Please wait a minute...
Journal of Integrative Agriculture  2016, Vol. 15 Issue (10): 2237-2246    DOI: 10.1016/S2095-3119(16)61383-7
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Genetic variation and population structure of the mushroom Pleurotus ferulae in China inferred from nuclear DNA analysis
ZHAO Meng-ran1*, HUANG Chen-yang1*, WU Xiang-li1, CHEN Qiang1, QU Ji-bin1, LI Yan-chun2, GAO Wei1, ZHANG Jin-xia1
1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing 100081, P.R.China
2 Key Laboratory of Plant Diversity and Biogeography of East Asia, Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract      To investigate the genetic diversity of an edible fungus Pleurotus ferulae, a total of 89 wild samples collected from six geographical locations in the Xinjiang Uygur Autonomous Region of China and two geographical locations in Italy, were analyzed using three DNA fragments including the translation elongation factor (EF1α), the second largest subunit of the RNA polymerase II (RPB2) and the largest subunit of the RNA polymerase II (RPB1). The results indicated relatively abundant genetic variability in the wild resources of P. ferulae. The analysis of molecular variance (AMOVA) showed that the vast majority of the genetic variation was found within geographical populations. Both the Chinese populations and the Italian populations of P. ferulae displayed a limited genetic differentiation. The degree of differentiation between the Chinese populations and the Italian populations was obviously higher than that between the populations from the same region, and moreover the genetic differentiation among all the tested populations was correlated to the geographical distance. The phylogeny analyses confirmed that samples from China and Italy belonged to another genetic group separated from Pleurotus eryngii. They were closely related to each other but were clustered according to their geographical origins, which implied the Chinese populations were highly differentiated from the Italian populations because of distance isolation, and the two populations from different regions might be still in the process of allopatric divergence.
Keywords:  genetic variation        population structure        genetic differentiation  
Received: 30 September 2015   Accepted:
Fund: 

The research was funded by the National Basic Research Program of China (2014CB138305) and the China Agriculture Research System (CARS24).

Corresponding Authors:  ZHANG Jin-xia, Tel: +86-10-82108692, E-mail: zhangjinxia@caas.cn   
About author:  ZHAO Meng-ran, E-mail: ran-0619@163.com

Cite this article: 

ZHAO Meng-ran, HUANG Chen-yang, WU Xiang-li, CHEN Qiang, QU Ji-bin, LI Yan-chun, GAO Wei, ZHANG Jin-xia. 2016. Genetic variation and population structure of the mushroom Pleurotus ferulae in China inferred from nuclear DNA analysis. Journal of Integrative Agriculture, 15(10): 2237-2246.

Akyuz M, Kirbag S. 2009. Antimicrobial activity of Pleurotus eryngii var. ferulae grown on various agro-wastes. EurAsian Journal of Biosciences, 3, 58–63.

Akyuz M, Kirbag S. 2010. Effect of various agro-residues on nutritive value of Pleurotus eryngii (DC. ex Fr.) Quél. var. ferulae Lanzi. Journal of Agricultural Sciences, 16, 83–88.

Akyuz M, Yildiz A. 2008. Evaluation of cellulosic wastes for the cultivation of Pleurotus eryngii (DC. ex Fr.) Quél. African Journal of Biotechnology, 7, 1494–1499.

Alam N, Yoon K N, Lee J S, Cho H J, Lee T S. 2012. Consequence of the antioxidant activities and tyrosinase inhibitory effects of various extracts from the fruiting bodies of Pleurotus ferulae. Saudi Journal of Biological Sciences, 19, 111–118.

Bergemann S E, Smith M A, Parrent J L, Gilbert G S, Garbelotto M. 2009. Genetic population structure and distribution of a fungal polypore, Datronia caperata (Polyporaceae), in mangrove forests of Central America. Journal of Biogeography, 36, 266–279.

Bertolino S, Vizzini A, Wauters L A, Tosi G. 2004. Consumption of hypogeous and epigeous fungi by the red squirrel (Sciurus vulgaris) in subalpine conifer forests. Forest Ecology and Management, 202, 227–233.

