Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (5): 1336-1345    DOI: 10.1016/S2095-3119(20)63287-7
Special Issue: 昆虫合辑Plant Protection—Entomolgy
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Effect of a near-zero magnetic field on development and flight of oriental armyworm (Mythimna separata)
YAN Meng-meng1, ZHANG Lei1, CHENG Yun-xia1, Thomas W. SAPPINGTON2, PAN Wei-dong3, JIANG Xing-fu1
1 State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
2 Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA 50011, USA
3 Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

地球磁场影响着地球上所有的生物。本研究以正常地磁场(约50 μT)为对照条件,在近零磁场(<500 nT)下饲养粘虫,观察近零磁场对粘虫的行为效应。近零磁场由亥姆霍兹线圈系统产生。结果表明:近零磁场显著延长了粘虫幼虫和蛹的发育历期,增加了雄蛾的寿命,减少了蛹重,雌性产卵量和卵黄蛋白原蛋白基因(Vg)的表达水平;而且,近零磁场对粘虫成虫交配率产生负面影响。此外,近零磁场下粘虫在黑夜的自主飞行活动减少,表明近零磁场可能影响粘虫的飞行节律。磁场强度的降低可能对粘虫的生长发育、繁殖和飞行等活动产生负面影响,进而影响粘虫的迁飞活动。




Abstract  
The geomagnetic field affects all living organisms on the Earth.  In this study we investigated the developmental and behavioral effects of rearing Mythimna separata in a near-zero magnetic field (<500 nT) compared to the local geomagnetic field (approximately 50 μT).  The near-zero magnetic field produced by a Helmholtz coil system significantly lengthened larval and pupal development durations, increased male longevity, and reduced pupal weight, female reproduction, and the relative expression level of the vitellogenin (Vg) gene in newly emerged females.  Moreover, the near-zero magnetic field had a considerable negative effect on the mating ratio of M. separata adults.  In addition, the moths in the near-zero magnetic field displayed less flight activity late in the night than those in the Earth’s normal geomagnetic field, indicating that the flight rhythm of M. separata may be affected by the near-zero magnetic field.  Reduction in magnetic field intensity may have negative effects on the development and flight of oriental armyworm, with consequent additional effects on its migration.
Keywords:  development        flight activity        geomagnetic field        Mythimna separata        near-zero magnetic field  
Accepted:
Fund: This work was found by the earmarked fund for China Agriculture Research System (CARS-22), the National Key Research and Development Program of China (2017YFD0201802 and 2017YFD0201701), the National Natural Science Foundation of China (31672019, 31870367 and 31871951), and the Beijing Municipal Natural Science Foundation, China (6172030).
Corresponding Authors:  Correspondence JIANG Xing-fu, Tel: +86-10-62816073, E-mail: xfjiang@ippcaas.cn    
About author:  YAN Meng-meng, Mobile: +86-13121300528, E-mail: 912692093@qq.com;

Cite this article: 

YAN Meng-meng, ZHANG Lei, CHENG Yun-xia, Thomas W. SAPPINGTON, PAN Wei-dong, JIANG Xing-fu. 2021. Effect of a near-zero magnetic field on development and flight of oriental armyworm (Mythimna separata). Journal of Integrative Agriculture, 20(5): 1336-1345.

Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W. 2007. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta, 225, 615–624.
Bae J E, Bang S, Min S, Lee S H, Kwon S H, Lee Y, Lee Y H, Chung J, Chae K S. 2016. Positive geotactic behaviors induced by geomagnetic field in Drosophila. Molecular Brain, 9, 55.
Belyaev I. 2011. Toxicity and SOS-response to ELF magnetic fields and nalidixic acid in E. coli cells. Mutation Research, 722, 56–61.
Belyavskaya N A. 2004. Biological effects due to weak magnetic field on plants. Advances in Space Research, 34, 1566–1574.
