Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Farmers’ preferences for agricultural drone services under uncertainty: A Choice Experiment in Hubei, China

Hua Zhang1, Lena Kuhn1#, Hang Xiong2, 3, Zhanli Sun1#

1 Leibniz Institute of Agricultural Development in Transition Economies (IAMO), Halle (Saale) 06120, Germany

2 College of Economics and Management, Huazhong Agricultural University, Wuhan 430070, China

3 Macro Agriculture Research Institute, Huazhong Agricultural University, Wuhan 430070, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  

Agricultural drones can improve productivity, save labor, and reduce environmental impacts by offering digital multifunctions in agricultural production. Yet, the lagging adoption among smallholders is still prevalent. Existing literature commonly explains it by lack of capital, land fragmentation, and digital illiteracy, with little delving into specific adoption modes under uncertainty. In this study, we demonstrate the potential of hiring agricultural drone services and investigate the role of supplier uncertainty in the adoption decision. We conduct a discrete choice experiment among 338 farmers in Hubei Province, China. Mixed logit models are used to analyze farmers’ preferences for the agricultural drone service (ADS) and its attributes. The results show that the large majority of sampled farmers are willing to adopt ADS. Besides low prices, farmers prefer services with local suppliers and contracts. Potential adopters in this choice experiment are characterized by youth, high education, owning poor-topography farms, drone learning via word-of-mouth, and adoption experience. The willingness to pay analysis indicates that farmers would like to spend 25 CNY per mu (53 USD per ha) on average for ADS. Notably, farmers value the localness of suppliers more than the form of agreements when choosing a particular drone service. These findings suggest that the mode of hiring ADS can effectively motivate farmers’ adoption intention, thereby, the supply-side incentives and uncertainty-reducing promotion strategies needed to enhance smallholders’ access to and adoption of agricultural drones.

Keywords:  UAV       digital agriculture       technology adoption       mixed logit model  
Online: 31 December 2025  
Fund: 

This study is part of the project “Digital Transformation of China’s Agriculture – Resources, Trade and Food Security (DITAC)”, funded by the German Ministry of Education and Research (01DO21009) and the project “Mechanism through Which Video-based Extension Affects the Adoption of Digital Agricultural Technologies: from the Perspective of Knowledge Constraints”, funded by the National Natural Science Foundation of China (72173050).

About author:  Hua ZHANG, Email: zhang@iamo.de; Correspondence Lena Kuhn, E-mail: kuhn@iamo.de; Zhanli Sun, E-mail: sun@iamo.de

Cite this article: 

Hua Zhang, Lena Kuhn, Hang Xiong, Zhanli Sun. 2025. Farmers’ preferences for agricultural drone services under uncertainty: A Choice Experiment in Hubei, China. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.066

Abebe G K, Bijman J, Kemp R, Omta O, Tsegaye A. 2013. Contract farming configuration: Smallholders’ preferences for contract design attributes. Food Policy, 40, 14-24. doi,https://doi.org/10.1016/j.foodpol.2013.01.002.

Blasch J, van der Kroon B, van Beukering P, Munster R, Fabiani S, Nino P, Vanino S. 2022. Farmer preferences for adopting precision farming technologies: a case study from Italy. European Review of Agricultural Economics, 49, 33-81. doi,10.1093/erae/jbaa031.

Burgess L, Street D. 2005. Optimal Designs for Choice Experiments With Asymmetric Attributes. Journal of Statistical Planning and Inference, 134, 288-301. doi,10.1016/j.jspi.2004.03.021.

Caputo V, Van Loo E J, Scarpa R, Nayga Jr R M, Verbeke W. 2018. Comparing Serial, and Choice Task Stated and Inferred Attribute Non-Attendance Methods in Food Choice Experiments. Journal of Agricultural Economics, 69, 35-57. doi,https://doi.org/10.1111/1477-9552.12246.

Chavas J-P, Nauges C. 2020. Uncertainty, Learning, and Technology Adoption in Agriculture. Applied Economic Perspectives and Policy, 42, 42-53. doi,https://doi.org/10.1002/aepp.13003.

Chen Q, Wachenheim C, Zheng S. 2020. Land scale, cooperative membership and benefits information: Unmanned aerial vehicle adoption in China. Sustainable Futures, 2, 100025. doi,https://doi.org/10.1016/j.sftr.2020.100025.

