Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Moisture content drives the dynamic changes in maize stalk internode mechanical strength pre- and post-physiological maturity

Fan Liu*, Xiang Chen*, Xia Du, Chaode Liang, Tianqiong Lan, Dongju Feng, Jichao Yuan, Fanlei Kong#

College of Agronomy, Sichuan Agricultural University, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China

 Highlights 

1. Rind penetration strength and bending strength peaked at 7-13 days after physiological maturity and then declined.

2. Pre- and post-physiological maturity, changes in internode mechanical strength-related traits were primarily associated with non-structural carbohydrates and moisture content.

3. Internode moisture content drove changes in mechanical strength pre- and post-physiological maturity.

 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

研究生理成熟前后玉米茎秆节间的特性,对制定增强茎秆抗倒伏特性的策略从而提高机械粒收效率和质量至关重要。在2019-2021年选取6个本地大规模种植的玉米杂交种开展田间试验,旨在探究生理成熟前后节间机械强度、形态特征及物质组成的动态变化,并识别影响机械强度的关键性状。茎率随生理成熟后天数增加线性增长。穿刺强度与压折强度在生理成熟后7-13天达到峰值,随后逐渐下降。不同节间性状对生理成熟前后样时间的响应差异显著。节间形态在生理成熟前后表现出较高稳定性(变异系数CV0.01129-0.05968),而节间物质成分则呈现较大波动(CV0.07107-0.1913)。生理成熟前后干物质变化主要源于非结构性碳水化合物的减少。杂交对节间性状的影响显著大于样时间。线性回归分析表明,节间含水比重量饱满度和体积饱满度更能有效解释生理成熟前后穿刺强度和压折强度的动态变化。选育具有高持水特性和节间干物质组分的玉米杂交种,有利于田间站秆。在制定田间管理措施时考虑延缓茎秆衰老,对玉米机械粒至关重要。



Abstract  

Studying maize stalk internode traits pre- and post-physiological maturity is critical for developing strategies to enhance stalk lodging resistance, thereby improving the efficiency and quality of mechanical kernel harvesting. The field experiment with 6 maize hybrids used in large-scale local production was conducted in 2019–2021 to investigate the temporal dynamics of internode mechanical strength, morphological traits and matter constituents pre- and post-physiological maturity, and to identify key traits influencing mechanical strength. The stalk lodging rate increased linearly with the number of days after physiological maturity. Peaks in rind penetration strength and bending strength occurred at 7–13 days after physiological maturity, followed by a gradual decline. Differences in the response of various internode traits to sampling time were observed pre- and post-physiological maturity. Internode morphology exhibited relatively high stability pre- and post-physiological maturity, with coefficients of variation (CV) ranging from 0.01129–0.05968, compared to internode matter constituents (CV: 0.07107–0.1913). Changes in dry matter pre- and post-physiological maturity were mainly attributed to reductions in non-structural carbohydrates. The hybrid effect on internode traits was more significant than that of sampling time. Linear regression analysis revealed that changes in internode moisture content better explained the temporal dynamics of rind penetration strength and bending strength pre- and post-physiological maturity than internode weight plumpness or volume plumpness. Selecting maize hybrids with high stay-water characteristics and internode dry matter constituents is conducive to the field-standing stalk. Delayed stalk senescence should be considered when designing field management practices to support kernel mechanical harvesting.

Keywords:  maize       stalk lodging       pre- and post-physiological maturity       internode traits  
Online: 24 November 2025  
Fund: 

This study was financially supported by the National Key Research and Development Program of China (2023YFD2301902), the Key Project of Sichuan Natural Science Foundation, China (2022NSFSC0013), and the Sichuan Provincial Maize Innovation Team Building Project, China (SCCXTD-2025-02).

About author:  #Correspondence Fanlei Kong, E-mail: kflstar@163.com * Fan Liu and Xiang Chen contributed equally to this work.

