Please wait a minute...
Journal of Integrative Agriculture  2018, Vol. 17 Issue (06): 1267-1275    DOI: 10.1016/S2095-3119(17)61846-X
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Molecular mapping of YrTZ2, a stripe rust resistance gene in wild emmer accession TZ-2 and its comparative analyses with Aegilops tauschii
WANG Zhen-zhong1, 2, XIE Jing-zhong2, GUO Li3, ZHANG De-yun3, LI Gen-qiao4, FANG Ti-lin4, CHEN Yong-xing2, LI Jun5, WU Qiu-hong2, LU Ping2, LI Miao-miao3, WU Hai-bin2, 6, ZHANG Huai-zhi2, ZHANG Yan3, YANG Wu-yun5, LUO Ming-cheng7, Fahima Tzion8, LIU Zhi-yong2
1 China Rural Technology Development Center, Beijing 100045, P.R.China
2 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R.China
3 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P.R.China
4 Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
5 Crop Research Institute, Sichuan Academy of Agriculture Sciences, Chengdu 610066, P.R.China
6 China National Seed Group Co., Ltd., Beijing 100045, P.R.China
7 Department of Plant Sciences, University of California, Davis, CA 95616, USA
8 Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating disease that can cause severe yield losses.  Identification and utilization of stripe rust resistance genes are essential for effective breeding against the disease.  Wild emmer accession TZ-2, originally collected from Mount Hermon, Israel, confers near-immunity resistance against several prevailing Pst races in China.  A set of 200 F6:7 recombinant inbred lines (RILs) derived from a cross between susceptible durum wheat cultivar Langdon and TZ-2 was used for stripe rust evaluation.  Genetic analysis indicated that the stripe rust resistance of TZ-2 to Pst race CYR34 was controlled by a single dominant gene, temporarily designated YrTZ2.  Through bulked segregant analysis (BSA) with SSR markers, YrTZ2 was located on chromosome arm 1BS flanked by Xwmc230 and Xgwm413 with genetic distance of 0.8 cM (distal) and 0.3 cM (proximal), respectively.  By applying wheat 90K iSelect SNP genotyping assay, 11 polymorphic loci (consisting of 250 SNP markers) closely linked to YrTZ2 were identified.  YrTZ2 was further delimited into a 0.8-cM genetic interval between SNP marker IWB19368 and SSR marker Xgwm413, and co-segregated with SNP marker IWB28744 (co-segregated with 28 SNP).  Comparative genomics analyses revealed high level of collinearity between the YrTZ2 genomic region and the orthologous region of Aegilops tauschii 1DS.  The genomic region between loci IWB19368 and IWB31649 harboring YrTZ2 is orthologous to a 24.5-Mb genomic region between AT1D0112 and AT1D0150, spanning 15 contigs on chromosome 1DS.  The genetic and comparative maps of YrTZ2 provide a framework for map-based cloning and marker-assisted selection of YrTZ2.
 
Keywords:  Triticum dicoccoides       Puccinia striiformis f. sp. tritici        SNP        comparative genomics  
Received: 12 June 2017   Accepted:
Fund: This work was financially supported by the Science and Technology Service Network Initiative of Chinese Academy of Sciences (KFJ-STS-ZDTP-024).
Corresponding Authors:  Correspondence LIU Zhi-yong, Tel: +86-10-64806422, E-mail:zyliu@genetic.ac.cn    
About author:  WANG Zhen-zhong, E-mail: wzz198818@163.com;

Cite this article: 

WANG Zhen-zhong, XIE Jing-zhong, GUO Li, ZHANG De-yun, LI Gen-qiao, FANG Ti-lin, CHEN Yongxing, LI Jun, WU Qiu-hong, LU Ping, LI Miao-miao, WU Hai-bin, ZHANG Huai-zhi, ZHANG Yan, YANG Wu-yun, LUO Ming. 2018. Molecular mapping of YrTZ2, a stripe rust resistance gene in wild emmer accession TZ-2 and its comparative analyses with Aegilops tauschii. Journal of Integrative Agriculture, 17(06): 1267-1275.

Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden M J, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A. 2006. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theoretical and Applied Genetics, 113, 1409–1420.
Akhunov E, Nicolet C, Dvorak J. 2009. Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theoretical and Applied Genetics, 119, 507–517.