Bindokas V P, Gauger J R, Greenberg B. 1988. Mechanism of biological effects observed in honey bees (Apis mellifera, L.) hived under extra-high-voltage transmission lines: Implications derived from bee exposure to simulated intense electric fields and shocks. Bioelectromagnetics, 9, 285–301.
Binhi V N, Prato F S. 2017. Biological effects of the hypomagnetic field: An analytical review of experiments and theories. PLoS ONE, 12, e0179340.
Bliss V L, Heppner F H. 1976. Circadian activity rhythm influenced by near zero magnetic field. Nature, 261, 411–412.
Buehlmann C, Hansson B S, Knden M. 2012. Desert ants learn vibration and magnetic landmarks. PLoS ONE, 7, e33117.
Busza A, Emery-Le M, Rosbash M, Emery P. 2004. Roles of the two Drosophila cryptochrome structural domains in circadian photoreception. Science, 304, 1503–1506.
Ceriani M F, Darlington T K, Staknis D, Mas P, Petti A A. 1999. Light-dependent sequestration of timeless by cryptochrome. Science, 285, 553–556.
Cheng Y X, Luo L Z. 2011. Insect Autonomous Flight Monitoring System and Analysis Method. China Patent, Application No. ZL201110051190.6. 2011-07-20. (in Chinese)
Close J P. 2014. The Compass within the Clock - Part 1: The hypothesis of magnetic fields as secondary zeitgebers to the circadian system-logical and scientific objections. Hypothesis, 12, 1.
Dong Z K, Ge F. 2013. Effects of magnetic field on the development and reproduction of cotton bollworm Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Chinese Journal of Ecology, 32, 1265–1268. (in Chinese)
Farrow R, McDonald G. 1987. Migration strategies and outbreaks of noctuid pests in Australia. International Journal of the Tropical Insect Science, 8, 531–542.
Fedele G, Edwards M D, Bhutani S. 2014a. Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster. PLoS Genetics, 10, e1004804.
Fedele G, Green E W, Rosato E, Kyriacou C P. 2014b. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nature Communications, 5, 4391.
Fleissner G, Stahl B, Thalau P, Falkenberg G, Fleissner G. 2007. A novel concept of Fe-mineral-based magnetoreception: Histological and physicochemical data from the upper beak of homing pigeons. Naturwissenschaften (The Science of Nature), 94, 631–642.
Fu J P, Mo W C, Liu Y, He R O. 2016. Decline of cell viability and mitochondrial activity in mouse skeletal muscle cell in a hypomagnetic field. Bioelectromagnetics, 37, 212–222.
Gegear R J, Casselman A, Waddell S, Reppert S M. 2008. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature, 454, 1014–1018.
Gegear R J, Foley L E, Casselman A, Reppert S M. 2010. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature, 463, 804–807.
He J L, Wan G J, Zhang M, Pan W D, Chen F J. 2018. Progress in the study of geomagnetic response of organisms. Progress in Biochemistry and Biophysics, 45, 689–704. (in Chinese)
Henrik M. 2018. Long-distance navigation and magnetoreception in migratory animals. Nature, 558, 50–59.
Hermann M, Herbert K, Barbara F. 1988. Magnetic field effects on activity and ageing in honeybees. Journal of Comparative Physiology (A), 164, 423–431.
Jiang X F, Luo L Z, Zhang L, Sappington T W, Hu Y. 2011. Regulation of migration Mythimna separata (Walker) in China: A review integrating environmental, physiological, hormonal, genetic, and molecular factors. Environmental Entomology, 40, 516–533.
Johnsen S, Lohmann K J. 2008. Magnetoreception in animals. Physics Today, 61, 29–35.
Johnson C G. 1969. Migration and Dispersal of Insects by Flight. Methuen, London.
Lin C S. 1990. Physiology and ecology of Mythimna separata. Peking University Press, China. pp. 53–85. (in Chinese).