Cite this article: 

Fan Liu, Xiang Chen, Xia Du, Chaode Liang, Tianqiong Lan, Dongju Feng, Jichao Yuan, Fanlei Kong. 2025. Moisture content drives the dynamic changes in maize stalk internode mechanical strength pre- and post-physiological maturity. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.11.035

Ahmad I, Batyrbek M, Ikram K, Ahmad S, Kamran M, Misbah, Khan R S, Hou F J, Han Q F. 2023. Nitrogen management improves lodging resistance and production in maize (Zea mays L.) at a high plant density. Journal of Integrative Agriculture, 22, 417-433.

Akter S, Zabed H M, Sahu J N, Chowdhury F I, Faruq G, Boyce A N, Qi X H. 2020. Bioethanol production from water-soluble and structural carbohydrates of normal and high sugary corn stovers harvested at three growth stages. Energy Conversion and Management, 221, 113104.

Berry P M, Baker C J, Hatley D, Dong R, Wang X, Blackburn G A, Miao Y, Sterling M, Whyatt J D. 2021. Development and application of a model for calculating the risk of stem and root lodging in maize. Field Crop Research, 262, 108037.

Chen Y X, Chen J, Zhang Y F, Zhou D W. 2007. Effect of harvest date on shearing force of maize stems. Livestock Science, 111, 33-44.

Chen Z G, Qu G. 2017. Shearing characteristics of corn stalk pith for separation. Bioresources, 12, 2296-2309.

Gao S, Ming B, Li L L, Wang Y Z, Xue J, Hou P, Wang K R, Zhou S L, Li S K, Xie R Z. 2023. Temporal and spatial dynamics of organ water content in maize with different senescence types. Plants-Basel, 12, 3269.

Gao S, Ming B, Li L L, Yin X B, Xue J, Wang K R, Xie R Z, Li S K. 2021. Relationship and distribution of in-field dry-down and equilibrium in maize grain moisture content. Agricultural and Forest Meteorology, 304, 108409.

Huang G M, Liu Y R, Guo Y L, Peng C X, Tan W M, Zhang M C, Li Z H, Zhou Y Y, Duan L S. 2021. A novel plant growth regulator improves the grain yield of high-density maize crops by reducing stalk lodging and promoting a compact plant type. Field Crop Research, 260, 107982.

Huang Z F, Ming B, Hou L Y, Xue J, Wang K R, Xie R Z, Hou P, Wang Z G, Ma D L, Gao J L, Li S K. 2023. Improving maize quality from mechanical grain harvesting by matching maize varieties with accumulated temperature in northeast China. Journal of the Science of Food and Agriculture, 103, 5061-5069.

Kanahama T, Sato M. 2023. Mechanics-based classification rule for plants. Proceedings of the National Academy of Sciences of the United States of America, 120, e2308319120.

Kong F L, Liu F, Li X L, Yin P J, Lan T Q, Feng D J, Song B, Lei E, Li Z, Wang X L, Yuan J C. 2024. Ecological factors regulate stalk lodging within dense planting maize. Field Crop Research, 317, 109529.

Kong F L, Zhao B, Zhou M L, Song B, Lei E, Li Z, Li X L, Chen X, Yuan J C. 2021. Current quality status and influencing factors of maize mechanical grain harvesting in southwest maize region. Journal of Maize Sciences, 29, 120-127. (in Chinese)

Lahaye M, Falourd X, Laillet B, Le Gall S. 2020. Cellulose, pectin and water in cell walls determine apple flesh viscoelastic mechanical properties. Carbohydrate Polymers, 232, 11578.

Li B, Gao F, Ren B Z, Dong S T, Liu P, Zhao B, Zhang J W. 2021. Lignin metabolism regulates lodging resistance of maize hybrids under varying planting density. Journal of Integrative Agriculture, 20, 2077-2089.

Liu F, Zhou F, Wang X L, Zhan X X, Guo Z X, Liu Q L, Wei G, Lan T Q, Feng D J, Kong F L, Yuan J C. 2023. Optimizing nitrogen management enhances stalk lodging resistance and grain yield in dense planting maize by improving canopy light distribution. European Journal of Agronomy, 148, 126871.