Boisselier-Dubayle M C, Perreau-Bertrand J, Lambourdiere J. 1996. Genetic variablility in wild populations of Mycena rosea. Mycological Research, 100, 753–758.

Brewer M T, Milgroom M G. 2010. Phylogeography and population structure of the grape powdery mildew fungus, Erysiphe necator, from diverse Vitis species. BMC Evolutionary Biology, 10, 268–281.

Cao Y, Zhang Y, Yu Z F, Mi F, Liu C L, Tang X Z, Long Y X, He X X, Wang P F, Xu J P. 2013. Structure, gene flow, and recombination among geographic populations of a Russula virescens Ally from southwestern China. PLOS ONE, 8, e73174.

Chen Z C. 1986. Preliminary research on the domestication of Pleurotus ferulae. Edible Fungi of China, 2, 16–17. (in Chinese)

Cogliati M, Zani A, Rickerts V, McCormick I, Desnos-Ollivier M, Velegraki A, Escandon P, Ichikawa T, Ikeda R, Bienvenu A L, Tintelnot K, Tore O, Akcaglar S, Lockhart S, Tortorano A M, Varma A. 2016. Multilocus sequence typing analysis reveals that Cryptococcus neoformans var. neoformans is a recombinant population. Fungal Genetics and Biology, 87, 22–29.

Cozzolino S, Cafasso D, Pellegrino G, Musacchio A, Widmer A. 2003. Fine-scale phylogeographical analysis of Mediterranean Anacamptis palustris (Orchidaceae) populations based on chloroplast minisatellite and microsatellite variation. Molecular Ecology, 12, 2783–2792.

Ding Z, Chen Y, Xu Z, Peng L, Xu G, Gu Z, Zhang L, Shi G, Zhang K. 2013. Production and characterization of laccase from Pleurotus ferulae in submerged fermentation. Annals of Microbiology, 64, 121–129.

Douhan G W, Vincenot L, Gryta H, Selosse M A. 2011. Population genetics of ectomycorrhizal fungi: From current knowledge to emerging directions. Fungal Biology, 115, 569–597.

Excoffier L, Laval G, Schneider S. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolution Bioinformatics Online, 1, 47–50.

Feng B, Zhao Q, Xu J P, Qin J, Yang Z L. 2016. Drainage isolation and climate change-driven population expansion shape the genetic structures of Tuber indicum complex in the Hengduan Mountains region. Scientific Reports, 6, 1-10.

Gascon C, Malcolm J R, Patton J L, da Silva M N, Bogart J P, Lougheed S C, Peres C A, Neckel S, Boag P T. 2000. Riverine barriers and the geographic distribution of Amazonian species. Proceedings of the National Academy of Sciences of the United States of America, 97, 13672–13677.

Geml J, Kauff F, Brochmann C, Taylor D L. 2010. Surviving climate changes: High genetic diversity and transoceanic gene flow in two arctic-alpine lichens, Flavocetraria cucullata and F. nivalis (Parmeliaceae, Ascomycota). Journal of Biogeography, 37, 1529–1542.

De Gioia T, Sisto D, Rana G L, Figliuolo G. 2005. Genetic structure of the Pleurotus eryngii species-complex. Mycological Research, 109, 71–80.

Halling R E, Osmundson T W, Neves M A. 2008. Pacific boletes: implications for biogeographic relationships. Mycological Research, 112, 437–447.

Hibbett D S. 2001. Shiitake mushrooms and molecular clocks: historical biogeography of Lentinula. Mycological Research, 28, 231–241.

James T Y, Porter D, Hamrick J L, Vilgalys R. 1999. Evidence for limited iIntercontinental gene flow in the cosmopolitan mushroom, Schizophyllum commune. Evolution, 53, 1665–1677.

Jargeat P, Martos F, Carriconde F, Gryta H, Moreau P A, Gardes M. 2010. Phylogenetic species delimitation in ectomycorrhizal fungi and implications for barcoding: The case of the Tricholoma scalpturatum complex (Basidiomycota). Molecular Ecology, 19, 5216–5230.