China Agricultural Machinery Industry Association, CAMIA. 2015-2023. China Agricultural Machinery Industry Yearbook. China Machine Press, Beijing.

Chinese Ministry of Agriculture, MOA. 2015. Action to Achieve Zero Growth of Chemical Fertilizer Use & Pesticide Use by 2020. http://www.zzys.moa.gov.cn/gzdt/201503/t20150318_6309945.htm

Cochran R L, English B C, Goodman W R, Larkin S L, Larson J A, Marra M C, Martin S W, Reeves J M, Roberts R K, Shurley W D. 2004. Adoption of Site-Specific Information and Variable-Rate Technologies in Cotton Precision Farming. Journal of Agricultural and Applied Economics, 36, 143-158. doi,10.1017/S107407080002191X.

Dessart F J, Barreiro-Hurlé J, van Bavel R. 2019. Behavioural factors affecting the adoption of sustainable farming practices: a policy-oriented review. European Review of Agricultural Economics, 46, 417-471. doi,10.1093/erae/jbz019.

Fang T, Zhou Y, Wang L, Shi D, Duan X. 2024. The impact of multiplex relationships on households’ informal farmland transfer in rural China: A network perspective. Journal of Rural Studies, 112, 103419. doi,https://doi.org/10.1016/j.jrurstud.2024.103419.

Finger R, Wüpper D, McCallum C. 2023. The (in)stability of farmer risk preferences. Journal of Agricultural Economics, 74, 155-167. doi,https://doi.org/10.1111/1477-9552.12496.

Gabriel A, Gandorfer M. 2023. Adoption of digital technologies in agriculture—an inventory in a european small-scale farming region. Precision Agriculture, 24, 68-91. doi,10.1007/s11119-022-09931-1.

Glover D, Sumberg J, Ton G, Andersson J, Badstue L. 2019. Rethinking technological change in smallholder agriculture. Outlook on Agriculture, 48, 169-180. doi,10.1177/0030727019864978.

Hadera A, Tadesse T. 2023. Risk and ambiguity aversion: Incentives or disincentives for adoption of improved agricultural land management practices? Agricultural Economics, 54, 867-883. doi,https://doi.org/10.1111/agec.12788.

Hensher D A, Rose J M, Greene W H. 2015. Applied Choice Analysis. Cambridge University Press, Cambridge.

Hubei Provincial Statistics Bureau, HPSB. 2023. Hubei Statistical Yearbook. China Statistics Press, Beijing.

Igata M, Hendriksen A, Heijman W. 2008. Agricultural outsourcing: A comparison between the Netherlands and Japan. APSTRACT: Applied Studies in Agribusiness and Commerce, 2. doi,10.19041/Apstract/2008/1-2/4.

Jaeck M, Lifran R. 2014. Farmers’ Preferences for Production Practices: A Choice Experiment Study in the Rhone River Delta. Journal of Agricultural Economics, 65, 112-130. doi,https://doi.org/10.1111/1477-9552.12018.

Ji-ping D, Jing-han L I, Jia-huan L I U, Wei-feng Z, Xiang-ping J I A. 2022. ICT-based agricultural advisory services and nitrogen management practices: A case study of wheat production in China. Journal of Integrative Agriculture, 21, 1799-1811. doi,https://doi.org/10.1016/S2095-3119(21)63859-5.

Kabirigi M, Abbasiharofteh M, Sun Z, Hermans F. 2022. The importance of proximity dimensions in agricultural knowledge and innovation systems: The case of banana disease management in Rwanda. Agricultural Systems, 202, 103465. doi,https://doi.org/10.1016/j.agsy.2022.103465.

Khanna M, Atallah S S, Kar S, Sharma B, Wu L, Yu C, Chowdhary G, Soman C, Guan K. 2022. Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges. Agricultural Economics, 53, 924-937. doi,https://doi.org/10.1111/agec.12733.

Kliem L, Sagebiel J. 2023. Consumers' preferences for commons-based and open-source produce: A discrete choice experiment with directional information manipulations. Food Policy, 119, 102501. doi,https://doi.org/10.1016/j.foodpol.2023.102501.

Lancaster K J. 1966. A New Approach to Consumer Theory. Journal of Political Economy, 74, 132-157.

Li K, Jin Y, Zhou J-h. 2023. Are vulnerable farmers more easily influenced? Heterogeneous effects of Internet use on the adoption of integrated pest management. Journal of Integrative Agriculture, 22, 3220-3233. doi,https://doi.org/10.1016/j.jia.2023.08.005.