Liu J J, Yu H, Liu Y L, Deng S N, Liu Q C, Liu B S, Xu M L. 2020. Genetic dissection of grain water content and dehydration rate related to mechanical harvest in maize. BMC Plant Biology, 20, 118.

Niu Y A, Chen T X, Zhao C C, Zhou M X. 2022. Lodging prevention in cereals: Morphological, biochemical, anatomical traits and their molecular mechanisms, management and breeding strategies. Field Crop Research, 289, 108733.

Oduntan Y A, Stubbs C J, Robertson D J. 2022. High throughput phenotyping of cross-sectional morphology to assess stalk lodging resistance. Plant Methods, 18, 1.

Robertson D J, Julias M, Lee S Y, Cook D D. 2017. Maize stalk lodging: Morphological determinants of stalk strength. Crop Science, 57, 926-934.

Robertson D J, Lee S Y, Julias M, Cook D D. 2016. Maize stalk lodging: Flexural stiffness predicts strength. Crop Science, 56, 1711-1718.

Rux G, Gelewsky R, Schluter O, Herppich W B. 2019. High hydrostatic pressure effects on membrane-related quality parameters of fresh radish tubers. Postharvest Biology and Technology, 151, 1-9.

Sekhon R S, Breitzman M W, Silva R R, Santoro N, Rooney W L, de Leon N, Kaeppler S M. 2016. Stover composition in maize and sorghum reveals remarkable genetic variation and plasticity for carbohydrate accumulation. Frontiers in Plant Science7, 822.

Sekhon R S, Joyner C N, Ackerman A J, McMahan C S, Cook D D, Robertson D J. 2020. Stalk bending strength is strongly associated with maize stalk lodging incidence across multiple environments. Field Crops Research, 249, 107737.

Shah A N, Tanveer M, Abbas A, Yildirim M, Shah A A, Ahmad M I, Wang Z W, Sun W W, Song Y H. 2021. Combating dual challenges in maize under high planting density: Stem lodging and kernel abortion. Frontiers in Plant Science, 12, 699085.

Shao H, Shi D F, Shi W J, Ban X B, Chen Y C, Ren W, Chen F J, Mi G H. 2021. The impact of high plant density on dry matter remobilization and stalk lodging in maize genotypes with a different stay-green degree. Archives of Agronomy and Soil Science, 67, 504-518.

Sher A, Khan A, Ashraf U, Liu H H, Li J C. 2018. Characterization of the effect of increased plant density on canopy morphology and stalk lodging risk. Frontiers in Plant Science, 9, 1047.

Slewinski T L. 2012. Non-structural carbohydrate partitioning in grass stems: A target to increase yield stability, stress tolerance, and biofuel production. Journal of Experimental Botany, 63, 4647-4670.

Stubbs C J, McMahan C S, Tabaracci K, Kunduru B, Sekhon R S, Robertson D J. 2022. Cross-sectional geometry predicts failure location in maize stalks. Plant Methods, 18, 56.

Stubbs C J, Seegmiller K, McMahan C, Sekhon R S, Robertson D J. 2020. Diverse maize hybrids are structurally inefficient at resisting wind induced bending forces that cause stalk lodging. Plant Methods, 16, 67.

Wang K R, Xie R Z, Ming B, Hou P, Xue J, Li S K. 2021. Review of combine harvester losses for maize and influencing factors. International Journal of Agricultural and Biological Engineering, 14, 1-10.

Wang Q, Xue J, Chen J L, Fan Y H, Zhang G Q, Xie R Z, Ming B, Hou P, Wang K R, Li S K. 2020. Key indicators affecting maize stalk lodging resistance of different growth periods under different sowing dates. Journal of Integrative Agriculture, 19, 2419-2428.

Wang X L, Liu F, Zhao N, Du X, Yin P J, Li T L, Lan T Q, Feng D J, Kong F L, Yuan J C. 2025. Optimizing sowing dates increase solar radiation to mitigate maize lodging and yield variability: A five-year field study. Journal of Integrative Agriculture, 24, 4573-4587.