Kauserud H, Svegarden I B, Saetre G P, Knudsen H, Stensrud O, Schmidt O, Doi S, Sugiyama T, Hogberg N. 2007. Asian origin and rapid global spread of the destructive dry rot fungus Serpula lacrymans. Molecular Ecology, 16, 3350–3360.

Kirbag S, Akyüz M. 2008. Evaluation of agricultural wastes for the cultivation of Pleurotus eryngii var ferulae (DC. ex Fr.) Quél. African Journal of Biotechnology, 7, 3660–3664.

Lewinsohn D, Nevo E, Wasser S P, Hadar Y, Beharav A. 2001. Genetic diversity in populations of the Pleurotus eryngii complex in Israel. Mycological Research, 105, 941–951.

Lian C L, Narimatsu M, Nara K, Hogetsu T. 2006. Tricholoma matsutake in a natural Pinus densiflora forest: Correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytologist, 171, 825–836.

Librado P, Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.

Li M C, Liang J F, Li Y C, Feng B, Yang Z L, James T Y, Xu J P. 2010. Genetic diversity of Dahongjun, the commercially important “Big Red Mushroom” from southern China. PLoS ONE, 5, e10684.

Mang S M, Figliuolo G. 2010. Species delimitation in Pleurotus eryngii species-complex inferred from ITS and EF-1α gene sequences. Mycology, 1, 269–280.

Moncalvo J M, Buchanan P K. 2008. Molecular evidence for long distance dispersal across the Southern Hemisphere in the Ganoderma applanatum-australe species complex (Basidiomycota). Mycological Research, 112, 425–436.

Mou C J, Cao Y Q. 1986. The mushroom of Pleurotus ferulae in Xinjiang and its domesticated and cultural traits. Edible Fungi, 5, 4–5. (in Chinese)

Nevo E. 1998. Molecular evolution and ecological stress at global, regional and local scales: The Israeli perspective. The Journal of Experimental Zoology, 282, 95–119.

Nevo E, Beiles A. 1988. Genetic parallelism of protein polymorphism in nature: Ecological test of the neutral theory of molecular evolution. Biological Journal of the Linnean Society, 35, 229–245.

Nielsen R, Slatkin M. 2000. Likelihood analysis of ongoing gene flow and historical association. Evolution, 54, 44–50.

Pildain M B, Coetzee M P A, Rajchenberg M, Petersen R H, Wingfield M J, Wingfield B D. 2009. Molecular phylogeny of Armillaria from the Patagonian Andes. Mycological Progress, 8, 181–194.

Posada D, Crandall K A. 1998. Modeltest: Testing the model of DNA substitution. Bioinformatics, 14, 817–818.

Rodriguez Estrada A E, Jimenez-Gasco Mdel M, Royse D J. 2010. Pleurotus eryngii species complex: Sequence analysis and phylogeny based on partial EF1α and RPB2 genes. Fungal Biology, 114, 421–428.

Ro H S, Kim S S, Ryu J S, Jeon C O, Lee T S, Lee H S. 2007. Comparative studies on the diversity of the edible mushroom Pleurotus eryngii: ITS sequence analysis, RAPD fingerprinting, and physiological characteristics. Mycological Research, 111, 710–715.

Ronquist F, Huelsenbeck J P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

Rosendahl S, McGee P, Morton J B. 2009. Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Molecular Ecology, 18, 4316–4329.

Saville B J, Yoell H, Anderson J B. 1996. Genetic exchange and recombination in populations of the root-infecting fungus Armillaria gallica. Molecular Ecology, 5, 485–497.

Schoch C L, Sung G H, Lopez-Giraldez F, Townsend J P, Miadlikowska J, Hofstetter V, Robbertse B, Matheny P B, Kauff F, Wang Z, Gueidan C, Andrie R M, Trippe K, Ciufetti L M, Wynns A, Fraker E, Hodkinson B P, Bonito G, Groenewald J Z, Arzanlou M, et al. 2009. The Ascomycota tree of life: A phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Society of Systematic Biologists, 58, 224–239.

