Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Root-specific upregulation of the Na+/K+ transport genes mitigates salt stress in blueberry

Huifang Song1*, Bingshuai Du1*, Xinyan Zhao1, Kaiyue Feng1, Lingyun Zhang1, 2#, Yibo Cao1, 2#

1 State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China

2 Research & Development Center of Blueberry, Beijing Forestry University, Beijing 100083, China

 Highlights 

1. Ion transport pathways were enriched under salt stress, and root-upregulated Na+/K+ transport genes promoted blueberry salt tolerance

2. Leaf Na+ and K+ contents strongly correlated with VcHAK5, VcNHX1, and VcNHX2 expression

3. Knockdown of VcHAK5, VcNHX1, and VcNHX2 increased salt sensitivity in blueberry calli

4. Reciprocal grafting showed that root Na+/K+ homeostasis is critical for salt tolerance

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

土壤盐渍化日益成为限制高丛蓝莓(Vaccinium corymbosum)生产的重要因素,但其在盐胁迫下的生理与分子应答机制仍缺乏系统认识。为此,本研究以耐盐品种Duke’与盐敏感品种‘Sweetheart’的根和叶为材料,对差异表达基因进行了基因功能富集(GO)分析和加权基因共表达网络分析(WGCNA)。GO分析结果表明,盐胁迫下根部的离子转运及细胞离子稳态相关通路显著富集。WGCNA 结果显示,Na⁺与K⁺含量与核心基因 VcHAK5VcNHX1VcNHX2 的表达呈高度相关,这些基因在耐盐品种根部显著上调。功能上,VcHAK5 编码质膜上的K⁺选择性转运蛋白,VcNHX1 和 VcNHX2 编码液泡膜上的Na⁺/K⁺-H⁺ 逆向转运蛋白。在蓝莓愈伤组织中分别沉默这些基因,转基因愈伤表现为盐敏感。此外,耐盐差异品种间的互换枕木嫁接试验表明,降低根部Na⁺含量及Na⁺/K⁺比值是实现耐盐性的关键。本研究首次系统揭示了蓝莓对盐胁迫的响应机制,鉴定了耐盐相关的关键靶基因,并强调了耐盐根系在整体耐盐性形成中的重要作用。



Abstract  

Soil salinization is a growing challenge for highbush blueberry (Vaccinium corymbosum) production, but knowledge about its physiological and molecular responses to salt stress remains limited. To address this, we performed Gene Ontology (GO) enrichment analysis and weighted gene co-expression network analysis (WGCNA) on differentially expressed genes from the roots and leaves of the salt-tolerant cultivar ‘Duke’ and the salt-sensitive cultivar ‘Sweetheart’. GO analysis revealed significant enrichment of ion transport and cellular ion homeostasis in the roots under salt stress. WGCNA identified a strong correlation between Na+ and K+ contents and the expression of hub genes VcHAK5, VcNHX1, and VcNHX2 under salt stress. These genes were significantly upregulated in the roots of the salt-tolerant cultivar. VcHAK5 encodes a K+-selective ion transporter in the plasma membrane, and VcNHX1 and VcNHX2 encode Na+- and K+-/H+ antiporters in the tonoplast. Knockdown mutants of these genes in blueberry calli showed hypersensitivity to salt stress. Furthermore, reciprocal grafting between salt-sensitive and salt-tolerant blueberry cultivars demonstrated that lower root Na+ content and Na+/K+ ratios are crucial for salt tolerance. This study provides the first comprehensive insights into blueberry responses to salt stress, identifies target genes and highlights the critical role of salt-resistant roots.

Keywords:  blueberry       soil salinization       salt tolerance       ion transport       grafting  
Online: 08 December 2025  
Fund: 

This work was supported by the Key Research and Development Plan of Shandong Province (grant no. 2024LZGCQY025), the National Natural Science Foundation of China (grant no. 32101555 to Y.C.), and the 5·5 Engineering Research & Innovation Team Project of Beijing Forestry University (grant no. BLRC2023B08). 

About author:  Huifang Song, E-mail: songhuifang1010@bjfu.edu.cn; #Correspondence Yibo Cao, E-mail: caoyibo@bjfu.edu.cn; Lingyun Zhang, Tel: +86-10-62336044, E-mail: lyzhang@bjfu.edu.cn *These authors contributed equally to this study.

