Please wait a minute...
Journal of Integrative Agriculture  2016, Vol. 15 Issue (12): 2719-2725    DOI: 10.1016/S2095-3119(15)61291-6
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Mapping of the heading date gene HdAey2280 in Aegilops tauschii
LIU Guo-xiang*, ZHANG Li-chao*, XIA Chuan, JIA Ji-zeng, ZHANG Jun-cheng, ZHANG Qiang, DONG Chun-hao, KONG Xiu-ying, LIU Xu
Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract      An optimum heading date is essential for sustainable crop productivity and ensuring high yields. In the present study, F2:3 populations were generated by crossing an early-heading accession, Y2280, with a late-heading accession, Y2282. The heading dates of the F2 and F3 populations were investigated in a field study. Using publicly available simple sequence repeat (SSR) markers, the early heading date gene HdAey2280 was mapped onto Aegilops tauschii chromosome 7DS between the flanking markers wmc438 and barc126 at distances of 15 and 9.1 cM, respectively. Further analysis indicated that HdAey2280 is a novel heading date gene. New SSR markers were developed based on the Ae. tauschii draft genome sequence, resulting in four new markers that were linked to the heading date gene HdAey2280. The closest distance of these markers was 1.9 cM away from the gene. The results collected in this study will serve as a framework for map-based cloning and marker-assisted selection in wheat breeding programs in the future.
Keywords:  Aegilops tauschii        heading date        molecular markers        HdAey2280   
Received: 20 November 2015   Accepted:
Fund: 

This work was financially supported by the National High-Tech R&D Program of China (2011AA100104).

Corresponding Authors:  LIU Xu, E-mail: liuxu01@caas.cn   

Cite this article: 

LIU Guo-xiang, ZHANG Li-chao, XIA Chuan, JIA Ji-zeng, ZHANG Jun-cheng, ZHANG Qiang, DONG Chun-hao, KONG Xiu-ying, LIU Xu. 2016. Mapping of the heading date gene HdAey2280 in Aegilops tauschii. Journal of Integrative Agriculture, 15(12): 2719-2725.

Andres F, Coupland G. 2012. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13, 627–639.

Bonnin I, Rousset M, Madur D, Sourdille P, Dupuits C, Brunel D, Goldringer I. 2008. FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theoretical and Applied Genetics, 116, 383–394.

Chen A, Dubcovsky J. 2012. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering, PLoS Genetics, 8, e1003134.

Dhillon T, Pearce S P, Stockinger E J, Distelfeld A, Li C, Knox A K, Vashegyi I, Vagujfalvi A, Galiba G, Dubcovsky J. 2010. Regulation of freezing tolerance and flowering in temperate cereals: The VRN-1 connection. Plant Physiology, 153, 1846–1858.

Distelfeld A, Li C, Dubcovsky J. 2009. Regulation of flowering in temperate cereals. Current Opinion in Plant Biology, 12, 178–184.

Dubcovsky J, Loukoianov A, Fu D, Valarik M, Sanchez A, Yan L. 2006. Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Molecular Biology, 60, 469–480.

Griffiths S, Simmonds J, Leverington M, Wang Y K, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J. 2009. Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theoretical and Applied Genetics, 119, 383–395.

Hanocq E, Laperche A, Jaminon O, Lainé AL, Le Gouis J. 2007. Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theoretical and Applied Genetics, 114, 569–584.

Hanocq E, Niarquin M, Heumez E, Rousset M, Le Gouis J. 2004. Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theoretical and Applied Genetics, 110, 106–115.

Jensen L B, Andersen J R, Frei U, Xing Y, Taylor C, Holm P B, Lubberstedt T. 2005. QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theoretical and Applied Genetics, 110, 527–536.

Jia J Z, Zhao S C, Kong X Y, Li Y R, Zhao G Y, He W M, Appels R, Pfeifer M, Tao Y, Zhang X Y, Jing R L, Zhang C, Ma Y Z, Gao L F, Gao C, Spannagl M, Mayer K F, Li D, Pan S, Zheng F Y, et al. 2013. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 496, 91–95.

Jung C, Muller A E. 2009. Flowering time control and applications in plant breeding. Trends in Plant Science, 14, 563–573.

Kuchel H, Hollamby G, Langridge P, Williams K, Jeferies S P. 2006. Identification of genetic loci associated with ear-emergence in bread wheat. Theoretical and Applied Genetics, 13, 1103–1112.

Li C, Distelfeld A, Comis A, Dubcovsky J. 2011. Wheat flowering repressor VRN2 and promoter CO2 compete for interactions with NUCLEAR FACTOR-Y complexes. The Plant Journal, 67, 763–773.

Li C, Dubcovsky J. 2008. Wheat FT protein regulates VRN1 transcription through interactions with FDL2. The Plant Journal, 55, 543–554.

Lincoln S, Daly M, Lander E. 1992. Constructing Genetic Maps with Mapmaker/EXP30. Whitehead Institute Technical Report. 3rd ed. Whitehead Institute, Cambridge.