Avni R, Nave M, Eilam T, Sela H, Alekperov C, Peleg Z, Dvorak J, Korol A, Distelfeld A. 2014. Ultra-dense genetic map of durum wheat×wild emmer wheat developed using the 90K iSelect SNP genotyping assay. Molecular Breeding, 34, 1549–1562.
Blanco A, Bellomo M P, Cenci A, De Giovanni C, D’ovidio R, Iacono E, Laddomada B, Pagnotta M A, Porceddu E, Sciancalepore A, Simeone R, Tanzarella O A. 1998. A genetic linkage map of durum wheat. Theoretical and Applied Genetics, 97, 721–728.
Brenchley R, Spannagl M, Pfeifer M, Barker G L, D’Amore R, Allen A M, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M C, Sehgal S, Gill B, Kianian S, et al. 2012. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 491, 705–710.
Cavanagh C R, Chao S, Wang S, Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva M L, Bockelman H, Talbert L, et al. 2013. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Sciences of the United States of America, 110, 8057–8062.
Chagué V, Fahima T, Dahan A, Sun G L, Korol A B, Ronin Y I, Grama A, Röder M S, Nevo E. 1999. Isolation of microsatellite and RAPD markers flanking the Yr15 gene of wheat using NILs bulked segregant analysis. Genome, 42, 1050–1056.
Cheng P, Xu L S, Wang M N, See D R, Chen X M. 2014. Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016. Theoretical and Applied Genetics, 127, 2267–2277.
Dvorak J, Terlizzi P, Zhang H B, Resta P. 1993. The evolution of polyploid wheats: Identification of the a genome donor species. Genome, 36, 21–31.
Dvorak J, Zhang H B. 1990. Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proceedings of the National Academy of Sciences of the United States of America, 87, 9640–9644.
Feldman M. 2001. The origin of cultivated wheat. In: Benjean A P, Angus J, eds., The Wheat Book: A History of Wheat Breeding. Lavoisier Publishing, Paris. pp. 3–56.
Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J. 2009. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science, 323, 1357–1360.
Ganal M W, Durstewitz G, Polley A, Bérard A, Buckler E S, Charcosset A, Clarke J D, Graner E M, Hansen M, Joets J, Le Paslier M C, McMullen M D, Montalent P, Rose M, Schön C C, Sun Q, Walter H, Martin O C, Falque M. 2011. A large maize (Zea mays L.) SNP genotyping array: Development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE, 6, e28334.
Griffiths S, Sharp R, Foote T N, Bertin I, Wanous M, Reader S, Colas I, Moore G. 2006. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature, 439, 749–752.
Han D J, Wang N, Jiang Z, Wang Q L, Wang X J, Kang Z S. 2012. Characterization and inheritance of resistance to stripe rust in the wheat line Guinong 775. Hereditas, 34, 1607–1613.
IWGSC (The International Wheat Genome Sequencing Consortium). 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 345, 1251788.
Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer K F, Li D, Pan S, Zheng F, et al. 2013. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 496, 91–95.
Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P, Huerta-Espino J, McFadden H, Bossolini E, Selter L L, Keller B. 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 323, 1360–1363.
Li G Q, Li Z F, Yang W Y, Zhang Y, He Z H, Xu S C, Singh R P, Qu Y Y, Xia X C. 2006. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theoretical and Applied Genetics, 112, 1434–1440.
Liang Y, Zhang D Y, Ouyang S, Xie J, Wu Q, Wang Z, Cui Y, Lu P, Zhang D, Liu Z J, Zhu J, Chen Y X, Zhang Y, Luo M C, Dvorak J, Huo N, Sun Q, Gu Y Q, Liu Z. 2015. Dynamic evolution of resistance gene analogs in the orthologous genomic regions of powdery mildew resistance gene MlIW170 in Triticum dicoccoides and Aegilops tauschii. Theoretical and Applied Genetics, 128, 1617–1629.
Lin F, Chen X M. 2007. Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theoretical and Applied Genetics, 114, 1277–1287.
Ling H Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, et al. 2013. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 496, 87–90.
Liu R H, Meng J L. 2003. MapDraw: A microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (Beijing), 25, 317–321.
Liu Z, Zhu J, Cui Y, Liang Y, Wu H, Song W, Liu Q, Yang T, Sun Q, Liu Z. 2012. Identification and comparative mapping of a powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides) on chromosome 2BS. Theoretical and Applied Genetics, 124, 1041–1049.
