Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (1): 77-92    DOI: 10.1016/j.jia.2023.04.023
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |

Genetic dissection and validation of a major QTL for grain weight on chromosome 3B in bread wheat (Triticum aestivum L.)

Simin Liao1, 2, Zhibin Xu1, Xiaoli Fan1, Qiang Zhou1, Xiaofeng Liu1, 2, Cheng Jiang1, 2, Liangen Chen1, 2, Dian Lin1, 2, Bo Feng1#, Tao Wang1, 3 

1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

2 University of Chinese Academy of Sciences, Beijing 100049, China

3 The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

千粒重是小麦产量的重要组分之一。育种中,粒重位点的叠加可以有效提升小麦的产量潜力。本研究利用W7268×川育12重组自交系群体对千粒重、粒长、粒宽和长宽比进行了QTL分析,共检测到7个主效QTL (QGl.cib-2D, QGw.cib-2D, QGw.cib-3B, QGw.cib-4B.1, QGlw.cib-2D.1, QTgw.cib-2D.1 和 QTgw.cib-3B.1),解释了2.61-34.85%的表型变异率。其中,两个主效粒重QTL3个主效粒宽QTL分别存在显著的互作。QTgw.cib-3B.1QGw.cib-3B共定位于3B染色体,且该位点的千粒重变异主要由粒宽贡献。与其它主效QTL不同,QTgw.cib-3B.1和 QGw.cib-3B对穗粒数没有显著影响。利用所开发的竞争性等位基因特异性PCR (KASP) 标记在高代系中对上述位点进行了验证。通过与前人的结果相比较,发现QTgw.cib-3B.1和 QGw.cib-3B是一个新的控制粒重的QTL位点。在候选区间内,共检测到6种单倍型且其在地方品种与栽培品种分布频率不同。此外,通过基因注释、表达谱分析、同源分析和序列分析,预测了QTgw.cib-3B.1/QGw.cib-3B的候选基因。本研究所报道的主效QTL和开发的KASP标记可为解析粒重的遗传基础和分子标记辅助育种提高小麦产量奠定了基础。



Abstract  

Grain weight is one of the key components of wheat (Triticum aestivum L.) yield.  Genetic manipulation of grain weight is an efficient approach for improving yield potential in breeding programs.  A recombinant inbred line (RIL) population derived from a cross between W7268 and Chuanyu 12 (CY12) was employed to detect quantitative trait loci (QTLs) for thousand-grain weight (TGW), grain length (GL), grain width (GW), and the ratio of grain length to width (GLW) in six environments.  Seven major QTLs, QGl.cib-2D, QGw.cib-2D, QGw.cib-3B, QGw.cib-4B.1, QGlw.cib-2D.1, QTgw.cib-2D.1 and QTgw.cib-3B.1, were consistently identified in at least four environments and the best linear unbiased estimation (BLUE) datasets, and they explained 2.61 to 34.85% of the phenotypic variance.  Significant interactions were detected between the two major TGW QTLs and three major GW loci.  In addition, QTgw.cib-3B.1 and QGw.cib-3B were co-located, and the improved TGW at this locus was contributed by GW.  Unlike other loci, QTgw.cib-3B.1/QGw.cib-3B had no effect on grain number per spike (GNS).  They were further validated in advanced lines using Kompetitive Allele Specific PCR (KASP) markers, and a comparison analysis indicated that QTgw.cib-3B.1/QGw.cib-3B is likely a novel locus.  Six haplotypes were identified in the region of this QTL and their distribution frequencies varied between the landraces and cultivars.  According to gene annotation, spatial expression patterns, ortholog analysis and sequence variation, the candidate gene of QTgw.cib-3B.1/QGw.cib-3B was predicted.  Collectively, the major QTLs and KASP markers reported here provide valuable information for elucidating the genetic architecture of grain weight and for molecular marker-assisted breeding in grain yield improvement.

Keywords:  thousand-grain weight        QTL mapping        haplotype analysis        candidate gene   
Received: 03 January 2023   Accepted: 20 February 2023
Fund: 

This work was supported by the Major Program of National Agricultural Science and Technology of China (NK20220607), the West Light Foundation of the Chinese Academy of Sciences (2022XBZG_XBQNXZ_A_001), and the Sichuan Science and Technology Program, China (2022ZDZX0014). 