Lohmann K J. 1991. Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta). Journal of Experimental Biology, 155, 37–49.
Lohmann K J, Lohmann C M, Ehrhart L M, Bagley D A, Swing T. 2004. Animal behavior: Geomagnetic map used in sea-turtle navigation. Nature, 428, 909–910.
Lohmann K J, Willows O D. 1987. Lunar-modulated geomagnetic orientation by a marine mollusk. Science, 235, 331–334.
Lu J R, Chang Y Z. 1963. Spermtophore and verification of mating condition of oriental armyworm, Mythimna separata. Plant Protection, 2, 67. (in Chinese)
Luo L Z, Jiang X F, Li K B, Hu Y. 1999. Influences of flight on reproduction and longevity of the oriental armyworm, Mythimna separata (Walker). Acta Entomologica Sinica, 42, 150–158. (in Chinese)
Marley R, Giachello C N G, Scrutton N S, Baines R A, Jones A R. 2014. Cryptochrome-dependent magnetic field effect on seizure response in Drosophila larvae. Scientific Reports, 4, 5799.
Mather J G, Bake R R. 1981. Magnetic sense of direction in woodmice for route-based navigation. Nature, 291, 152–155.
McNeil J N, Cusson M, Delisle J, Orchard I, Tobe S S. 1995. Physiological integration of migration in Lepidoptera, In: Drake V A, Gatehouse A G, eds., Insect Migration: Tracking Resources Through Space and Time. Cambridge University Press, Cambridge, United Kingdom. pp. 297–302.
Mo W C, Fu J P, Ding H M, Liu Y, Hua Q, He R Q. 2015. Hypomagnetic field alters circadian rhythm and increases algesia in adult male mice. Progress in Biochemistry and Biophysics, 42, 639–646.
Mo W C, Liu Y, Bartlett P F, He R Q. 2014. Transcriptome profile of human neuroblastoma cells in the hypomagnetic field. Science China (Life Science), 57, 448–461.
Mo W C, Liu Y, Cooper H M, He R Q. 2012. Altered development of Xenopus embryos in a hypogeomagnetic field. Bioelectromagnetics, 33, 238–246.
Mo W C, Zhang Z J, Liu Y, Bartlett P F, He R Q, 2013. Magnetic shielding accelerates the proliferation of human neuroblastoma cells by promoting G1-phase progression. PLoS ONE, 8, e54775.
Muraveiko V M, Stepanyuk I A, Zenzerov V S. 2013. The response of the crab Paralithodes camtschaticus (Tilesius, 1815) to geomagnetic storms. Doklady Biological Sciences, 448, 10–12.
Neumannn M F. 1988. Is there any influence of magnetic or astrophysical fields on the circadian rhythm of honeybees? Behavior Ecology and Sociobiology, 23, 389–393.
Nordmann G, Hochstoeger T, Keays D A. 2017. Unsolved mysteries: Magnetoreception - A sense without a receptor. PLoS Biology, 15, e2003234.
Occhipinti A, De Santis A, Maffei M E. 2014. Magnetoreception: An unavoidable step for plant evolution? Trends in Plant Science, 19, 1–4.
Orlov V M. 1990. Invertebrates and high voltage power lines. Bioelectricity, 9, 121–131.
Orlov V M, Babenko A S. 1987. Effect of the electric field of high voltage transmission lines on land invertebrates. The Soviet Journal Ecology, 18, 267–274.
Pan W D, Wan G J, Xu J J, Li X M, Liu Y X, Qi L P, Chen F J. 2015. Evidence for the presence of biogenic magnetic particles in the nocturnal migratory brown planthopper, Nilaparvata lugens. Scientific Reports, 6, 18771. 
Qin J Y, Liu Y Q, Zhang L, Cheng Y X, Sappington T W, Jiang X F. 2018. Effects of moth age and rearing temperature on the flight performance of the loreyi leafworm, Mythimna loreyi (Lepidoptera: Noctuidae) in tethered and free flight. Journal of Economic Entomology, 111, 1243–1248.
