Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (11): 2571-2578    DOI: 10.1016/S2095-3119(19)62557-8
Special Issue: 害虫抗药性和毒理学合辑Pest Toxicology
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Characterization of field-evolved resistance to cyantraniliprole in Bemisia tabaci MED from China
WANG Ran1*, WANG Jin-da2*, CHE Wu-nan3, SUN Yan4, LI Wen-xiang5, LUO Chen1 
1 Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R.China
2 State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agricultural and Forestry University, Fuzhou 350002, P.R.China
3 Department of Pesticide Sciences, Shenyang Agricultural University, Shenyang 110866, P.R.China
4 Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, P.R.China
5 College of Agriculture and Forestry Technology, Hebei North University, Zhangjiakou 075000, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Cyantraniliprole is a novel anthranilic diamide insecticide with significant efficacy against Bemisia tabaci, an important pest insect worldwide.  In this study, we conducted reversion and selection work and genetic analysis, and determined cross-resistance spectrum and synergism of cyantraniliprole resistance based on the reported population, SX population, of B. tabaci collected from Shanxi Province, China.  Compared with a susceptible strain (MED-S), SX population, the field-evolved cyantraniliprole-resistant population exhibited 26.4-fold higher resistance to cyantraniliprole.  In SX, a sharp decline of cyantraniliprole resistance was shown in the absence of selection.  Another tested strain, SX-R, was established from SX population after successive selection with cyantraniliprole and recently developed 138.4-fold high resistance to cyantraniliprole.  SX-R had no cross-resistance to abamectin, imidacloprid, thiamethoxam, sulfoxaflor, or bifenthrin.  Genetic analysis illustrated that cyantraniliprole resistance in SX-R was autosomally inherited and incompletely dominant.  Additionally, piperonyl butoxide (PBO) significantly inhibited cyantraniliprole resistance in the SX-R strain.  In conclusion, the selection of SX with cyantraniliprole led to high resistance to cyantraniliprole which is incompletely dominant and no cross-resistance to several common types of insecticides.  Enhanced oxidative metabolism is possibly involved in the resistance of SX-R, yet target-site resistance could not be excluded. 
Keywords:  Bemisia tabaci        cyantraniliprole        cross-resistance        inheritance        synergism  
Received: 19 October 2018   Accepted:
Fund: This study was partly supported by research grants from the Scientific and Technological Innovation Capacity Construction Special Funds of the Beijing Academy of Agriculture and Forestry Sciences, China (KJCX20180705), the National Natural Science Foundation of China (31601635), the State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, China (SKL2018007), the Program on Application Basic Research Project of the Xinjiang Production and Construction Corps, China (2016AG004).
Corresponding Authors:  Correspondence LUO Chen, Tel: +86-10-51503338, E-mail: luochen1010@126.com    
About author:  WANG Ran, Tel: +86-10-51503338, E-mail: rwang1105@126.com; * These authors contributed equally to this study.

Cite this article: 

WANG Ran, WANG Jin-da, CHE Wu-nan, SUN Yan, LI Wen-xiang, LUO Chen . 2019.

Characterization of field-evolved resistance to cyantraniliprole in Bemisia tabaci MED from China
. Journal of Integrative Agriculture, 18(11): 2571-2578.

Ahmad M, Khan R A. 2017. Field-evolved resistance of Bemisia tabaci (Hemiptera: Aleyrodidae) to carbodiimide and neonicotinoids in Pakistan. Journal of Economic Entomology, 106, 1404–1413.
Barry J D, Portillo H E, Annan I B, Cameron R A, Clagg D G, Dietrich R F, Watson L J, Leighty R M, Ryan D L, McMillan J A, Swain R S, Kaczmarczyk R A. 2015. Movement of cyantraniliprole in plants after foliar applications and its impact on the control of sucking and chewing insects. Pest Management Science, 71, 395–403.
Caballero R, Cyman S, Schuster D J, Portillo H E, Slater R. 2013. Baseline susceptibility of Bemisia tabaci (Genn.) biotype B in southern Florida to cyantraniliprole. Crop Protection, 44, 104–108.