About author:  Simin Liao, E-mail: Liaosm@cib.ac.cn;#Correspondence Bo Feng, Tel: +86-28-82890896, E-mail: fengbo@cib.ac.cn

Cite this article: 

Simin Liao, Zhibin Xu, Xiaoli Fan, Qiang Zhou, Xiaofeng Liu, Cheng Jiang, Liangen Chen, Dian Lin, Bo Feng, Tao Wang. 2024.

Genetic dissection and validation of a major QTL for grain weight on chromosome 3B in bread wheat (Triticum aestivum L.) . Journal of Integrative Agriculture, 23(1): 77-92.

Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. 2005. Cytokinin oxidase regulates rice grain production. Science, 309, 741–745.

Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A. 1999. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 96, 10284–10289.

Beales J, Turner A, Griffiths S, Snape J W, Laurie D A. 2007. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 115, 721–733.

Bhusal N, Sarial A K, Sharma P, Sareen S. 2017. Mapping QTLs for grain yield components in wheat under heat stress. PLoS ONE, 12, e0189594.

Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M, Weber W. 2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 105, 921–936.

Cao S H, Xu D, Hanif M, Xia X, He Z H. 2020. Genetic architecture underpinning yield component traits in wheat. Theoretical and Applied Genetics, 133, 1811–1823.

Chen Y, Yan Y, Wu T T, Zhang G L, Yin H, Chen W, Wang S, Chang F, Gou J Y. 2020. Cloning of wheat keto-acyl thiolase 2B reveals a role of jasmonic acid in grain weight determination. Nature Communications, 11, 6266.

Cheng H, Liu J, Wen J, Nie X, Xu L, Chen N, Li Z, Wang Q, Zheng Z, Li M, Cui L, Liu Z, Bian J, Wang Z, Xu S, Yang Q, Appels R, Han D, Song W, Sun Q, et al. 2019. Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biology, 20, 136.

Cui F, Zhao C, Ding A, Li J, Wang L, Li X, Bao Y, Li J, Wang H. 2014. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theoretical and Applied Genetics, 127, 659–675.

Cui F, Zhao C, Li J, Ding A, Li X, Bao Y, Li J, Ji J, Wang H. 2013. Kernel weight per spike: What contributes to it at the individual QTL level? Molecular Breeding, 31, 265–278.

Dholakia B B, Ammiraju J S S, Singh H, Lagu M D, Roder M S, Rao V S, Dhaliwal H S, Ranjekar P K, Gupta V S. 2003. Molecular marker analysis of kernel size and shape in bread wheat. Plant Breeding, 122, 392–395.

Ellis M, Spielmeyer W, Gale K, Rebetzke G, Richards R. 2002. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theoretical and Applied Genetics, 105, 1038–1042.

FAO (Food and Agriculture Organization). 2015. Online statistical database: Food balance. FAOSTAT (Food and Agriculture Organization of the United Nations Statistical Database). [2015-12-2]. http://www.fao.org/faostat

Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y. 1999. Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proceedings of the National Academy of Sciences of the United States of America, 96, 7575–7580.

Gao F, Wen W, Liu J, Rasheed A, Yin G, Xia X, Wu X, He Z. 2015. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Frontiers in Plant Science, 6, 1099–1115.

Geng J, Li L, Lv Q, Zhao Y, Liu Y, Zhang L, Li X. 2017. TaGW2-6A allelic variation contributes to grain size possibly by regulating the expression of cytokinins and starch-related genes in wheat. Planta, 246, 1153–1163.

Guan P, Lu L, Jia L, Kabir M R, Zhang J, Lan T, Zhao Y, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Peng H. 2018. Global QTL analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivum L.). Frontiers in Plant Science, 9, 529.

Guo L, Ma M, Wu L, Zhou M, Li M, Wu B, Li L, Liu X, Jing R, Chen W, Zhao H. 2022. Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (Triticum aestivum L.). Plant Biotechnology Journal, 20, 168–182.

Guo W, Xin M, Wang Z, Yao Y, Hu Z, Song W, Yu K, Chen Y, Wang X, Guan P, Appels R, Peng H, Ni Z, Sun Q. 2020. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nature Communications, 11, 5085.