Cite this article: 

Huifang Song, Bingshuai Du, Xinyan Zhao, Kaiyue Feng, Lingyun Zhang, Yibo Cao. 2025. Root-specific upregulation of the Na+/K+ transport genes mitigates salt stress in blueberry. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.004

Apse M P, Aharon G S, Snedden W A, Blumwald E. 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 285, 1256-1258.

Apse M P, Sottosanto J B, Blumwald E. 2003. Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a t-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. The Plant Journal, 36, 229-239.

Barragán V, Leidi E O, Andrés Z, Rubio L, De Luca A, Fernández J A, Cubero B, Pardo J M. 2012. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. The Plant Cell, 24, 1127-1142.

Bassil E, Ohto M A, Esumi T, Tajima H, Zhu Z, Cagnac O, Belmonte M, Peleg Z, Yamaguchi T, Blumwald E. 2011. The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell, 23, 224-239.

Batistic O, Sorek N, Schültke S, Yalovsky S, Kudla J. 2008. Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis. The Plant Cell, 20, 1346-1362.

Blumwald E, Poole R J. 1985. Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiology, 78, 163-167.

Bryla D R, Scagel C F, Lukas S B, Sullivan D M. 2021. Ion-specific limitations of sodium chloride and calcium chloride on growth, nutrient uptake, and mycorrhizal colonization in northern and southern highbush blueberry. Journal of the American Society for Horticultural Science, 146, 399-410.

Byrt C S, Xu B, Krishnan M, Lightfoot D J, Athman A, Jacobs A K, Watson-Haigh N S, Plett D, Munns R, Tester M, Gilliham M. 2014. The Na+ transporter, TaHKT1;5d, limits shoot Na+ accumulation in bread wheat. Plant Journal, 80, 516-526.

Calero F, Gómez N, Ariño J, Ramos J. 2000. Trk1 and trk2 define the major K+ transport system in fission yeast. Journal of Bacteriology, 182, 394-399.

Cao Y B, Liang X Y, Yin P, Zhang M, Jiang C F. 2019. A domestication-associated reduction in K+-preferring HKT transporter activity underlies maize shoot K+ accumulation and salt tolerance. New Phytologist, 222, 301-317.

Chen G, Hu Q, Luo L, Yang T, Zhang S, Hu Y, Yu L, Xu G. 2015. Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant, Cell & Environment, 38, 2747-2765.

Chen H, Chen X, Gu H, Wu B, Zhang H, Yuan X, Cui X. 2014. Gmhkt1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants. Plant Growth Regulation, 73, 299-308.

Chen K Q, Song M R, Guo Y N, Liu L F, Xue H, Dai H Y, Zhang Z H. 2019. Mdmyb46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals. Plant Biotechnology Journal, 17, 2341-2355.

Chen W R, Shao J Y, Ye M J, Yu K D, Bednarek S Y, Duan X, Guo W. 2017. Blueberry VcLON2, a peroxisomal ion protease, is involved in abiotic stress tolerance. Environmental and Experimental Botany, 134, 1-11.

Coba de la Peña T, Redondo F J, Manrique E, Lucas M M, Pueyo J J. 2010. Nitrogen fixation persists under conditions of salt stress in transgenic Medicago truncatula plants expressing a cyanobacterial flavodoxin. Plant Biotechnology Journal, 8, 954-965.

Colle M, Leisner C P, Wai C M, Ou S, Bird K A, Wang J, Wisecaver J H, Yocca A E, Alger E I, Tang H, Xiong Z, Callow P, Ben-Zvi G, Brodt A, Baruch K, Swale T, Shiue L, Song G Q, Childs K L, Schilmiller A, Vorsa N, Buell C R, VanBuren R, Jiang N, Edger P P. 2019. Haplotype-phased genome and evolution of phytonutrient pathways of tetraploid blueberry. GigaScience, 8, 1-15.

Davenport R J, Munoz-Mayor A, Jha D, Essah P A, Rus A, Tester M. 2007. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell and Environment, 30, 497-507.

Davoudi M, Song M, Zhang M, Chen J, Lou Q. 2022. Long-distance control of pumpkin rootstock over cucumber scion under drought stress as revealed by transcriptome sequencing and mobile mRNAs identifications. Horticulture Research, 9, uhab033.