Lu P, Qin J, Wang G, Wang L, Wang Z, Wu Q, Xie J, Liang Y, Wang Y, Zhang D, Sun Q, Liu Z. 2015. Comparative fine mapping of the Wax 1 (W1) locus in hexaploid wheat. Theoretical and Applied Genetics, 128, 1595–1603.
Luo M C, Deal K R, Akhunov E D, Akhunova A R, Anderson O D, Anderson J A, Blake N, Clegg M T, Coleman-Derr D, Conley E J, Crossman C C, Dubcovsky J, Gill B S, Gu Y Q, Hadam J, Heo H Y, Huo N, Lazo G, Ma Y, Matthews D E, et al. 2009. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proceedings of the National Academy of Sciences of the United States of America, 106, 15780–15785.
Luo M C, Gu Y Q, You F M, Deal K R, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, Jorgensen C M, Zhang Y, McGuire P E, Pasternak S, Stein J C, Ware D, Kramer M, McCombie W R, Kianian S F, Martis M M, et al. 2013. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proceedings of the National Academy of Sciences of the United States of America, 110, 7940–7945.
Ma J X, Zhou R H, Dong Y S, Wang L F, Wang X M, Jia J Z. 2001. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica, 120, 219–226.
McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Appels R, Xia X C. 2014. Catalogue of gene symbols for wheat: 2013–2014 supplement. [2016-06-07]. http://shigennigacjp/wheat/komugi/genes/symbolClassListjsp
McIntosh R A, Dubcovksy J, Rogers W J, Morris C, Appels R, Xia X C. 2016. Catalogue of gene symbols for wheat: 2015–2016 supplement. [2017-06-07]. http://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp
McIntosh R A, Lagudah E S. 2000. Cytogenetical studies in wheat. XVIII. Gene Yr24 for resistance to stripe rust. Plant Breeding, 119, 81–83.
McIntosh R A, Silk J, The T T. 1996. Cytogenetic studies in wheat. XVII. Monosomic analysis and linkage relationships of gene Yr15 for resistance to stripe rust. Euphytica, 89, 395–399.
McIntosh R A, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R, Xia X C. 2013. Catalogue of gene symbols for wheat. In: 12th International Wheat Genetics Symposium Yokohama. [2017-06-07]. http://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp
Michelmore R W, Paran I, Kesseli R V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 88, 9828–9832.
Nachit M M, Elouafi I, Pagnotta M A, El Saleh A, Iacono E, Labhilili M, Asbati A, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut J M, Tanzarella O A, Porceddu E, Sorrells M E. 2001. Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theoretical and Applied Genetics, 102, 177–186.
Ouyang S, Zhang D, Han J, Zhao X, Cui Y, Song W, Huo N, Liang Y, Xie J, Wang Z, Wu Q, Chen Y X, Lu P, Zhang D Y, Wang L, Sun H, Yang T, Keeble-Gagnere G, Appels R, Dole?el J, et al. 2014. Fine physical and genetic mapping of powdery mildew resistance gene MlIW172 originating from wild emmer (Triticum dicoccoides). PLoS ONE, 9, e100160.
Peleg Z, Saranga Y, Suprunova T, Ronin Y, Röder M S, Kilian A, Korol A B, Fahima T. 2008. High-density genetic map of durum wheat×wild emmer wheat based on SSR and DArT markers. Theoretical and Applied Genetics, 117, 103–115.
Peng J H, Fahima T, Röder M S, Huang Q Y, Dahan A, Li Y C, Grama A, Nevo E. 2000. High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetica, 109, 199–210.
Peng J H, Fahima T, Röder M S, Li Y C, Dahan A, Grama A, Ronin Y I, Korol A B, Nevo E. 1999. Microsatellite tagging of stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theoretical and Applied Genetics, 98, 862–872.
Qin B, Cao A, Wang H, Chen T, You F M, Liu Y, Ji J, Liu D, Chen P, Wang X E. 2011. Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theoretical and Applied Genetics, 123, 207–218.
Ramirez-Gonzalez R H, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, Jack P, Caccamo M, Uauy C. 2015. RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnology Journal, 13, 613–624.
Riedelsheimer C, Lisec J, Czedik-Eysenberg A, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M, Willmitzer L, Melchinger A E. 2012. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proceedings of the National Academy of Sciences of the United States of America, 109, 8872–8877.
Schneider A, Molnár I, Molnár-Láng M. 2008. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica, 163, 1–19.
Somers D J, Isaac P, Edwards K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 109, 1105–1114.