Guo Z, Song Y, Zhou R, Ren Z, Jia J. 2010. Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene. New Phytologist, 185, 841–851.

Gupta A, Hua L, Lin G, Molnár I, Doležel J, Liu S, Li W. 2021. Multiple origins of Indian dwarf wheat by mutations targeting the TREE domain of a GSK3-like kinase for drought tolerance, phosphate uptake, and grain quality. Theoretical and Applied Genetics, 134, 633–645.

Hao C, Jiao C, Hou J, Li T, Liu H, Wang Y, Zheng J, Liu H, Bi Z, Xu F, Zhao J, Ma L, Wang Y, Majeed U, Liu X, Appels R, Maccaferri M, Tuberosa R, Lu H, Zhang X. 2020. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Molecular Plant, 13, 1733–1751.

Hu J, Wang X, Zhang G, Jiang P, Chen W, Hao Y, Ma X, Xu S, Jia J, Kong L, Wang H. 2020. QTL mapping for yield-related traits in wheat based on four RIL populations. Theoretical and Applied Genetics, 133, 917–933.

Huang K, Wang D, Duan P, Zhang B, Xu R, Li N, Li Y. 2017. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. The Plant Journal, 91, 849–860.

Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. 2006. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theoretical and Applied Genetics, 113, 753–766.

Isham K, Wang R, Zhao W, Wheeler J, Klassen N, Akhunov E, Chen J. 2021. QTL mapping for grain yield and three yield components in a population derived from two high-yielding spring wheat cultivars. Theoretical and Applied Genetics, 134, 2079–2095.

Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, Miyagawa H, Katoh E. 2013. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics, 45, 707–711.

IWGSC (International Wheat Genome Sequencing Consortium). 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 36, eaar7191.

Ji G S, Xu Z B, Fan X L, Zhou Q, Chen L E, Yu Q, Liao S M, Jiang C, Feng B, Wang T. 2022. Identification and validation of major QTL for grain size and weight in bread wheat (Triticum aestivum L.). The Crop Journal, 11, 564–572.

Jia M, Li Y, Wang Z, Tao S, Sun G, Kong X, Wang K, Ye X, Liu S, Geng S, Mao L, Li A. 2021. TaIAA21 represses TaARF25-mediated expression of TaERFs required for grain size and weight development in wheat. Plant Journal, 108, 1754–1767.

Kumar A, Mantovani E E, Seetan R, Soltani A, Echeverry-Solarte M, Jain S, Simsek S, Doehlert D, Alamri M S, Elias E M, Kianian S F, Mergoum M. 2016. Dissection of genetic factors underlying wheat kernel shape and size in an elite × nonadapted cross using a high density SNP linkage map. The Plant Genome, 9, 1.

Li F, Wen W, He Z, Liu J, Jin H, Cao S, Geng H, Yan J, Zhang P, Wan Y, Xia X. 2018. Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers. Theoretical and Applied Genetics, 131, 1903–1924.

Li N, Xu R, Li Y. 2019. Molecular networks of seed size control in plants. Annual Review of Plant Biology, 70, 435–463.

Li T, Deng G, Su Y, Yang Z, Tang Y, Wang J, Zhang J, Qiu X, Pu X, Yang W, Li J, Liu Z, Zhang H, Liang J, Yu M, Wei Y, Long H. 2022. Genetic dissection of quantitative trait loci for grain size and weight by high-resolution genetic mapping in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 135, 257–271.

Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q. 2011. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 43, 1266–1269.

Liao S M, Feng B, Xu Z B, Fan X L, Ji G S, Liu X F, Yu Q, Wang T. 2022. Detection of QTLs for plant height in wheat based on the 55K SNP array. Chinese Journal of Applied and Environmental Biology, 28, 576–581. (in Chinese)

Liu G, Jia L, Lu L, Qin D, Zhang J, Guan P, Ni Z, Yao Y, Sun Q, Peng H. 2014. Mapping QTLs of yield-related traits using RIL population derived from common wheat and Tibetan semi-wild wheat. Theoretical and Applied Genetics, 127, 2415–2432.

Liu H, Zhang X, Xu Y, Ma F, Zhang J, Cao Y, Li L, An D. 2020. Identification and validation of quantitative trait loci for kernel traits in common wheat (Triticum aestivum L.). BMC Plant Biology, 20, 529.

Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Tian P, Cheng Z, Yu X, Zhou K, Zhang X, Guo X, Wang J, Wang H, Wan J. 2017. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nature Plants, 3, 17043.

Liu X F, Xu Z B, Feng B, Zhou Q, Ji G S, Guo S D, Liao S M, Lin D, Fan X L, Wang T. 2022. Quantitative trait loci identification and breeding value estimation of grain weight-related traits based on a new wheat 50K single nucleotide polymorphism array-derived genetic map. Frontiers in Plant Science, 13, 967432.

Liu Y, Lin Y, Gao S, Li Z, Ma J, Deng M, Chen G, Wei Y, Zheng Y. 2017. A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. The Plant Journal, 91, 861–873.

Ma L, Li T, Hao C, Wang Y, Chen X, Zhang X. 2016. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnology Journal, 14, 1269–1280.

Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q. 2010. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proceedings of the National Academy of Science of United States of America, 107, 19579–19584.

Maphosa L, Langridge P, Taylor H, Parent B, Emebiri L C, Kuchel H, Reynolds M P, Chalmers K J, Okada A, Edwards J, Mather D E. 2014. Genetic control of grain yield and grain physical characteristics in a bread wheat population grown under a range of environmental conditions. Theoretical and Applied Genetics, 127, 1607–1624.

Mohler V, Albrecht T, Castell A, Diethelm M, Schweizer G, Hartl L. 2016. Considering causal genes in the genetic dissection of kernel traits in common wheat. Journal of Applied Genetics, 57, 467–476.

Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. 1999. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 400, 256–261.

Qu X R, Li C, Liu H, Liu J J, Luo W, Xu Q, Tang H P, Mu Y, Deng M, Pu Z E, Ma J, Jiang Q T, Chen G Y, Qi P F, Jiang Y F, Wei Y M, Zheng Y L, Lan X J, Ma J. 2022. Quick mapping and characterization of a co-located kernel length and thousand-kernel weight-related QTL in wheat. Theoretical and Applied Genetics, 135, 2849–2860.

Qu X R, Liu J J, Xie X L, Xu Q, Tang H P, Mu Y, Pu Z E, Li Y, Ma J, Gao Y T, Jiang Q, Liu Y, Chen G Y, Wang J, Qi P F, Habib A, Wei Y M, Zheng Y L, Lan X J, Ma J. 2021. Genetic mapping and validation of loci for kernel-related traits in wheat (Triticum aestivum L.). Frontiers in Plant Science, 12, 667493.

Ray D K, Mueller N D, West P C, Foley J A. 2013. Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 8, e66428.

Sakuma S, Golan G, Guo Z, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S, Jinno H, Yamashita Y, Ayalon I, Peleg Z, Schnurbusch T, Komatsuda T. 2019. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proceedings of the National Academy of Sciences of the United States of America, 116, 5182–5187.

Simmonds J, Scott P, Leverington-Waite M, Turner A S, Brinton J, Korzun V, Snape J, Uauy C. 2014. Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L.). BMC Plant Biology, 14, 191.

Smith S E, Kuehl R O, Ray I M, Hui R, Soleri D. 1998. Evaluation of simple methods for estimating broad-sense heritability in stands of randomly planted genotypes. Crop Science, 38, 1125–1129.

Song X J, Huang W, Shi M, Zhu M Z, Lin H X. 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 39, 623–630.

Su Z, Hao C, Wang L, Dong Y, Zhang X. 2011. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 122, 211–223.

Sukumaran S, Lopes M, Dreisigacker S, Reynolds M. 2018. Genetic analysis of multi-environmental spring wheat trials identifies genomic regions for locus-specific trade-offs for grain weight and grain number. Theoretical and Applied Genetics, 131, 985–998.

Sun C, Dong Z, Zhao L, Ren Y, Zhang N, Chen F. 2020. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnology Journal, 18, 1354–1360.

Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y. 2005. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, Dwarf11, with reduced seed length. The Plant Cell, 17, 776–790.

Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, et al. 2014. Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnology Journal, 12, 787–796.

Wang W, Pan Q, Tian B, He F, Chen Y, Bai G, Akhunova A, Trick H N, Akhunov E. 2019. Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. The Plant Journal, 10, 251–264.