Deinlein U, Stephan A B, Horie T, Luo W, Xu G H, Schroeder J I. 2014. Plant salt-tolerance mechanisms. Trends in Plant Science, 19, 371-379.

Estañ M T, Martinez-Rodriguez M M, Perez-Alfocea F, Flowers T J, Bolarin M C. 2005. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. Journal of Experimental Botany, 56, 703-712.

Gaxiola R A, Rao R, Sherman A, Grisafi P, Alper S L, Fink G R. 1999. The Arabidopsis thaliana proton transporters, AtNHX1 and AVP1, can function in cation detoxification in yeast. Proceedings of the National Academy of Sciences, 96, 1480-1485.

Han M, Wu W, Wu W H, Wang Y. 2016. Potassium transporter KUP7 is involved in K+ acquisition and translocation in Arabidopsis

 root under K+-limited conditions. Molecular Plant, 9, 437-446.

Henderson S W, Dunlevy J D, Wu Y, Blackmore D H, Walker R R, Edwards E J, Gilliham M, Walker A R. 2018. Functional differences in transport properties of natural HKT1;1 variants influence shoot Na+ exclusion in grapevine rootstocks. New Phytologist, 217, 1113-1127.

Huang L, Kuang L, Wu L, Shen Q, Han Y, Jiang L, Wu D, Zhang G. 2020. The HKT transporter HvHKT1;5 negatively regulates salt tolerance. Plant Physiology, 182, 584-596.

Ishikawa T, Shabala S. 2019. Control of xylem Na+ loading and transport to the shoot in rice and barley as a determinant of differential salinity stress tolerance. Physiologia plantarum, 165, 619-631.

Kalt W, Cassidy A, Howard L R, Krikorian R, Stull A J, Tremblay F, Zamora-Ros R. 2020. Recent research on the health benefits of blueberries and their anthocyanins. Advances in nutrition, 11, 224-236.

Kaundal A, Sandhu D, Duenas M, Ferreira J F S. 2019. Expression of the high-affinity K+ transporter 1 (PpHKT1) gene from almond rootstock 'nemaguard' improved salt tolerance of transgenic Arabidopsis. PLoS One, 14, e0214473.

Kim M J, Ruzicka D, Shin R, Schachtman D P. 2012. The Arabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Molecular Plant, 5, 1042-1057.

Li H, Yu M, Du X Q, Wang Z F, Wu W H, Quintero F J, Jin X H, Li H D, Wang Y. 2017. NRT1.5/NFP7.3 functions as a proton-coupled H+/K+ antiporter for K+ loading into the xylem in Arabidopsis. Plant Cell, 29, 2016-2026.

Li J P, Liu X B, Chang S M, Chu W, Lin J, Zhou H, Hu Z, Zhang M, Xin M, Yao Y, Guo W, Xie X, Peng H, Ni Z, Sun Q, Long Y, Hu Z. 2024. The potassium transporter TaNHX2 interacts with TaGAD1 to promote drought tolerance via modulating stomatal aperture in wheat. Science Advances, 10, eadk4027.

Liang Y F, Bai J Y, Xie Z L, Lian Z Y, Guo J, Zhao F Y, Liang Y, Huo H Q, Gong H J. 2023. Tomato sucrose transporter SlSUT4 participates in flowering regulation by modulating gibberellin biosynthesis. Plant Physiology, 192, 1080-1098.

Martínez-Cordero M A, Martínez V, Rubio F. 2004. Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper. Plant Molecular Biology, 56, 413-421.

Mäser P, Thomine S, Schroeder J I, Ward J M, Hirschi K, Sze H, Talke I N, Amtmann A, Maathuis F J, Sanders D, Harper J F, Tchieu J, Gribskov M, Persans M W, Salt D E, Kim S A, Guerinot M L. 2001. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology, 126, 1646-1667.

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.

Munns R, James R A, Xu B, Athman A, Conn S J, Jordans C, Byrt C S, Hare R A, Tyerman S D, Tester M, Plett D, Gilliham M. 2012. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology, 30, 360-364.