Liu M, Min S, Ma W, Liu T. 2021. The adoption and impact of E-commerce in rural China: Application of an endogenous switching regression model. Journal of Rural Studies, 83, 106-116. doi,https://doi.org/10.1016/j.jrurstud.2021.02.021.

Loureiro M L, Umberger W J. 2007. A choice experiment model for beef: What US consumer responses tell us about relative preferences for food safety, country-of-origin labeling and traceability. Food Policy, 32, 496-514. doi,https://doi.org/10.1016/j.foodpol.2006.11.006.

Lundhede T H, Olsen S B, Jacobsen J B, Thorsen B J. 2009. Handling respondent uncertainty in Choice Experiments: Evaluating recoding approaches against explicit modelling of uncertainty. Journal of Choice Modelling, 2, 118-147. doi,https://doi.org/10.1016/S1755-5345(13)70007-1.

Maertens A. 2017. Who Cares What Others Think (or Do)? Social Learning and Social Pressures in Cotton Farming in India. American Journal of Agricultural Economics, 99, 988-1007. doi,https://doi.org/10.1093/ajae/aaw098.

Marra M, Pannell D J, Abadi Ghadim A. 2003. The economics of risk, uncertainty and learning in the adoption of new agricultural technologies: where are we on the learning curve? Agricultural Systems, 75, 215-234. doi,https://doi.org/10.1016/S0308-521X(02)00066-5.

McFadden D. 1972. Conditional logit analysis of qualitative choice behavior.

Meijer I S M, Hekkert M P, Koppenjan J F M. 2007. The influence of perceived uncertainty on entrepreneurial action in emerging renewable energy technology; biomass gasification projects in the Netherlands. Energy Policy, 35, 5836-5854. doi,https://doi.org/10.1016/j.enpol.2007.07.009.

Meyerhoff J, Liebe U. 2009. Status Quo Effect in Choice Experiments: Empirical Evidence on Attitudes and Choice Task Complexity. Land Economics, 85, 515. doi,10.3368/le.85.3.515.

Michels M, von Hobe C-F, Musshoff O. 2020. A trans-theoretical model for the adoption of drones by large-scale German farmers. Journal of Rural Studies, 75, 80-88. doi,https://doi.org/10.1016/j.jrurstud.2020.01.005.

Michels M, von Hobe C-F, Weller von Ahlefeld P J, Musshoff O. 2021. The adoption of drones in German agriculture: a structural equation model. Precision Agriculture, 22, 1728-1748. doi,10.1007/s11119-021-09809-8.

Ministry of Agriculture and Rural Affairs of the People's Republic of China, MARA. 2021. Compilation of the Third Batch of “Full-Process Mechanization + Integrated Farming Services” Model Cases in China.

Mohammed S, Abdulai A. 2022. Do ICT based extension services improve technology adoption and welfare? Empirical evidence from Ghana. Applied Economics, 54, 2707-2726. doi,10.1080/00036846.2021.1998334.

Moritz L, Kuhn L, Bobojonov I. 2023. The role of peer imitation in agricultural index insurance adoption: Findings from lab-in-the-field experiments in Kyrgyzstan. Review of Development Economics, 27, 1649-1672. doi,https://doi.org/10.1111/rode.12992.

National Bureau of Statistics of China, NBSC. 2018. China’s Third National Agricultural Census. China Statistics Press, Beijing.

Oyinbo O, Chamberlin J, Maertens M. 2020. Design of Digital Agricultural Extension Tools: Perspectives from Extension Agents in Nigeria. Journal of Agricultural Economics, 71, 798-815. doi,https://doi.org/10.1111/1477-9552.12371.

Parmaksiz O, Cinar G. 2023. Technology Acceptance among Farmers: Examples of Agricultural Unmanned Aerial Vehicles. Agronomy.

Patricia A. Champ K J B, Thomas C. Brown (Eds.). 2003. A Primer on Nonmarket Valuation. Springer.

Pedroni A, Frey R, Bruhin A, Dutilh G, Hertwig R, Rieskamp J. 2017. The risk elicitation puzzle. Nature Human Behaviour, 1, 803-809. doi,10.1038/s41562-017-0219-x.

Penn J M, Hu W. 2018. Understanding Hypothetical Bias: An Enhanced Meta-Analysis. American Journal of Agricultural Economics, 100, 1186-1206. doi,https://doi.org/10.1093/ajae/aay021.

