, e0184503.

Chen P, Song C, Liu X, Zhou L, Yang H, Zhang X, Zhou Y, Du Q, Pang T, Fu Z D, Wang X, Liu W, Yang F, Shu K, Du J, Liu J, Yang W, Yong T. 2019. Yield advantage and nitrogen fate in an additive maize–soybean relay intercropping system. Science of the Total Environment, 657, 987–999.

Chi B, Zhang D, Dong H. 2021. Control of cotton pests and diseases by intercropping: A review. Journal of Integrative Agriculture, 20, 3089–3100.

Clegg K M. 1956. The application of anthrone reagent to the estimation of starch in cereals. Journal of the Science of Food and Agriculture, 7, 40–44.

Courbier S, Pierik R. 2019. Canopy light quality modulates stress responses in plants. iScience, 22, 441–452.

Demie D T, Döring T F, Finckh M R, Werf W V D, Enjalbert J, Seidel S J. 2022. Mixture×genotype effects in cereal/legume intercropping. Frontiers in Plant Science, 13, 846720.

Du Q, Zhou L, Chen P, Liu X, Song C, Yang F, Wang X, Liu W, Sun X, Du J, Liu J, Shu K, Yang W, Yong T. 2020. Relay-intercropping soybean with maize maintains soil fertility and increases nitrogen recovery efficiency by reducing nitrogen input. The Crop Journal, 8, 140–152.

Du Y, Zhao Q, Chen L, Yao X, Zhang W, Zhang B, Xie F. 2020. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiology and Biochemistry, 146, 1–12.

Fan F, Zhang F, Song Y, Sun J, Bao X, Guo T, Li L. 2006. Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems. Plant and Soil, 283, 275–286.

Fan Y, Chen J, Cheng Y, Raza M A, Wu X, Wang Z, Liu Q, Wang R, Wang X, Yong T, Liu W, Liu J, Du J, Shu K, Yang W, Yang F. 2018. Effect of shading and light recovery on the growth, leaf structure, and photosynthetic performance of soybean in a maize–soybean relay-strip intercropping system. PLoS ONE, 13, e0198159.

Fehr W R, Caviness C E, Burmood D T, Pennington J S. 1971. Stage of development descriptions for soybeans, Glycine Max (L.) MerrillL. Crop Science, 11, 929–931.

Gong W, Qi P, Du J, Sun X, Wu X, Song C, Liu W, Wu Y, Yu X, Yong T, Wang X, Yang F, Yan Y, Yang W. 2014. Transcriptome analysis of shade-induced inhibition on leaf size in relay intercropped soybean. PLoS ONE, 9, e98465.

Gu C, Bastiaans L, Anten N P R, Makowski D, van der Werf W. 2021. Annual intercropping suppresses weeds: A meta-analysis. Agriculture, Ecosystems & Environment, 322, 107658.

Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W, Vitousek P M, Zhang F S. 2010. Significant acidification in major Chinese croplands. Science, 327, 1008–1010.

Han D, Currell M J, Cao G. 2016. Deep challenges for China’s war on water pollution. Environmental Pollution, 218, 1222–1233.

Hou Z, Li P, Li B, Gong J, Wang Y. 2007. Effects of fertigation scheme on N uptake and N use efficiency in cotton. Plant Soil, 290, 115–126.

Huang J, Xu C, Ridoutt B G, Wang X, Ren P. 2017. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. Journal of Cleaner Production, 159, 171–179.

Ito S, Kato T, Ohtake N, Sueyoshi K, Ohyama T. 2008. The autoregulation of nodulation mechanism is related to leaf development. Plant Cell Physiology, 49, 121–125.

Lassaletta L, Billen G, Grizzetti B, Anglade J, Garnier J. 2014. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environmental Research Letters, 9, 105011.

Li B, Li Y, Wu H, Zhang F, Li C, Li X, Lambers H, Li L. 2016. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 113, 6496–6501.

Li C, Hoffland E, Kuyper T W, Yu Y, Zhang C, Li H, Zhang F, van der Werf W. 2020. Syndromes of production in intercropping impact yield gains. Nature Plants, 6, 653–660.