Ling H Q, Zhao S C, Liu D C, Wang J Y, Sun H, Zhang C, Fan H J, Li D, Dong L L, Tao Y, Gao C, Wu H L, Li Y W, Cui Y, Guo X S, Zheng S S, Wang B, Yu K, Liang Q S, Yang W L, et al. 2013. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 496, 87–90.

Liu R H, Meng J L. 2003. MapDraw: A microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas, 25, 317–321.

Loukoianov A, Yan L L, Blechl A, Sanchez A, Dubcovsky J. 2005. Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiology, 138, 2364–2373.

Luo M C, Gu Y Q, You F M, Deal K R, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, Jorgensen C M, Zhang Y, McGuire P E, Pasternak S, Stein J C, Ware D, Kramer M, McCombie W R, Kianian S F, Martis M M, et al. 2013. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proceeding of the National Academy of Sciences of the United States of America, 110, 7940–7945.

Matsuoka Y, Takumi S, Kawahara T. 2015. Intraspecific lineage divergence and its association with reproductive trait change during species range expansion in central Eurasian wild wheat Aegilops tauschii Coss. (Poaceae). BMC Evolutionary Biology, 15, 213.

Matsuoka Y, Takumi S, Kawahara T. 2008. Flowering time diversification and dispersal in central Eurasian wild wheat Aegilops tauschii Coss.: Genealogical and ecological framework. PLoS ONE, 3, e3138.

Milner S G, Maccaferri M, Huang B E, Mantovani P, Massi A, Frascaroli E, Tuberosa R, Salvi S. 2016. Multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum). Plant Biotechnology Journal, 14, 735–748.

Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihara Y. 2003. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. The Plant Journal, 36, 82–93.

Rousset M, Bonnin I, Remoué C, Falque M, Rhoné B, Veyrieras J B, Madur D, Murigneux A, Balfourier F, Le Gouis J, Santoni S, Goldringer I. 2011. Deciphering the genetics of flowering time by an association study on candidate genes in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 123, 907–926.

Shitsukawa N, Ikari C, Shimada S, Kitagawa S, Sakamoto K, Saito H, Ryuto H, Fukunishi N, Abe T, Takumi S, Nasuda S, Murai K. 2007. The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes & Genetic Systems, 82, 167–170.

Somers D J, Isaac P, Edwards K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 109, 1105–1114.

Sourdille P, Snape J W, Cadalen T, Charmet G, Nakata N, Bernard S, Bernard M. 2000. Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome, 43, 487–494.

Trevaskis B, Hemming M N, Dennis E S, Peacock W J. 2007. The molecular basis of vernalization-induced flowering in cereals. Trends in Plant Science, 12, 352–357.

Worland A J. 1996. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica, 89, 49–57.

Xu X Y, Bai G H, Carver B F, Shaner G E. 2005. A QTL for early heading in wheat cultivar Suwon 92. Euphytica, 146, 233–237.

Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. 2006. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proceedings of the National Academy of Sciences of the United States of America, 103, 19581–19586.

Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. 2004. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 303, 1640–1644.

Zhao X Y, Liu M S, Li J R, Guan C M, Zhang X S. 2005. The wheat TaGI1, involved in photoperiodic flowering, encodes an Arabidopsis GI ortholog. Plant Molecular Biology, 58, 53–64.

Zanke C, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Beier S, Ganal M W, Röder M S. 2014. Genetic architecture of main effect QTL for heading date in European winter wheat. Frontiers in Plant Science, 5, 217.
[1] LIU Lei, WANG Heng-bo, LI Yi-han, CHEN Shu-qi, WU Ming-xing, DOU Mei-jie, QI Yi-yin, FANG Jing-ping, ZHANG Ji-sen. Genome-wide development of interspecific microsatellite markers for Saccharum officinarum and Saccharum spontaneum[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3230-3244.
[2] CHEN Hong-xin, HAN Hai-ming, LI Qing-feng, ZHANG Jin-peng, LU Yu-qing, YANG Xin-ming, LI Xiuquan, LIU Wei-hua, LI Li-hui. Identification and genetic analysis of multiple P chromosomes of Agropyron cristatum in the background of common wheat[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1697-1705.
[3] Syed Adeel Zafar, Amjad Hameed, Muhammad Amjad Nawaz, MA Wei, Mehmood Ali Noor, Muzammil Hussain, Mehboob-ur-Rahman. Mechanisms and molecular approaches for heat tolerance in rice (Oryza sativa L.) under climate change scenario[J]. >Journal of Integrative Agriculture, 2018, 17(04): 726-738.
[4] Ghulam Shabir, Kashif Aslam, Abdul Rehman Khan, Muhammad Shahid, Hamid Manzoor, Sibgha Noreen, Mueen Alam Khan, Muhammad Baber, Muhammad Sabar, Shahid Masood Shah, Muhammad Arif. Rice molecular markers and genetic mapping: Current status and prospects[J]. >Journal of Integrative Agriculture, 2017, 16(09): 1879-1891.
No Suggested Reading articles found!