Caballero R, Schuster D J, Peres N A, Mangandi J, Hasing T, Trexler F, Kalb S, Portillo H E, Marçon P C, Annan I B. 2015. Effectiveness of cyantraniliprole for managing Bemisia tabaci (Hemiptera: Aleyrodidae) and interfering with transmission of tomato yellow leaf curl virus on tomato. Journal of Economic Entomology, 108, 894–903.
Castle S J, Prabhaker N. 2013. Monitoring changes in Bemisia tabaci (Hemiptera: Aleyrodidae) susceptibility to neonicotinoid insecticides in Arizona and California. Journal of Economic Entomology, 106, 1404–1413.
Chu D, Zhang Y J, Brown J K, Cong B, Xu B Y, Wu Q J, Zhu G R. 2006. The introduction of the exotic Q biotype of Bemisia tabaci from the Mediterranean region into China on ornamental crops. Florida Entomologist, 89, 168–174.
Cimino A M, Boyles A L, Thayer K A, Perry M J. 2017. Effects of neonicotinoid pesticide exposure on human health: A systematic review. Environmental Health Perspectives, 125, 155–162.
Civolani S, Cassanelli S, Chicca M, Rison J L, Bassi A, Alvarez J M, Annan I M, Parrella G, Giorgini M, Fano E A. 2014. An EPG study of the probing behavior of adult Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) following exposure to cyantraniliprole. Journal of Economic Entomology, 107, 910–919.
Clark J M , Scott J G, Campos F, Bloomquist J R. 1995. Resistance to avermectins: Extent, mechanisms, and management implications. Annual Review of Entomology, 40, 1–30.
Dângelo R A C, Michereff-Filho M, Campos M R, Silva P S D, Guedes R N C. 2018. Insecticide resistance and control failure likelihood of the whitefly Bemisia tabaci (MEAM1; B biotype): a neotropical scenario. Annals of Applied Biology, 172, 88–99.
De Barro P J, Liu S S, Boykin L M, Dinsdale A B. 2011. Bemisia tabaci: A statement of species status. Annual Review of Entomology, 56, 1–19.
Echegaray E R, Vinchesi A C, Rondon S I, Alvarez J M, McKinley N. 2016. Potato psyllid (Hemiptera: Triozidae) response to insecticides under controlled greenhouse conditions. Journal of Economic Entomology, 109, 2479–2488.
Foster S P, Denholm I, Rison J L, Portillo H E, Margaritopoulis J, Slater R. 2012. Susceptibility of standard clones and European field populations of the green peach aphid, Myzus persicae, and the cotton aphid, Aphis gossypii (Hemiptera: Aphididae), to the novel anthranilic diamide insecticide cyantraniliprole. Pest Management Science, 68, 629–633.
Grávalos C, Fernández E, Belando A, Moreno I, Ros C, Bielza P. 2015. Cross-resistance and baseline susceptibility of Mediterranean strains of Bemisia tabaci to cyantraniliprole. Pest Management Science, 71, 1030–1036.
Hogenhout S A, Ammar E D, Whitfield A E, Redinbaugh M G. 2008. Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 46, 327–359.
Horowitz A R. 2003. Inheritance of pyriproxyfen resistance in the whitefly, Bemisia tabaci (Q biotype). Archives of Insect Biochemistry and Physiology, 54, 177–186.
Jacobson A L, Kennedy G G. 2011. The effect of three rates of cyantraniliprole on the transmission of tomato spotted wilt virus by Frankliniella occidentalis and Frankliniella fusca (Thysanoptera: Thripidae) to Capsicum annuum. Crop Protection, 30, 512–515.
Knight A L, Flexner L. 2007. Disruption of mating in codling moth (Lepidoptera: Ortricidae) by chlorantranilipole, an anthranilic diamide insecticide. Pest Management Science, 63, 180–189.
Koppenhöfer A M, Fuzy E M. 2008. Effect of the anthranilic diamide insecticide, chlorantraniliprole, on Heterorhabditis bacteriophora (Rhabditida: Heterorhabditida) efficacy against white grubs (Coleoptera: Scarabaeidae). Biological Control, 45, 93–102.