Li Y Y, Yu C B, Cheng X, Li C J, Sun J H, Zhang F S, Lambers H, Li L. 2009. Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean. Plant and Soil, 323, 295–308.

Liang L, Lin S, Zhang B, Wang G. 2012. Effect of de-fat and de-protein treatments on swelling power of Chinese chestnut (C. mollissima Bl.) powder. Scientia Agricultura Sinica, 45, 3820–3831. (in Chinese)

Liaw A, Wiener M. 2002. Classification and regression by randomForest. R News, 2, 18–22.

Liu A, Contador C A, Fan K, Lam H M. 2018. Interaction and regulation of carbon, nitrogen, and phosphorus metabolisms in root nodules of legumes. Frontiers in Plant Science, 9, 1860.

Liu X, Rahman T, Song C, Su B, Yang F, Yong T, Wu Y, Zhang C, Yang W. 2017. Changes in light environment, morphology, growth and yield of soybean in maize–soybean intercropping systems. Field Crops Research, 200, 38–46.

Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, Tourdonnet S, Valantin-Morison M. 2009. Mixing plant species in cropping systems: concepts, tools and models. A review. Agronomy for Sustainable Development, 29, 43–62.

Marquez-Garcia B, Shaw D, Cooper J W, Karpinska B, Quain M D, Makgopa E M, Kunert K, Foyer C H. 2015. Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max). Annals of Botany, 116, 497–510.

Matamoros M A, Fernandez-Garcia N, Wienkoop S, Loscos J, Saiz A, Becana M. 2013. Mitochondria are an early target of oxidative modifications in senescing legume nodules. New Phytologist, 197, 873–885.

Mead R, Willey R W. 1980. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Experimental Agriculture, 16, 217–228.

Meixner C, Ludwig-Muller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H. 2005. Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta, 222, 709–715.

Murchie E H, Pinto M, Horton P. 2009. Agriculture and the new challenges for photosynthesis research. New Phytologist, 181, 532–552.

Mwiinga B, Sibiya J, Kondwakwenda A, Musvosvi C, Chigeza G. 2020. Genotype×environment interaction analysis of soybean (Glycine max (L.) Merrill) grain yield across production environments in Southern Africa. Field Crops Research, 256, 107922.

Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O’Hara R, Solymos P, Stevens M, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista H, et al. 2022. Vegan: Community ecology package. R package version 2.6–4. https://CRAN.R-project.org/package=vegan

Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas M M, de Felipe M R, Harrison J, Vanacker H, Foyer C H. 2005. Legume nodule senescence: Roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytologist, 165, 683–701.

R Core Team. 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Schloerke B, Cook D, Larmarange J, Briatte F, Marbach M, Thoen E, Elberg A, Crowley J. 2021. GGally: Extension to ‘ggplot2’. R Package version 2.1.2. https://CRAN.R-project.org/package=GGally)

Schrader S, Sauter J J. 2002. Seasonal changes of sucrose-phosphate synthase and sucrose synthase activities in poplar wood (Populus×canadensis Moench ‘robusta’) and their possible role in carbohydrate metabolism. Journal of Plant Physiology, 159, 833–843.

Sudhakar P, Latha P, Reddy A R. 2016. Phenotyping crop plants for physiological and biochemical traits. Academic Press, India. pp. 27–31.

Tajima R, Lee O N, Abe J, Lux A, Morita S. 2015. Nitrogen-fixing activity of root nodules in relation to their size in peanut (Arachis hypogaea L.). Plant Production Science, 10, 423–429.

Tanzeelur R, Ye L, Liu X, Iqbal N, Du J, Gao R, Liu W, Yang F, Yang W. 2016. Water use efficiency and waterdistribution response to different planting patterns in maize–soybean relay strip intercropping systems. Experimental Agriculture, 53, 1–19.

Waters J K, Hughes II B L, Purcell L C, Gerhardt K O, Mawhinney T P, Emerich D W. 1998. Alanine, not ammonia, is excreted from N2-fixing soybean nodule bacteroids. Proceedings of the National Academy of Sciences of the United States of Ameirica, 95, 12038–12042.