Song Q J, Shi J R, Singh S, Fickus E W, Costa J M, Lewis J, Gill B S, Ward R, Cregan P B. 2005. Development and mapping of microsatellite (SSR) markers in wheat. Theoretical and Applied Genetics, 110, 550–560.
Sun G L, Fahima T, Korol A B, Turpeinen T, Grama A, Ronin Y I, Nevo E. 1997. Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat Triticum dicoccoides. Theoretical and Applied Genetics, 95, 622–628.
Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. 2006. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 314, 1298–1301.
de Vallavieille-Pope C, Ali S, Leconte M, Enjalbert J, Delos M, Rouzet J. 2012. Virulence dynamics and regional structuring of Puccinia striiformis f. sp. tritici in France between 1984 and 2009. Plant Disease, 96, 131–140.
Wan A M, Chen X M, He Z H. 2007. Wheat stripe rust in China. Australian Journal of Agricultural Research, 58, 605–619.
Wan A M, Zhao Z H, Chen X M, He Z H, Jin S L, Jia Q Z, Yao G, Yang J X, Wang B T, Li G B, Bi Y Q, Yuan Z Y. 2004. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Disease, 88, 896–904.
Wang L F, Ma J X, Zhou R H, Wang X M, Jia J Z. 2002. Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, P.I.178383 (Triticum aestivum L.). Euphytica, 124, 71–73.
Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, IWGSC (International Wheat Genome Sequencing Consortium), Lillemo M, Mather D, Appels R, et al. 2014. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnology Journal, 12, 787–796.
Wang Z, Cui Y, Chen Y, Zhang D, Liang Y, Zhang D, Wu Q, Xie J, Ouyang S, Li D, Huang Y, Lu P, Wang G, Yu M, Zhou S, Sun Q, Liu Z. 2014. Comparative genetic mapping and genomic region collinearity analysis of the powdery mildew resistance gene Pm41. Theoretical and Applied Genetics, 127, 1741–1751.
Wu Q H, Chen Y X, Zhou S H, Fu L, Chen J J, Xiao Y, Zhang D, Ouyang S H, Zhao X J, Cui Y, Zhang D Y, Liang Y, Wang Z Z, Xie J Z, Qin J X, Wang G X, Li D L, Huang Y L, Yu M H, Lu P, et al. 2015. High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda 1817×Beinong 6. PLoS ONE, 10, e0118144.
Xie W L, Nevo E. 2008. Wild emmer: Genetic resources, gene mapping and potential for wheat improvement. Euphytica, 164, 603–614.
Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. 2006. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proceedings of the National Academy of Sciences of the United States of America, 103, 19581–19586.
Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. 2004. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 303, 1640–1644.
Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. 2003. Positional cloning of the wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences of the United States of America, 100, 6263–6268.
Zhang H, Guan H, Li J, Zhu J, Xie C, Zhou Y, Duan X, Yang T, Sun Q, Liu Z. 2010. Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 121, 1613–1621.
Zhang J Y, Xu S C, Zhang S S, Zhao W S, Zhang J X. 2001. Monosomic analysis of resistance to stripe rust for source wheat line Jinghe 8811. Acta Agronomica Sinica, 27, 273–277. (in Chinese)
Zhao K, Tung C W, Eizenga G C, Wright M H, Ali M L, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S R. 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications, 2, 467.
[1] YANG Meng-jiao, WANG Cai-rong, Muhammad Adeel HASSAN, WU Yu-ying, XIA Xian-chun, SHI Shu-bing, XIAO Yong-gui, HE Zhong-hu. QTL mapping of seedling biomass and root traits under different nitrogen conditions in bread wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1180-1192.
[2] DIAO Shu-qi, XU Zhi-ting, YE Shao-pan, HUANG Shu-wen, TENG Jin-yan, YUAN Xiao-long, CHEN Zan-mou, ZHANG Hao, LI Jia-qi, ZHANG Zhe. Exploring the genetic features and signatures of selection in South China indigenous pigs[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1359-1371.
[3] HU Fu-chu, CHEN Zhe, WANG Xiang-he, WANG Jia-bao, FAN Hong-yan, QIN Yong-hua, ZHAO Jietang, HU Gui-bing. Construction of high-density SNP genetic maps and QTL mapping for dwarf-related traits in Litchi chinensis Sonn[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2900-2913.