Quinn T P. 1980. Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry. Journal of Comparative Physiology, 137, 243–248.
Quinn T P, Brannon E L. 1982. The use of celestial and magnetic cues by orienting sockeye salmon smolts. Neural and Comparative Physiology, 147, 547–552.
Rosen A D. 2003. Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochemistry and Biophysics, 39, 163–173.
Sarimov R M, Binhi V N, Milyaev V A. 2008. The influence of geomagnetic field compensation on human cognitive processes. Biophysics, 53, 433–441.
Schulten K, Swenberg C, Weller A. 2008. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Zeitschrift für Physikalische Chemie, 111, 1–5.
Sharma H C, Davies J C. 1983. The Oriental Armyworm, Mythimna Separata (Walker) Distribution, Biology, and Control: A Literature Review. Centre for Overseas Pest Research, UK.
Sharma V K, Chandrashekaran M K. 2005. Zeitgebers (time cues) for biological clocks. Current Science, 89, 1136–1146.
Sheeba V, Kaneko M, Sharma V K, Holmes T C. 2008. The Drosophila circadian pacemaker circuit: Pas de Deux or Tarantella? Critical Reviews in Biochemistry & Molecular Biology, 43, 37–61.
Shi X Y, Feng H Q, Liu Z F, Li J D. 2010. Comparative studies on orientation behaviors of Mythimna separata, Helicoverpa armigera, and Agrotis ypsilon in the laboratory. Plant Protection, 36, 60–63. (in Chinese)
Shles D. 1985. The geomagnetic field: Its nature, history, and biological relevance. In: Kirschvink J L, Jone D S, MacFadden B J, eds., Magnetic Biomineralization and Magnetoreception in Organisms: A New Biomagnetism. Plenurii Press, New York. pp. 43–102.
Walker M M, Bitterman M E. 1989. Honeybees can be trained to respond to very small changes in geomagnetic field intensity. Journal of Experimental Biology, 145, 489–494.
Wan G J, Jiang S L, Zhao Z C, Xu J J, Tao X R, Sword G A, Gao Y B, Pan W D, Chen F J. 2014. Bio-effects of near-zero magnetic fields on the growth, development and reproduction of small brown planthopper, Laodelphax striatellus and brown planthopper, Nilaparvata lugens. Journal of Insect Physiology, 68, 7–15.
Wan G J, Wang W J, Xu J J, Yang Q F, Dai M J, Zhang F J, Sword G A, Pan W D, Chen F J. 2015. Cryptochromes and hormone signal transduction under near-zero magnetic fields: New clues to magnetic field effects in a rice planthopper. PLoS ONE, 10, e0132966.
Wan G J, Yuan R, Wang W J, Fu K Y, Zhao J Y, Jiang S L, Pan W D, Sword G A, Chen F J. 2016. Reduced geomagnetic field may affect positive phototaxis and flight capacity of a migratory rice planthopper. Animal Behaviour, 121, 107–116.
Wan W H, Zhang L, Cheng X Y, Pan W D, Jiang X F. 2018. Effect of magnetic fields on the orientation behavior of the oriental armyworm, Mythimna separata (Walker). Chinese Journal of Applied Entomology, 55, 28–35. (in Chinese)
Wang D L, Wang X S, Xiao R, Liu Y, He R Q. 2008. Tubulin assembly is disordered in a hypogeomagnetic field. Biochemical and Biophysical Research Communications, 376, 363–368.
Wever R. 1968. Influence of weak electromagnetic fields on the circadian periodicity of humans. The Science of Nature, 55, 29–32.
Wijenberg R, Hayden M E, Stephen T, Gerhard G. 2013. Behavioural responses of diverse insect groups to electric stimuli. Entomologia Experimentalis et Applicata, 147, 132–140.