Wang X, Dong L, Hu J, Pang Y, Hu L, Xiao G, Ma X, Kong X, Jia J, Wang H, Kong L. 2019. Dissecting genetic loci affecting grain morphological traits to improve grain weight via nested association mapping. Theoretical and Applied Genetics, 132, 3115–3128.

Winfield M O, Allen A M, Burridge A J, Barker G L A, Benbow H R, Wilkinson P A, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, King J, West C, Griffiths S, King I, Bentley A R, Edwards K J. 2016. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnology Journal, 14, 1195–1206.

Xie G, Li Z, Ran Q, Wang H, Zhang J. 2018. Over-expression of mutated ZmDA1 or ZmDAR1 gene improves maize kernel yield by enhancing starch synthesis. Plant Biotechnology Journal, 16, 234–244.

Xin F, Zhu T, Wei S, Han Y, Zhao Y, Zhang D, Ma L, Ding Q. 2020. QTL mapping of kernel traits and validation of a major QTL for kernel length–width ratio using SNP and bulked segregant analysis in wheat. Scientific Reports, 10, 25.

Xu Y F, Li S S, Li L H, Ma F F, Fu X Y, Shi Z L, Xu H X, Ma P T, An D G. 2017. QTL mapping for yield and photosynthetic related traits under different water regimes in wheat. Molecular Breeding, 37, 34.

Yang Y, Amo A, Wei D, Chai Y, Zheng J, Qiao P, Cui C, Lu S, Chen L, Hu Y G. 2021. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theoretical and Applied Genetics, 134, 3083–3109.

Yao F Q, Li X H, Wang H, Song Y N, Li Z Q, Li X G, Gao X Q, Zhang X S, Bie X M. 2021. Down-expression of TaPIN1s increases the tiller number and grain yield in wheat. BMC Plant Biology, 21, 443.

Zhang H, Chen J, Li R, Deng Z, Zhang K, Liu B, Tian J. 2016. Conditional QTL mapping of three yield components in common wheat (Triticum aestivum L.). The Crop Journal, 4, 220–228.

Zhang J, Dell B, Biddulph B, Drake-Brockman F, Walker E, Khan N, Wong D, Hayden M, Appels R. 2013. Wild-type alleles of Rht-B1 and Rht-D1 as independent determinants of thousand-grain weight and kernel number per spike in wheat. Molecular Breeding, 32, 771–783.

Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li J, Zhang H. 2012. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proceedings of the National Academy of Sciences of the United States of America, 109, 21534.

Zhang Y, Li D, Zhang D, Zhao X, Cao X, Dong L, Liu J, Chen K, Zhang H, Gao C, Wang D. 2018. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. The Plant Journal, 94, 857–866.

Zhou Y, Zhao X, Li Y, Xu J, Bi A, Kang L, Xu D, Chen H, Wang Y, Wang Y G, Liu S, Jiao C, Lu H, Wang J, Yin C, Jiao Y, Lu F. 2020. Triticum population sequencing provides insights into wheat adaptation. Nature Genetics, 52, 1412–1422.

Zhu J. 1995. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 141, 1633–1639.