Stephens M, Donnelly P. 2003. A comparison of Bayesian methods for haplotype reconstruction from population genotype data. American Journal of Human Genetic, 73, 1162–1169.

Swofford D L. 2002. PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods), 4th ed. Sinauer Associates, Sunderland, MA, USA. pp. 12-26

Taylor E B, Boughman J W, Groenenboom M, Sniatynski M, Schluter D, Gow J L. 2006. Speciation in reverse: Morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Molecular Ecology, 15, 343–355.

Urbanelli S, Della Rosa V, Fanelli C, Fabbri A A, Reverberi M. 2003. Genetic diversity and population structure of the Italian fungi belonging to the taxa Pleurotus eryngii (DC.:Fr.) Quél and P. ferulae (DC.:Fr.) Quél. Heredity, 90, 253–259.

Urbanelli S, Fanelli C, Fabbri A A, Della Rosa V, Maddau L, Marras F M R. 2002. Molecular genetic analysis of two taxa of the Pleurotus eryngii complex: Pleurotus eryngii (DC.:Fr.) Quél. var. eryngii and P. ferulae (DC.:Fr.) Quél. var. ferulae. Biological Journal of the Linnean Society, 75, 125–136.

Vincenot L, Nara K, Sthultz C, Labbe J, Dubois M P, Tedersoo L, Martin F, Selosse M A. 2012. Extensive gene flow over Europe and possible speciation over Eurasia in the ectomycorrhizal basidiomycete Laccaria amethystina complex. Molecular Ecology, 21, 281–299.

Xu J P. 2006. Fudamental of fungal molecular population genetic analyses. Current Issues in Molecular Biology, 8, 75–90.

Zervakis G I, Moncalvo J M, Vilgalys R. 2004. Molecular phylogeny, biogeography and speciation of the mushroom species Pleurotus cystidiosus and allied taxa. Microbiology, 150, 715–726.

Zervakis G I, Venturella G, Papadopoulou K. 2001. Genetic polymorphism and taxonomic infrastructure of the Pleurotus eryngii species-complex as determined by RAPD analysis, isozyme profiles and ecomorphological characters. Microbiology, 147, 3183–3194.

Zhang J X, Huang C Y, Ng T B, Wang H X. 2006. Genetic polymorphism of ferula mushroom growing on Ferula sinkiangensis. Applied Genetics and Molecular Biotechnology, 71, 304–309.

Zhao M R, Huang C Y, Chen Q, Wu X L, Qu J B, Zhang J X. 2013. Genetic variability and population structure of the mushroom Pleurotus eryngii var. tuoliensis. PLOS ONE, 8, e83253.

Zheng W, Zou L, Han Z Q. 2015. Genetic analysis of the populations of Japanese anchovy Engraulis japonicus from the Yellow Sea and East China Sea based on mitochondrial cytochrome b sequence. Biochemical Systematics and Ecology, 58, 169–177.
[1] SONG Zhong-ping, ZUO Yuan-yuan, XIANG Qin, LI Wen-jia, LI Jian, LIU Gang, DAI Shou-fen, YAN Ze-hong.

Investigation of Aegilops umbellulata for stripe rust resistance, heading date, and the contents of iron, zinc, and gluten protein [J]. >Journal of Integrative Agriculture, 2023, 22(4): 1258-1265.