Wiltschko R, Schiffner I, Fuhrmann P, Wiltschko W. 2010. The role of magnetite-based receptors in the beak in pigeon homing. Current Biology, 20, 1534–1538.
Wiltschko W, Wiltschko R. 1988. Magnetic orientation in birds. In: Johnston R F, ed., Current Ornithology. Plenum Press, New York. pp. 67–121.
Wu C L, Fu T F, Chiang M H, Chang Y W, Her J L, Wu T. 2016. Magnetoreception regulates male courtship activity in Drosophila. PLoS ONE, 11, e0155942.
Xu C X, Wei S F, Lu Y, Zhang Y, Chen C, Song T. 2013. Removal of the local geomagnetic field affects reproductive growth in Arabidopsis. Bioelectromagnetics, 34, 437–442.
Xu C X, Yin X, Lv Y, Wu C, Zhang Y X, Song T. 2012. A near-null magnetic field affects cryptochrome-related hypocotyl growth and flowering in Arabidopsis. Advance in Space Research, 49, 834–840.
Xu C X, Yu Y, Zhang Y X, Li Y, Wei S F. 2017. Gibberellins are involved in effect of near-null magnetic field on Arabidopsis flowering. Bioelectromagnetics, 38, 1–10.
Xu J J, Pan W, Zhang Y, Li Y, Wan G J, Chen F J, Sword G A, Pan W D. 2017. Behavioral evidence for a magnetic sense in the oriental armyworm, Mythimna separata. Biology Open, 6, 340–347.
Yoshii T, Ahmad M, Helfrich F C. 2009. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biology, 7, 813–819.
Zhang B, Lu H, Xi W, Zhou X, Xu S, Zhang K, Jiang C H, Li Yan, Guo A K. 2004. Exposure to hypomagnetic field space for multiple generations causes amnesia in Drosophila melanogaster. Neuroscience Letters, 371, 190–195.
Zhao X C, Feng H Q, Wu B, Wu X F, Liu Z F, Wu K M, McNeil J N. 2009. Does the onset of sexual maturation terminate the expression of migratory behaviour in moths? A study of the oriental armyworm, Mythimna separata. Journal of Insect Physiology, 55, 1039–1043.
[1] DU Xiang-bei, XI Min, WEI Zhi, CHEN Xiao-fei, WU Wen-ge, KONG Ling-cong. Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1631-1644.
[2] CHEN Chang-zhao, WANG Ya-Liang, HE Meng-xing, LI Zhi-wen, SHEN Lan, LI Qing, RE De-yong, HU Jiang, ZHU Li, ZHANG Guang-heng, GAO Zhen-yu, ZENG Da-li, GUO Long-biao, QIAN Qian, ZHANG Qiang. OsPPR9 encodes a DYW-type PPR protein that affects editing efficiency of multiple RNA editing sites and is essential for chloroplast development[J]. >Journal of Integrative Agriculture, 2023, 22(4): 972-980.
[3] CHI Qing, DU Lin-ying, MA Wen, NIU Ruo-yu, WU Bao-wei, GUO Li-jian, MA Meng, LIU Xiang-li, ZHAO Hui-xian. The miR164-TaNAC14 module regulates root development and abiotic-stress tolerance in wheat seedlings[J]. >Journal of Integrative Agriculture, 2023, 22(4): 981-998.
[4] CAO Peng-hui, WANG Di, GAO Su, LIU Xi, QIAO Zhong-ying, XIE Yu-lin, DONG Ming-hui, DU Tan-xiao, ZHANG Xian, ZHANG Rui, JI Jian-hui. OsDXR interacts with OsMORF1 to regulate chloroplast development and the RNA editing of chloroplast genes in rice[J]. >Journal of Integrative Agriculture, 2023, 22(3): 669-678.