[1] SHA Xiao-qian, GUAN Hong-hui, ZHOU Yu-qian, SU Er-hu, GUO Jian, LI Yong-xiang, ZHANG Deng-feng, LIU Xu-yang, HE Guan-hua, LI Yu, WANG Tian-yu, ZOU Hua-wen, LI Chun-hui. Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3394-3407.
[2] HUANG Feng, LI Xuan-shuang, DU Xiao-yu, LI Shun-cheng, LI Nan-nan, LÜ Yong-jun, ZOU Shao-kui, ZHANG Qian, WANG Li-na, NI Zhong-fu, HAN Yu-lin, XING Jie-wen. SNP-based identification of QTLs for thousand-grain weight and related traits in wheat 8762/Keyi 5214 DH lines[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2949-2960.
[3] ZHANG Hua, WU Hai-yan, TIAN Rui, KONG You-bin, CHU Jia-hao, XING Xin-zhu, DU Hui, JIN Yuan, LI Xi-huan, ZHANG Cai-ying. Genome-wide association and linkage mapping strategies reveal genetic loci and candidate genes of phosphorus utilization in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2521-2537.
[4] JIA Jia, WANG Huan, CAI Zhan-dong, WEI Ru-qian, HUANG Jing-hua, XIA Qiu-ju, XIAO Xiao-hui, MA Qi-bin, NIAN Hai, CHENG Yan-bo. Identification and validation of stable and novel quantitative trait loci for pod shattering in soybean [Glycine max (L.) Merr.][J]. >Journal of Integrative Agriculture, 2022, 21(11): 3169-3184.
[5] ZHANG Zhe, CHEN Zi-tao, DIAO Shu-qi, YE Shao-pan, WANG Jia-ying, GAO Ning, YUAN Xiao-long, CHEN Zan-mou, ZHANG Hao, LI Jia-qi. Identifying the complex genetic architecture of growth and fatness traits in a Duroc pig population[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1607-1614.
[6] DING Xiao-yu, XU Jin-song, HUANG He, QIAO Xing, SHEN Ming-zhen, CHENG Yong, ZHANG Xue-kun. Unraveling waterlogging tolerance-related traits with QTL analysis in reciprocal intervarietal introgression lines using genotyping by sequencing in rapeseed (Brassica napus L.)[J]. >Journal of Integrative Agriculture, 2020, 19(8): 1974-1983.
[7] XU Zhong, SUN Hao, ZHANG Zhe, Zhao Qing-bo, Babatunde Shittu Olasege, Li Qiu-meng, Yue Yang, Ma Pei-pei, Zhang Xiang-zhe, Wang Qi-shan, Pan Yu-chun .
Genome-wide detection of selective signatures in a Jinhua pig population
[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1314-1322.
[8] LUO Jiang-tao, ZHENG Jian-min, WAN Hong-shen, YANG Wu-yun, LI Shi-zhao, PU Zong-jun . Identification of QTL for adult plant resistance to stripe rust in bread wheat line C33[J]. >Journal of Integrative Agriculture, 2020, 19(3): 624-631.
[9] NAN Jiu-hong, YIN Li-lin, TANG Zhen-shuang, CHEN Jian-hai, ZHANG Jie, WANG Hai-yan, DU Xiao-yong, LIU Xiang-dong . Genetic parameter estimation and genome-wide association study (GWAS) of red blood cell count at three stages in a Duroc×Erhualian pig population[J]. >Journal of Integrative Agriculture, 2020, 19(3): 793-799.
[10] DU Zhi-xuan, HAO Hui-ying, HE Jin-peng, WANG Jian-ping, HUANG Zhou, XU Jie, FU Hai-hui, FU Jun-ru, HE Hao-hua. GraS is critical for chloroplast development and affects yield in rice [J]. >Journal of Integrative Agriculture, 2020, 19(11): 2603-2615.
[11] XIA Ning, YAN Wen-bing, WANG Xiao-qi, SHAO Yu-peng, YANG Ming-ming, WANG Zhi-kun, ZHAN Yu-hang, TENG Wei-li, HAN Ying-peng, SHI Yan-guo. Genetic dissection of hexanol content in soybean seed through genome-wide association analysis[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1222-1229.
[12] ZHENG Hao, ZHANG Jun, ZHUANG Hui, ZENG Xiao-qin, TANG Jun, WANG Hong-lei, CHEN Huan, LI Yan, LING Ying-hua, HE Guang-hua, LI Yun-feng. Gene mapping and candidate gene analysis of multi-floret spikelet 3 (mfs3) in rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2019, 18(12): 2673-2681.
[13] DIAO Shu-qi, LUO Yuan-yu, MA Yun-long, DENG Xi, HE Ying-ting, GAO Ning, ZHANG Hao, LI Jia-qi, CHEN Zan-mou, ZHANG Zhe. Genome-wide detection of selective signatures in a Duroc pig population[J]. >Journal of Integrative Agriculture, 2018, 17(11): 2528-2535.
[14] ZHAO Jie, QIN Jing-jing, SONG Qian, SUN Chuan-qing, LIU Feng-xia. Combining QTL mapping and expression profile analysis to identify candidate genes of cold tolerance from Dongxiang common wild rice (Oryza rufipogon Griff.)[J]. >Journal of Integrative Agriculture, 2016, 15(9): 1933-1943.
No Suggested Reading articles found!