LeOra Software. 2002. PoloPlus, a User’S Guide to Probit or Logit Analysis. LeOra Software, Berkeley, CA.
Li X C, Degain B A, Harpold V S, Marçon P G, Nichols R L, Fournier A J, Naranjo S E, Palumbo J C, Ellsworth P C. 2012. Baseline susceptibilities of B- and Q-biotype Bemisia tabaci to anthranilic diamides in Arizona. Pest Management Science, 68, 83–91.
Li X X, Li R, Zhu B, Gao X W, Liang P. 2018. Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.). Pest Management Science, 74, 1386–1393.
Liu S S, De Barro P J, Xu J, Luan J B, Zang L S, Ruan Y M, Wan F H. 2007. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science, 318, 1769–1772.
Liu X, Ning Y B, Wang H Y, Wang K Y. 2015. Cross-resistance, mode of inheritance, synergism, and fitness effects of cyantraniliprole resistance in Plutella xylostella. Entomologia Experimentalis et Applicata, 157, 271–278.
Luo C, Yao Y, Wang R J, Yan F M, Hu D X, Zhang Z L. 2002. The use of mitochondrial cytochrome oxidase mt COI gene sequences for the identification of biotypes of Bemisia tabaci (Gennadius) in China. Acta Entomologica Sinica, 45, 759–763. (in Chinese)
Muthusamy R, Vishnupriya M, Shivakumar M S. 2014. Biochemical mechanism of chlorantraniliprole resistance in Spodoptera litura (Fab) (Lepidoptera: Noctuidae). Journal of Asia-Pacific Entomology, 17, 865–869.
Naveen N C, Chaubey R, Kumar D, Rebijith K B, Rajagopal R, Subrahmanyam B, Subramanian S. 2017. Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Scientific Reports, 7, 40634.
Pan H P, Chu D, Ge D Q, Wang S L, Wu Q J, Xie W, Jiao X G, Liu B M, Yang X, Yang N N, Su Q, Xu B Y, Zhang Y J. 2011. Further spread of and domination by Bemisia tabaci (Hemiptera: Aleyrodidae) biotype Q on field crops in China. Journal of Economic Entomology, 104, 978–985.
Pan H P, Chu D, Yan W Q, Su Q, Liu B M, Wang S L, Wu Q J, Xie W, Jiao X G, Li R M, Yang N N, Yang X, Xu B Y, Brown J K, Zhou X G, Zhang Y J. 2012. Rapid spread of Tomato Yellow Leaf Curl Virus in China is aided differentially by two invasive whiteflies. PLoS ONE, 7, e34817.
Pan H P, Preisser E L, Chu D, Wang S L, Wu Q J, Zhou X G, Zhang Y J. 2015. Insecticides promote viral outbreaks in China by altering herbivore competition. Ecological Applications, 25, 1585–1595.
Peck D C, Olmstead D, Morales A. 2008. Application timing and efficacy of alternatives for the insecticidal control of Tipula paludosa Meigen (Diptera: Tipulidae), a new invasive pest of turf in the northeastern United States. Pest Management Science, 64, 989–1000.
Pu X, Yang Y H, Wu S W, Wu Y D. 2010. Characterisation of abamectin resistance in a field-evolved multiresistant population of Plutella xylostella. Pest Management Science, 66, 371–378.
Qureshi J A, Kostyk B C, Stansly P A. 2014. Insecticidal suppression of Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae) vector of Huanglongbing pathogens. PLoS ONE, 9, e112331.
Sang S, Shu B S, Yi X, Liu J, Hu M Y, Zhong G H. 2016. Cross-resistance and baseline susceptibility of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) to cyantraniliprole in the south of China. Pest Management Science, 72, 922–928.
Sattelle D B, Cordova D, Cheek T R. 2008. Insect ryanodine receptors: Molecular targets for novel pest control chemicals. Invertebrate Neuroscience, 8, 107–119.