[5] Zaid CHACHAR, Siffat Ullah KHAN, ZHANG Xue-huan, LENG Peng-fei, ZONG Na, ZHAO Jun. Characterization of transgenic wheat lines expressing maize ABP7 involved in kernel development[J]. >Journal of Integrative Agriculture, 2023, 22(2): 389-399.
[6] Asad RIAZ, Ahmad M. ALQUDAH, Farah KANWAL, Klaus PILLEN, YE Ling-zhen, DAI Fei, ZHANG Guo-ping. Advances in studies on the physiological and molecular regulation of barley tillering[J]. >Journal of Integrative Agriculture, 2023, 22(1): 1-13.
[7] LIU Na, LIAN Sen, ZHOU Shan-yue, WANG Cai-xia, REN Wei-chao, LI Bao-hua. Involvement of the autophagy-related gene BdATG8 in development and pathogenicity in Botryosphaeria dothidea[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2319-2328.
[8] LI Yu-dong, BAI Xue, LIU Xin , WANG Wei-jia, LI Zi-wei, WANG Ning, XIAO Fan, GAO Hai-he, GUO Huai-shun, LI Hui, WANG Shou-zhi. Integration of genome-wide association study and selection signatures reveals genetic determinants for skeletal muscle production traits in an F2 chicken population[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2065-2075.
[9] HAN Li-jie, SONG Xiao-fei, WANG Zhong-yi, LIU Xiao-feng, YAN Li-ying, HAN De-guo, ZHOU Zhao-yang, ZHANG Xiao-lan. Genome-wide analysis of OVATE family proteins in cucumber (Cucumis sativus L.)[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1321-1331.
[10] ZHU Lu, JING Jing, QIN Shuai-qi, LU Jia-ni, ZHU Cui-yun, ZHENG Qi, LIU Ya, FANG Fu-gui, LI Yun-sheng, ZHANG Yun-hai, LING Ying-hui. miR-99a-5p inhibits target gene FZD5 expression and steroid hormone secretion from goat ovarian granulosa cells[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1137-1145.
[11] GUO Xiao-yue, LIU Ning, LIU Bing-hui, ZHOU Li-hong, CAO Zhi-yan, HAN Jian-min, DONG Jin-gao . Melanin, DNA replication, and autophagy affect appressorium development in Setosphaeria turcica by regulating glycerol accumulation and metabolism[J]. >Journal of Integrative Agriculture, 2022, 21(3): 762-773.
[12] ZHU Ying-chun, YUAN Gao-peng, JIA Sheng-feng, AN Guo-lin, LI Wei-hua, SUN De-xi, LIU Jun-pu. Transcriptomic profiling of watermelon (Citrullus lanatus) provides insights into male flowers development[J]. >Journal of Integrative Agriculture, 2022, 21(2): 407-421.
[13] GUO Jie, ZHOU Xu-tao, DAI Ke-li, YUAN Xiang-yang, GUO Ping-yi, SHI Wei-ping, ZHOU Mei-xue. Comprehensive analysis of YABBY gene family in foxtail millet (Setaria italica) and functional characterization of SiDL[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2876-2887.
[14] LIAO Xiu-dong, CAO Su-mei, LI Ting-ting, SHAO Yu-xin, ZHANG Li-yang, LU Lin, ZHANG Ri-jun, HOU Shui-sheng, LUO Xu-gang. Regulation of bone phosphorus retention and bone development possibly by BMP and MAPK signaling pathways in broilers[J]. >Journal of Integrative Agriculture, 2022, 21(10): 3017-3025.
[15] ZHU Ling-xiao, LIU Lian-tao, SUN Hong-chun, ZHANG Yong-jiang, ZHANG Ke, BAI Zhi-ying, LI An-chang, DONG He-zhong, LI Cun-dong . Effects of chemical topping on cotton development, yield and quality in the Yellow River Valley of China[J]. >Journal of Integrative Agriculture, 2022, 21(1): 78-90.
No Suggested Reading articles found!