Qian C, Antonides G, Zhu X, Heerink N, Lades L K. 2024. Do economic preferences and personality traits influence fertilizer use? Evidence from rice farmers in eastern China. Journal of Environmental Psychology, 96, 102328. doi,https://doi.org/10.1016/j.jenvp.2024.102328.

Quan X, Guo Q, Ma J, Doluschitz R. 2023. The economic effects of unmanned aerial vehicles in pesticide application: evidence from Chinese grain farmers. Precision Agriculture, 24, 1965-1981. doi,10.1007/s11119-023-10025-9.

Rommel K, Sagebiel J. 2017. Preferences for micro-cogeneration in Germany: Policy implications for grid expansion from a discrete choice experiment. Applied Energy, 206, 612-622. doi,https://doi.org/10.1016/j.apenergy.2017.08.216.

Scherer M, Chung J, Lo J. 2017. Commercial Drone Adoption in Agribusiness. Ipsos Business Consulting.

Schulz N, Breustedt G, Latacz-Lohmann U. 2014. Assessing Farmers' Willingness to Accept “Greening”: Insights from a Discrete Choice Experiment in Germany. Journal of Agricultural Economics, 65, 26-48. doi,https://doi.org/10.1111/1477-9552.12044.

Schwirplies C, Dütschke E, Schleich J, Ziegler A. 2019. The willingness to offset CO2 emissions from traveling: Findings from discrete choice experiments with different framings. Ecological Economics, 165, 106384. doi,https://doi.org/10.1016/j.ecolecon.2019.106384.

Skevas T, Kalaitzandonakes N. 2020. Farmer awareness, perceptions and adoption of unmanned aerial vehicles: evidence from Missouri. International Food and Agribusiness Management Review, 23, 469-486. doi,https://doi.org/10.22434/IFAMR2019.0151. (in English)

Street D, Burgess L, Wiley J. 2007. The Construction of Optimal Stated Choice Experiments. doi,10.1002/9780470148563.

Sylvester G. 2018. E-Agriculture in action: drones for agriculture. Food and Agriculture Organization of the United Nations (FAO).

Tao H, Xiong H, You L, Li F. 2024. Farmers' willingness to pay for smart farming technologies: evidence from a smart drip irrigation technology in North China. China Agricultural Economic Review, 16, 114-134. doi,10.1108/CAER-03-2023-0050.

The State Council of the People's Republic of China, SCC. 2016. China's No.1 Central Document. https://www.gov.cn/zhengce/2016-01/27/content_5036698.htm

The State Council of the People's Republic of China (SCC). 2014. Opinions on Guiding the Orderly Transfer of Rural Land Management Rights and the Development of Appropriately Scaled Agricultural Operations. http://www.gov.cn/xinwen/2014-11/20/content_2781544.htm

Train K, Weeks M. 2005. Discrete Choice Models in Preference Space and Willingness-to-Pay Space. In: Scarpa R, Alberini A eds., Applications of Simulation Methods in Environmental and Resource Economics. Springer Netherlands, Dordrecht. pp. 1-16.

Train K E. 2009. Discrete Choice Methods with Simulation. Cambridge University Press, Cambridge.

Wachenheim C, Fan L, Zheng S. 2021. Adoption of unmanned aerial vehicles for pesticide application: Role of social network, resource endowment, and perceptions. Technology in Society, 64, 101470. doi,https://doi.org/10.1016/j.techsoc.2020.101470.

Ward P S, Bell A R, Droppelmann K, Benton T G. 2018. Early adoption of conservation agriculture practices: Understanding partial compliance in programs with multiple adoption decisions. Land Use Policy, 70, 27-37. doi,https://doi.org/10.1016/j.landusepol.2017.10.001.

Wu H-x, Song Y, Yu L-s, Ge Y. 2023. Uncertainty aversion and farmers’ innovative seed adoption: Evidence from a field experiment in rural China. Journal of Integrative Agriculture, 22, 1928-1944. doi,https://doi.org/10.1016/j.jia.2023.04.004.

Yue M, Li W-j, Jin S, Chen J, Chang Q, Glyn J, Cao Y-y, Yang G-j, Li Z-h, Frewer L J. 2023. Farmers’ precision pesticide technology adoption and its influencing factors: Evidence from apple production areas in China. Journal of Integrative Agriculture, 22, 292-305. doi,https://doi.org/10.1016/j.jia.2022.11.002.