Wu Y, Gong W, Yang F, Wang X, Yong T, Yang W. 2016. Responses to shade and subsequent recovery of soya bean in maize-soya bean relay strip intercropping. Plant Production Science, 19, 206–214.

Wu Y, Gong W, Yang W. 2017. Shade inhibits leaf size by controlling cell proliferation and enlargement in soybean. Scientific Reports, 7, 9259.

Yang F, Liao D, Fan Y, Gao R, Wu X, Rahman T, Yong T, Liu W, Liu J, Du J, Shu K, Wang X, Yang W. 2017. Effect of narrow-row planting patterns on crop competitive and economic advantage in maize–soybean relay strip intercropping system. Plant Production Science, 20, 1–11.

Yong T, Chen P, Dong Q, Du Q, Yang F, Wang X, Liu W, Yang W. 2018. Optimized nitrogen application methods to improve nitrogen use efficiency and nodule nitrogen fixation in a maize–soybean relay intercropping system. Journal of Integrative Agriculture, 17, 664–676.

Yu X, Su B, Gong W, Luo L, Liu W, Yang W, Zhang M, Wu H, Zeng X. 2014. The nodule characteristics and nitrogen fixation of soybean in maize–soybean relay strip intercropping. Scientia Agricultura Sinica, 47, 1743–1753. (in Chinese)

Yu Y, Stomph T J, Makowski D, van der Werf W. 2015. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: a meta-analysis. Field Crops Research, 184, 133–144.

Zhang C, Dong Y, Tang L, Zheng Y, Makowski D, Yu Y, Zhang F, van der Werf W. 2019. Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer input; a meta-analysis. European Journal of Plant Pathology, 154, 931–942.

Zhang W, Li Z, Gao S, Yang H, Xu H, Yang X, Fan H, Su Y, Surigaoge Weine. J, Fornara D, Li L. 2023. Resistance vs. surrender: Different responses of functional traits of soybean and peanut to intercropping with maize. Field Crops Research, 291, 108779.

Zhao C, Fan Z, Coulter J A, Yin W, Hu F, Yu A, Fan H, Chai Q. 2020. High maize density alleviates the inhibitory effect of soil nitrogen on intercropped pea. Agronomy, 10, 248.

Zhou T, Wang L, Yang H, Gao Y, Liu W, Yang W. 2019. Ameliorated light conditions increase the P uptake capability of soybean in a relay-strip intercropping system by altering root morphology and physiology in the areas with low solar radiation. Science of the Total Environment, 688, 1069–1080.

[1] Qianqian Chen, Qian Zhao, Baoxing Xie, Xing Lu, Qi Guo, Guoxuan Liu, Ming Zhou, Jihui Tian, Weiguo Lu, Kang Chen, Jiang Tian, Cuiyue Liang.

Soybean (Glycine max) rhizosphere organic phosphorus recycling relies on acid phosphatase activity and specific phosphorus-mineralizing-related bacteria in phosphate deficient acidic soils [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1685-1702.

[2] ZOU Jia-nan, ZHANG Zhan-guo, KANG Qing-lin, YU Si-yang, WANG Jie-qi, CHEN Lin, LIU Yan-ru, MA Chao, ZHU Rong-sheng, ZHU Yong-xu, DONG Xiao-hui, JIANG Hong-wei, WU Xiao-xia, WANG Nan-nan, HU Zhen-bang, QI Zhao-ming, LIU Chun-yan, CHEN Qing-shan, XIN Da-wei, WANG Jin-hui. Characterization of chromosome segment substitution lines reveals candidate genes associated with the nodule number in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2197-2210.
[3] XIA Ning, YAN Wen-bing, WANG Xiao-qi, SHAO Yu-peng, YANG Ming-ming, WANG Zhi-kun, ZHAN Yu-hang, TENG Wei-li, HAN Ying-peng, SHI Yan-guo. Genetic dissection of hexanol content in soybean seed through genome-wide association analysis[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1222-1229.
No Suggested Reading articles found!