Muralitharan M S, Van Steveninck R F M, Chandler S E. 1990. Growth characteristics and ion contents of non-selected and salt-selected callus lines of highbush blueberry (Vaccinium corymbosum) cultivars Bluecrop and Denise blue. Plant Cell Reports, 9, 151-155.

Nieves-Cordones M, Lara A, Silva M, Amo J, Rodriguez-Sepulveda P, Rivero R M, Martínez V, Botella M A, Rubio F. 2020. Root high-affinity K+ and Cs+ uptake and plant fertility in tomato plants are dependent on the activity of the high-affinity K+ transporter SlHAK5. Plant Cell and Environment, 43, 1707-1721.

Osakabe Y, Arinaga N, Umezawa T, Katsura S, Nagamachi K, Tanaka H, Ohiraki H, Yamada K, Seo S U, Abo M, Yoshimura E, Shinozaki K, Yamaguchi-Shinozaki K. 2013. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. The Plant Cell, 25, 609-624.

Qin X J, Hu J, Xu G, Song H F, Zhang L Y, Cao Y B. 2023. An efficient transformation system for fast production of VcCHS transgenic blueberry callus and its expressional analysis. Plants (Basel), 12, 2905.

Qin Y J, Wu W H, Wang Y. 2019. ZmHAK5 and ZmHAK1 function in K+ uptake and distribution in maize under low K+ conditions. Journal of Integrative Plant Biology, 61, 691-705.

Qu D H, Wu F L, Zhao X H, Zhu D, Gu L, Yang L, Zhao W, Sun Y, Yang J, Tian W, Su H, Wang L. 2022. A bzip transcription factor Vabzip12 from blueberry induced by dark septate endocyte improving the salt tolerance of transgenic Arabidopsis. Plant Science, 315, 111135.

Quintero F J, Ohta M, Shi H, Zhu J K, Pardo J M. 2002. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences, 99, 9061-9066.

Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. 2005. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 37, 1141-1146.

Ródenas R, Ragel P, Nieves-Cordones M, Martínez-Martínez A, Amo J, Lara A, Martínez V, Quintero F J, Pardo J M, Rubio F. 2021. Insights into the mechanisms of transport and regulation of the Arabidopsis high-affinity K+ transporter HAK51. Plant Physiology, 185, 1860-1874.

Rodríguez-Rosales M P, Jiang X Y, Gálvez F J, Aranda M N, Cubero B, Venema K. 2008. Overexpression of the tomato K+/H+ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization. New Phytologist, 179, 366-377.

Rubio F, Gassmann W, Schroeder J I. 1995. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science, 270, 1660-1663.

Schachtman D P, Schroeder J I. 1994. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature, 370, 655-658.

Shen Y, Shen L, Shen Z, Jing W, Ge H, Zhao J, Zhang W. 2015. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environment, 38, 2766-2779.

Shi H, Quintero F J, Pardo J M, Zhu J K. 2002. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. The Plant Cell, 14, 465-477.

Song G Q, Sink K C, Walworth A E, Cook M A, Allison R F, Lang G A. 2013. Engineering cherry rootstocks with resistance to Prunus necrotic ring spot virus through RNAi-mediated silencing. Plant Biotechnology Journal, 11, 702-708.

Song H F, Cao Y B, Zhao X Y, Zhang L Y. 2023. Na+-preferential ion transporter HKT1;1 mediates salt tolerance in blueberry. Plant Physiology, 194, 511-529.

van Zelm E, Zhang Y X, Testerink C. 2020. Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71, 403-433.

Vashisth T, Johnson L K, Malladi A. 2011. An efficient RNA isolation procedure and identification of reference genes for normalization of gene expression in blueberry. Plant Cell Reports, 30, 2167-2176.

Venema K, Quintero F J, Pardo J M, Donaire J P. 2002. The Arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low-affinity Na+ and K+ transport in reconstituted liposomes. Journal of Biological Chemistry, 277, 2413-2418.

Wang A B, Wang L, Liu K, Liang K H, Yang S W, Cao Y B, Zhang L Y. 2022. Comparative transcriptome profiling reveals the defense pathways and mechanisms in the leaves and roots of blueberry to drought stress. Fruit Research, 2, 1-15.

Wang L M, Wang Y Y, Yin P, Jiang C F, Zhang M. 2024. ZmHAK17 encodes a Na+-selective transporter that promotes maize seed germination under salt conditions. New Crops, 1, 100024.