Zheng S, Wang Z, Wachenheim C J. 2019. Technology adoption among farmers in Jilin Province, China. China Agricultural Economic Review, 11, 206-216. doi,10.1108/CAER-11-2017-0216.

Zuo A, Wheeler S A, Sun H. 2021. Flying over the farm: understanding drone adoption by Australian irrigators. Precision Agriculture, 22, 1973-1991. doi,10.1007/s11119-021-09821-y. 

[1] Tao Liu, Jianliang Wang, Jiayi Wang, Yuanyuan Zhao, Hui Wang, Weijun Zhang, Zhaosheng Yao, Shengping Liu, Xiaochun Zhong, Chengming Sun. Research on the estimation of wheat AGB at the entire growth stage based on improved convolutional features[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1403-1423.
[2] Jinpeng Zou, Lulin Shen, Fang Wang, Hong Tang, Ziyang Zhou. Dual carbon goal and agriculture in China: Exploring key factors influencing farmers’ behavior in adopting low carbon technologies[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3215-3233.
[3] Hui Chen, Hongxing Chen, Song Zhang, Shengxi Chen, Fulang Cen, Quanzhi Zhao, Xiaoyun Huang, Tengbing He, Zhenran Gao. Comparison of CWSI and Ts-Ta-VIs in moisture monitoring of dryland crops (sorghum and maize) based on UAV remote sensing[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2458-2475.
[4] Fubing Liao, Xiangqian Feng, Ziqiu Li, Danying Wang, Chunmei Xu, Guang Chu, Hengyu Ma, Qing Yao, Song Chen.

A hybrid CNN-LSTM model for diagnosing rice nutrient levels at the rice panicle initiation stage [J]. >Journal of Integrative Agriculture, 2024, 23(2): 711-723.

[5] XU Wang-ying, YU Xiao-bing, XUE Xin-yu. A binary gridding path-planning method for plant-protecting UAVs on irregular fields[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2796-2809.
[6] PEI Sheng-zhao, ZENG Hua-liang, DAI Yu-long, BAI Wen-qiang, FAN Jun-liang. Nitrogen nutrition diagnosis for cotton under mulched drip irrigation using unmanned aerial vehicle multispectral images[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2536-2552.
[7] LIAO Zhen-qi, DAI Yu-long, WANG Han, Quirine M. KETTERINGS, LU Jun-sheng, ZHANG Fu-cang, LI Zhi-jun, FAN Jun-liang. A double-layer model for improving the estimation of wheat canopy nitrogen content from unmanned aerial vehicle multispectral imagery[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2248-2270.
[8] WU Hai-xia, SONG Yan, YU Le-shan, GE Yan. Uncertainty aversion and farmers’ innovative seed adoption: Evidence from a field experiment in rural China[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1928-1944.
[9] YU Feng-hua, BAI Ju-chi, JIN Zhong-yu, GUO Zhong-hui, YANG Jia-xin, CHEN Chun-ling. Combining the critical nitrogen concentration and machine learning algorithms to estimate nitrogen deficiency in rice from UAV hyperspectral data[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1216-1229.
[10] ZHENG Yang-yang, ZHU Tie-hui, JIA Wei. Does Internet use promote the adoption of agricultural technology?  Evidence from 1 449 farm households in 14 Chinese provinces[J]. >Journal of Integrative Agriculture, 2022, 21(1): 282-292.
[11] Jules NGANGO, Seungjee HONG. Adoption of small-scale irrigation technologies and its impact on land productivity: Evidence from Rwanda[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2302-2312.
[12] YANG Dan, ZHANG Hui-wei, LIU Zi-min, ZENG Qiao . Do cooperatives participation and technology adoption improve farmers’ welfare in China?  A joint analysis accounting for selection bias[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1716-1726.
[13] Tsegaye Mulugeta HABTEWOLD. Impact of climate-smart agricultural technology on multidimensional poverty in rural Ethiopia[J]. >Journal of Integrative Agriculture, 2021, 20(4): 1021-1041.
[14] QIU Huan-guang, WANG Xiao-bing, ZHANG Cai-ping, XU Zhi-gang. Farmers’ seed choice behaviors under asymmetrical information: Evidence from maize farming in China[J]. >Journal of Integrative Agriculture, 2016, 15(8): 1915-1923.
No Suggested Reading articles found!