[4] REN Yun, CHEN Dan, LI Wen-jie, TAO Luo, YUAN Guo-qiang, CAO Ye, LI Xue-mei, DENG Qi-ming, WANG Shi-quan, ZHENG Ai-ping, ZHU Jun, LIU Huai-nian, WANG Ling-xia, LI Ping, LI Shuang-cheng . Genome-wide pedigree analysis of elite rice Shuhui 527 reveals key regions for breeding[J]. >Journal of Integrative Agriculture, 2021, 20(1): 35-45.
[5] CUI Hong-ying, ZHAO Zhang-wu. Structure and function of neuropeptide F in insects[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1429-1438.
[6] CHEN Bin, TIAN Yan-li, ZHAO Yu-qiang, WANG Yuan-jie, CHUAN Jia-cheng, LI Xiang, HU Bai-shi. Genomic characteristics of Dickeya fangzhongdai isolates from pear and the function of type IV pili in the chromosome[J]. >Journal of Integrative Agriculture, 2020, 19(4): 906-920.
[7] NAN Jiu-hong, YIN Li-lin, TANG Zhen-shuang, CHEN Jian-hai, ZHANG Jie, WANG Hai-yan, DU Xiao-yong, LIU Xiang-dong . Genetic parameter estimation and genome-wide association study (GWAS) of red blood cell count at three stages in a Duroc×Erhualian pig population[J]. >Journal of Integrative Agriculture, 2020, 19(3): 793-799.
[8] YANG Hai-long, DONG Le, WANG Hui, LIU Chang-lin, LIU Fang, XIE Chuan-xiao. A simple way to visualize detailed phylogenetic tree of huge genomewide SNP data constructed by SNPhylo[J]. >Journal of Integrative Agriculture, 2018, 17(09): 1972-1978.
[9] CHANG Li-fang, LI Hui-hui, WU Xiao-yang, LU Yu-qing, ZHANG Jin-peng, YANG Xin-ming, LI Xiu-quan, LIU Wei-hua, LI Li-hui. Genetic characteristics of a wheat founder parent and a widely planted cultivar derived from the same cross[J]. >Journal of Integrative Agriculture, 2018, 17(04): 775-785.
[10] CHEN Li-kai, YAN Xian-cheng, DAI Jun-hao, CHEN Si-ping, LIU Yong-zhu, WANG Hui, CHEN Zhiqiang, GUO Tao. Significant association of the novel Rf4-targeted SNP marker with the restorer for WA-CMS in different rice backgrounds and its utilization in molecular screening[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2128-2135.
[11] ZHU Kun-peng, BAO Jian-dong, ZHANG Lian-hu, YANG Xue, LI Yuan, Zhu Ming-hui, LIN Qing-yun, ZHAO Ao, ZHAO Zhen, ZHOU Bo, LU Guo-dong. Comparative analysis of the genome of the field isolate V86010 of the rice blast fungus Magnaporthe oryzae from Philippines[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2222-2230.
[12] YANG Guang, ZHAI Hong, WU Hong-yan, ZHANG Xing-zheng, Lü Shi-xiang, WANG Ya-ying, LI Yu-qiu, HU Bo, WANG Lu, WEN Zi-xiang, WANG De-chun, WANG Shao-dong, Kyuya Harada, XIA Zheng-jun, XIE Fu-ti. QTL effects and epistatic interaction for flowering time and branch number in a soybean mapping population of Japanese×Chinese cultivars[J]. >Journal of Integrative Agriculture, 2017, 16(09): 1900-1912.
[13] LI Jing, WANG Yong-qing, CHEN Dong, TU Mei-yan, XIE Hong-jiang, JIANG Guo-liang, LIU Jia, SUN Shu-xia. The variation of NAD+-SDH gene in mutant white-fleshed loquat[J]. >Journal of Integrative Agriculture, 2016, 15(8): 1744-1750.
[14] DENG Yu-song, XIA Dong, CAI Chong-fa, DING Shu-wen. Effects of land uses on soil physic-chemical properties and erodibility in collapsing-gully alluvial fan of Anxi County, China[J]. >Journal of Integrative Agriculture, 2016, 15(8): 1863-1873.
[15] LING Jian, ZHANG Ji-xiang, ZENG Feng, CAO Yue-xia, XIE Bing-yan, YANG Yu-hong. Comparative genomics provide a rapid detection of Fusarium oxysporum f. sp. conglutinans[J]. >Journal of Integrative Agriculture, 2016, 15(4): 822-831.
No Suggested Reading articles found!