Wang Z, Hong Y, Zhu G, Li Y, Niu Q, Yao J, Hua K, Bai J, Zhu Y, Shi H, Huang S, Zhu J K. 2020. Loss of salt tolerance during tomato domestication conferred by variation in a Na+/K+ transporter. The EMBO Journal, 39, e103256.

Xu H, Zou Q, Yang G, Jiang S, Fang H, Wang Y, Zhang J, Zhang Z, Wang N, Chen X. 2020. Mdmyb6 regulates anthocyanin formation in apple both through direct inhibition of the biosynthesis pathway and through substrate removal. Horticulture Research, 7, 72.

Yang L, Li M, Shen M, Bu S, Zhu B, He F, Zhang X, Gao X, Xiao J. 2022. Chromosome-level genome assembly and annotation of the native Chinese wild blueberry Vaccinium bracteatum. Fruit Research, 2, 1-14.

Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L, Xu G. 2014. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiology, 166, 945-959.

Yang Y Q, Guo Y. 2018. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist, 217, 523-539.

Yokoi S, Quintero F J, Cubero B, Ruiz M T, Bressan R A, Hasegawa P M, Pardo J M. 2002. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant Journal, 30, 529-539.

Zeng Y, Li Q, Wang H, Zhang J, Du J, Feng H, Blumwald E, Yu L, Xu G. 2018. Two NHX-type transporters from Helianthus tuberosus improve the tolerance of rice to salinity and nutrient deficiency stress. Plant Biotechnology Journal, 16, 310-321.

Zhang L, Sun X, Li Y, Luo X, Song S, Chen Y, Wang X, Mao D, Chen L, Luan S. 2021. Rice Na+-permeable transporter OsHAK12 mediates shoots Na+ exclusion in response to salt stress. Frontiers Plant Science, 12, 771746.

Zhang M, Cao Y B, Wang Z, Wang Z Q, Shi J, Liang X, Song W, Chen Q, Lai J, Jiang C F. 2018. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytologist, 217, 1161-1176.

Zhang M, Liang X Y, Wang L M, Cao Y B, Song W B, Shi J P, Lai J S, Jiang C F. 2019. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nature Plants, 5, 1297-1308.

Zhang M, Li Y, Liang X, Lu M, Lai J, Song W, Jiang C F. 2023. A teosinte-derived allele of an HKT1 family sodium transporter improves salt tolerance in maize. Plant Biotechnology Journal, 21, 97-108.

Zhao C, Zhang H, Song C, Zhu J K, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. Innovation (Camb), 1, 100017.

Zhong H, Liu Z, Zhang F, Zhou X, Sun X, Li Y, Liu W, Xiao H, Wang N, Lu H, Pan M, Wu X, Zhou Y. 2022. Metabolomic and transcriptomic analyses reveal the effects of self- and hetero-grafting on anthocyanin biosynthesis in grapevine. Horticulture Research, 9, uhac103.

Zhong J J, Gu J J, Guo Y P, You S, Liao F, Chen W, Guo W. 2019. Blueberry VcLON1 protease increases iron use efficiency by alleviating chloroplast oxidative stress. Plant and Soil, 445, 533-548.

Zhu J K. 2016. Abiotic stress signaling and responses in plants. Cell, 167, 313-324.

[1] Mohammad Nauman Khan, Yusheng Li, Yixue Mu, Haider Sultan, Amanullah Baloch, Ismail Din, Chengcheng Fu, Jiaqi Li, Zaid Khan, Sunjeet Kumar, Honghong Wu, Renato Grillo, Lixiao Nie. Recent advances in nano-enabled plant salt tolerance: Methods of application, risk assessment, opportunities and future prospects[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1611-1630.
[2] Ameer Khan, Farah Kanwal, Muhammad Shahzad, Shama Naz, Sanaullah Jalil, Guoping Zhang.
Interactions of arsenic and phosphorus in their uptake and transportation in plants: Advances and prospective research on the mechanisms and approaches for alleviating arsenic stress
[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1631-1645.
[3] Yuxiang Qin, Bao Zhang, Shoufu Cui, Xiaochun Qin, Genying Li. TaFLZ54D enhances salt stress tolerance in wheat by interacting with TaSGT1 and TaPP2C[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1017-1029.
[4] Hui Fang, Xiuyi Fu, Hanqiu Ge, Mengxue Jia, Jie Ji, Yizhou Zhao, Zijian Qu, Ziqian Cui, Aixia Zhang, Yuandong Wang, Ping Li, Baohua Wang. Genetic analysis and candidate gene identification of salt tolerancerelated traits in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2196-2210.
[5] Li Miao, Xiangyu Wang, Chao Yu, Chengyang Ye, Yanyan Yan, Huasen Wang.