Wang X Y, Wu X P, Hua Y Z, Li Y Q, Ma L C, Gong Y H, Zhu W C, Xu S T, Xue J Q, Qin X L, Siddique K H M. 2025. Optimizing maize production in the Guanzhong Region: An evaluation of density tolerance, yield, and mechanical harvesting characteristics in different maize varieties. European Journal of Agronomy, 164, 127500.

Wang Y Z, Li L L, Gao S, Guo Y N, Zhang G Q, Ming B, Xie R Z, Xue J, Hou P, Wang K R, Li S K. 2020. Evaluation of grain breakage sensitivity of maize varieties mechanically-harvested by combine harvester. International Journal of Agricultural and Biological Engineering, 13, 8-16. 

Wu Y W, Zhao B, Du L J, Zhou F, Liu B X, Zhang J L, Kong F L, Yuan J C. 2019. Effects of low nitrogen stress on carbon-nitrogen metabolites and related enzyme activities in leaves of maize varieties with contrasting nitrogen efficiency at seedling stage. Journal of Maize Sciences27, 74-83. (in Chinese)

Xue J, Gao S, Hou L Y, Li L L, Ming B, Xie R Z, Wang K R, Hou P, Li S K. 2021. Physiological influence of stalk rot on maize lodging after physiological maturity. Agronomy-Basel, 11, 2271.

Xue J, Li L L, Xie R Z, Wang K R, Hou P, Ming B, Zhang W X, Zhang G Q, Gao S, Bai S J, Chu Z D, Li S K. 2018a. Effect of lodging on maize grain losing and harvest efficiency in mechanical grain harvest. Acta Agronomica Sinica44, 1774-1781. (in Chinese)

Xue J, Ming B, Xie R Z, Wang K R, Hou P, Li S K. 2020a. Evaluation of maize lodging resistance based on the critical wind speed of stalk breaking during the late growth stage. Plant Methods, 16, 148.

Xue J, Wang Q, Li H Y, Fan Y H, Li L, Xie R Z, Wang K R, Ming B, Hou P, Li S K. 2020b. Relationship between stalk and cob mechanical strength during the late growth stage of maize (Zea mays L.). Agronomy-Basel, 10, 1592.

Xue J, Wang Q, Li L L, Zhang W X, Xie R Z, Wang K R, Ming B, Hou P, Li S K. 2018b. Changes of maize lodging after physiological maturity and its influencing factors. Acta Agronomica Sinica44, 1782-1792. (in Chinese)

Xue J, Xie R Z, Zhang W F, Wang K R, Hou P, Ming B, Gou L, Li S K. 2017. Research progress on reduced lodging of high-yield and -density maize. Journal of Integrative Agriculture, 16, 2717-2725.

Xue J, Zhao Y S, Gou L, Shi Z G, Yao M N, Zhang W F. 2016. How high plant density of maize affects basal internode development and strength formation. Crop Science, 56, 3295-3306.

Yang J R, Yang K, Lv C H, Wang Y J. 2023. Effects of moderate water deficit on the accumulation and translocation of stem non-structural carbohydrates, yield and yield components in a sink-limited rice variety under elevated CO2 concentration. Journal of Plant Growth Regulation, 42, 4350-4359.

Yu Y H, Li W Q, Liu Y F, Liu Y J, Zhang Q Z, Ouyang Y D, Ding W Y, Xue Y, Zou Y L, Yan J J, Jia A Q, Yan J L, Hao X F, Gou Y J, Zhai Z W, Liu L Y, Zheng Y, Zhang B, Xu J T, Yang N, et al. 2025. A Zea genus-specific micropeptide controls kernel dehydration in maize. Cell, 188, 44-59.e21.

Yuan L M, Zhou T Y, Li K, Tian Y F, Xu Y J, Zhang J H, Yang J C. 2023. Moderate soil drying improves physiological performances and kernel yield of maize. Food and Energy Security, 12, e444.