Selby T P, Lahm G P, Stevenson T M. 2017. A retrospective look at anthranilic diamide insecticides: discovery and lead optimization to chlorantraniliprole and cyantraniliprole. Pest Management Science, 73, 658–665.
Shadmany M, Omar D, Muhamad R. 2015. Biotype and insecticide resistance status of Bemisia tabaci populations from Peninsular Malaysia. Journal of Applied Entomology, 139, 67–75.
Stone B F. 1968. A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bulletin of the World Health Organization, 38, 325–326.
Sun Y, Xu L, Chen Q, Qin W J, Huang S J, Qin H G. 2018. Chlorantraniliprole resistance and its biochemical and new molecular target mechanisms in laboratory and field strains of Chilo suppressalis (Walker). Pest Management Science, 74, 1416–1423.
Wang L H, Wu Y D. 2007. Cross-resistance and biochemical mechanisms of abamectin resistance in the B-type Bemisia tabaci. Journal of Applied Entomology, 131, 98–103.
Wang R, Fang Y, Mu C Q, Qu C, Li F Q, Wang Z Y, Luo C. 2018a. Baseline susceptibility and cross-resistance of cycloxaprid, a novel cis-nitromethylene neonicotinoid insecticide, in Bemisia tabaci MED from China. Crop Protection, 110, 283–287.
Wang R, Wang J D, Che W N, Luo C. 2018b. First report of field resistance to cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci MED in China. Journal of Integrative Agriculture, 17, 158–163.
Wang X L, Khakame S K, Ye C, Yang Y, Wu Y D. 2013. Characterisation of field-evolved resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella, from China. Pest Management Science, 69, 661–665.
Wang Z Y, Yan H F, Yang Y H, Wu Y D. 2010. Biotype and insecticide resistance status of the whitefly Bemisia tabaci from China. Pest Management Science, 66, 1360–1366.
Wang Z Y, Yao M D, Wu Y D. 2009. Cross-resistance, inheritance and biochemical mechanisms of imidacloprid resistance in B-biotype Bemisia tabaci. Pest Management Science, 65, 1189–1194.
Xie W, Liu Y, Wang S L, Wu Q J, Pan H P, Yang X, Guo L T, Zhang Y J. 2014. Sensitivity of Bemisia tabaci (Hemiptera: Aleyrodidae) to several new insecticides in China: Effects of insecticide type and whitefly species, strain, and stage. Journal of Insect Science, 14, 1–7.
Yao F L, Zheng Y, Huang X Y, Ding X L, Zhao J W, Desneux N, He Y X, Weng Q Y. 2017. Dynamics of Bemisia tabaci biotypes and insecticide resistance in Fujian Province in China during 2005–2014. Scientific Reports, 7, 40803.
Yeoh B H, Lee C Y. 2007. Tunneling responses of the Asian subterranean termite, Coptotermes gestroi in termiticide-treated sand (Isoptera: Rhinotermitidae). Sociobiology, 50, 457–468.
Zeng G, Chen M, Zeng Z. 2013. Risks of neonicotinoid pesticides. Science, 340, 1403.
Zheng H X, Xie W, Wang S L, Wu Q J, Zhou X M, Zhang Y J. 2017. Dynamic monitoring (B versus Q) and further resistance status of Q type Bemisia tabaci in China. Crop Protection, 94, 115–121.
[1] WANG Jing-jing, LI Xiang-ju, LI Dan, HAN Yu-jiao, LI Zheng, YU Hui-lin, CUI Hai-lan. Non-target-site and target-site resistance to AHAS inhibitors in American sloughgrass (Beckmannia syzigachne)[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2714-2723.
[2] DENG Wei, YANG Qian, JIAO Hong-tao, ZHANG Yong-zhi, LI Xue-feng, ZHENG Ming-qi. Cross-resistance pattern to four AHAS-inhibiting herbicides of tribenuron-methyl-resistant flixweed (Descurainia sophia) conferred by Asp-376-Glu mutation in AHAS[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2563-2570.
No Suggested Reading articles found!