What factors control plant height? [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1803-1824.

[6] DU Dan, HU Xin, SONG Xiao-mei, XIA Xiao-jiao, SUN Zhen-yu, LANG Min, PAN Yang-lu, ZHENG Yu, PAN Yu. SlTPP4 participates in ABA-mediated salt tolerance by enhancing root architecture in tomato[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2384-2396.
[7] SHI Mei-qi, LIAO Xi-liang, YE Qian, ZHANG Wei, LI Ya-kai, Javaid Akhter BHAT, KAN Gui-zhen, YU De-yue. Linkage and association mapping of wild soybean (Glycine soja) seeds germinating under salt stress[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2833-2847.
[8] ZHANG Jia, NIE Ji-yun, LI Jing, ZHANG Hui, LI Ye, Saqib FAROOQ, Syed Asim Shah BACHA, WANG Jie. Evaluation of sugar and organic acid composition and their levels in highbush blueberries from two regions of China[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2352-2361.
[9] XU Qiao-fang, MAO Xin-guo, WANG Yi-xue, WANG Jing-yi, XI Ya-jun, JING Rui-lian. A wheat gene TaSAP17-D encoding an AN1/AN1 zinc finger protein improves salt stress tolerance in transgenic Arabidopsis[J]. >Journal of Integrative Agriculture, 2018, 17(03): 507-516.
[10] LI Ming, HU Zheng, JIANG Qi-yan, SUN Xian-jun, GUO Yuan, QI Jun-cang, ZHANG Hui. GmNAC15 overexpression in hairy roots enhances salt tolerance in soybean[J]. >Journal of Integrative Agriculture, 2018, 17(03): 530-538.
[11] ZHANG Huan, ZHANG Qian, WANG Yan-nan, LI Yan, ZHAI Hong, LIU Qing-chang, HE Shao-zhen. Characterization of salt tolerance and Fusarium wilt resistance of a sweetpotato mutant[J]. >Journal of Integrative Agriculture, 2017, 16(09): 1946-1955.
[12] SONG Yang, LIU Hong-di, ZHOU Qiang, ZHANG Hong-jun, ZHANG Zhi-dong, LI Ya-dong, WANG Hai-bo, LIU Feng-zhi. High-throughput sequencing of highbush blueberry transcriptome and analysis of basic helix-loop-helix transcription factors[J]. >Journal of Integrative Agriculture, 2017, 16(03): 591-604.
[13] XU Cheng-nan, ZHANG Hong-jun, CHI Fu-mei, JI Zhi-rui, DONG Qing-long, CAO Ke-qiang, ZHOU Zong-shan. Species-specific PCR-based assays for identification and detection of Botryosphaeriaceae species causing stem blight on blueberry in China[J]. >Journal of Integrative Agriculture, 2016, 15(3): 573-579.
[14] WANG Fei-bing, ZHAI Hong, AN Yan-yan, SI Zeng-zhi, HE Shao-zhen, LIU Qing-chang. Overexpression of IbMIPS1 gene enhances salt tolerance in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2016, 15(2): 271-281.
[15] WANG Fa-wei, WANG Chao, SUN Yao, WANG Nan, LI Xiao-wei, DONG Yuan-yuan, Yao Na, Liu Xiu-ming, CHEN Huan, CHEN Xi-feng, WANG Zhen-min, LI Hai-yan. Overexpression of vacuolar proton pump ATPase (V-H+-ATPase) subunits B, C and H confers tolerance to salt and saline-alkali stresses in transgenic alfalfa (Medicago sativa L.)[J]. >Journal of Integrative Agriculture, 2016, 15(10): 2279-2289.
No Suggested Reading articles found!