[2] AN Feng, ZHANG Kang, ZHANG Ling-kui, LI Xing, CHEN Shu-min, WANG Hua-sen, CHENG Feng. Genome-wide identification, evolutionary selection, and genetic variation of DNA methylation-related genes in Brassica rapa and Brassica oleracea[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1620-1632.
[3] GUO Yi, GONG Ying, HE Yong-meng, YANG Bai-gao, ZHANG Wei-yi, CHEN Bo-er, HUANG Yong-fu, ZHAO Yong-ju, ZHANG Dan-ping, MA Yue-hui, CHU Ming-xing, E Guang-xin. Investigation of Mitochondrial DNA genetic diversity and phylogeny of goats worldwide[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1830-1837.
[4] DIAO Shu-qi, XU Zhi-ting, YE Shao-pan, HUANG Shu-wen, TENG Jin-yan, YUAN Xiao-long, CHEN Zan-mou, ZHANG Hao, LI Jia-qi, ZHANG Zhe. Exploring the genetic features and signatures of selection in South China indigenous pigs[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1359-1371.
[5] YANG Fang-yuan, GUO Jian-jun, LIU Ning, ZHANG Run-zhi.
Genetic structure of the invasive Colorado potato beetle Leptinotarsa decemlineata populations in China
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 350-359.
[6] CHU Dong, QU Wan-mei, GUO Lei. Invasion genetics of alien insect pests in China: Research progress and future prospects[J]. >Journal of Integrative Agriculture, 2019, 18(4): 748-757.
[7] CHEN Hua-tao, LIU Xiao-qing, ZHANG Hong-mei, YUAN Xing-xing, GU He-ping, CUI Xiao-yan, CHEN Xin. Advances in salinity tolerance of soybean: Genetic diversity, heredity, and gene identification contribute to improving salinity tolerance[J]. >Journal of Integrative Agriculture, 2018, 17(10): 2215-2221.
[8] WANG Jian, HOU Lu, WANG Ruo-yu, HE Miao-miao, LIU Qing-chang. Genetic diversity and population structure of 288 potato (Solanum tuberosum L.) germplasms revealed by SSR and AFLP markers[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2434-2443.
[9] ZHU Kun-peng, BAO Jian-dong, ZHANG Lian-hu, YANG Xue, LI Yuan, Zhu Ming-hui, LIN Qing-yun, ZHAO Ao, ZHAO Zhen, ZHOU Bo, LU Guo-dong. Comparative analysis of the genome of the field isolate V86010 of the rice blast fungus Magnaporthe oryzae from Philippines[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2222-2230.
[10] JIA Li-cong, ZHAI Hong, HE Shao-zhen, YANG Yu-feng, LIU Qing-chang. Analysis of drought tolerance and genetic and epigenetic variations in a somatic hybrid between Ipomoea batatas (L.) Lam. and I. triloba L.[J]. >Journal of Integrative Agriculture, 2017, 16(01): 36-46.
[11] ZHANG Xiao-min, ZHANG Zheng-hai, GU Xiao-zhen, MAO Sheng-li, LI Xi-xiang, Jo?l Chadoeuf, Alain Palloix, WANG Li-hao, ZHANG Bao-xi. Genetic diversity of pepper (Capsicum spp.) germplasm resources in China reflects selection for cultivar types and spatial distribution[J]. >Journal of Integrative Agriculture, 2016, 15(9): 1991-2001.
[12] LIU Yu-di, HOU Mao-lin, WU Yu-chun , LIU Gui-qin. Population Genetic Analysis of the Rice Stem Borer, Chilo suppressalis, in the South China[J]. >Journal of Integrative Agriculture, 2013, 12(6): 1033-1041.
[13] DENG Xiao-juan, DAI Liang-fang, HU Biao-lin, XIE Jian-kun. Genetic Diversity and Genetic Changes in the Introgression Lines Derived from Oryza sativa L. Mating with O. rufipogon Griff.[J]. >Journal of Integrative Agriculture, 2012, 12(7): 1059-1066.
[14] CAI Xue-hui, WUGuo-jun , LIU Yong-gang, LIU Guang-qing, SHI Wen-da, WANG Shu-jie, MA Ping, LI Cheng-jun , HAN Wen-yu. Attenuation of Virulent PorcineReproductive andRespiratorySyndrome Virus Strain CH-1a and Genetic Variation of ORF5 Gene[J]. >Journal of Integrative Agriculture, 2012, 12(12): 2035-2042.
[15] WANG Li-xia, CHENG Xu-zhen, WANG Su-hua, TIAN Jing. Analysis of anApplied Core Collection ofAdzuki Bean Germplasm by Using SSR Markers[J]. >Journal of Integrative Agriculture, 2012, 12(10): 1601-1609.
No Suggested Reading articles found!