Zamil M S, Yi H J, Puri V M. 2015. The mechanical properties of plant cell walls soft material at the subcellular scale: The implications of water and of the intercellular boundaries. Journal of Materials Science, 50, 6608-6623.

Zhan X X, Kong F L, Liu Q L, Lan T Q, Liu F, Wang X L, Du X, Chen X, Yuan J C. 2024. Identification of key enzymes in lignocellulose biosynthesis from dynamic observations in maize stalks. Crop Journal, 12, 1754-1764.

Zhan X X, Kong F L, Liu Q L, Lan T Q, Liu Y Q, Xu J Z, Ou Q, Chen L, Kessel G, Kempenaar C, Yuan J C. 2022. Maize basal internode development significantly affects stalk lodging resistance. Field Crops Research, 286, 108611.

Zhang W Q, Yu C X, Zhang K, Zhou Y Y, Tan W M, Zhang L Z, Li Z H, Duan L S. 2017. Plant growth regulator and its interactions with environment and genotype affect maize optimal plant density and yield. European Journal of Agronomy, 91, 34-43.

Zuber M S, Colbert T R, Darrah L L. 1980. Effect of recurrent selection for crushing strength on several stalk components in maize. Crop Science, 20, 711-717.

[1] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[2] Ling Ai, Ju Qiu, Jiuguang Wang, Mengya Qian, Tingting Liu, Wan Cao, Fangyu Xing, Hameed Gul, Yingyi Zhang, Xiangling Gong, Jing Li, Hong Duan, Qianlin Xiao, Zhizhai Liu. A naturally occurring 31 bp deletion in TEOSINTE BRANCHED1 causes branched ears in maize[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3322-3333.
[3] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
[4] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[5] Lihua Xie, Lingling Li, Junhong Xie, Jinbin Wang, Zechariah Effah, Setor Kwami Fudjoe, Muhammad Zahid Mumtaz. A suitable organic fertilizer substitution ratio stabilizes rainfed maize yields and reduces gaseous nitrogen loss in the Loess Plateau, China[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2138-2154.
[6] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[7] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[8] Xiaoxia Guo, Wanmao Liu, Yunshan Yang, Guangzhou Liu, Bo Ming, Ruizhi Xie, Keru Wang, Shaokun Li, Peng Hou. Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1424-1435.
[9] Yang Wang, Chunhua Mu, Xiangdong Li, Canxing Duan, Jianjun Wang, Xin Lu, Wangshu Li, Zhennan Xu, Shufeng Sun, Ao Zhang, Zhiqiang Zhou, Shenghui Wen, Zhuanfang Hao, Jienan Han, Jianzhou Qu, Wanli Du, Fenghai Li, Jianfeng Weng. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize[J]. >Journal of Integrative Agriculture, 2025, 24(2): 453-466.
[10] Xinglong Wang, Fan Liu, Nan Zhao, Xia Du, Pijiang Yin, Tongliang Li, Tianqiong Lan, Dongju Feng, Fanlei Kong, Jichao Yuan. Optimizing sowing dates increase solar radiation to mitigate maize lodging and yield variability: A five-year field study[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4573-4587.
[11] Guanghao Li, Qijian Zhang, Weiping Lu, Dalei Lu. Response of nutrient accumulation, remobilization and yield to combined application of nitrogen and potassium in waxy maize[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4561-4572.
[12] Xiuling Wang, Li Niu, Huaipan Liu, Xucun Jia, Yulong Zhao, Qun Wang, Yali Zhao, Pengfei Dong, Moubiao Zhang, Hongping Li, Panpan An, Zhi Li, Xiaohuan Mu, Yongen Zhang, Chaohai Li. Integrated transcriptomics and metabolomics analysis provide insights into the alleviation of waterlogging stress in maize by exogenous spermidine application[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4546-4560.
[13] Jienan Han, Ran Li, Ze Zhang, Shiyuan Liu, Qianqian Liu, Zhennan Xu, Zhiqiang Zhou, Xin Lu, Xiaochuan Shangguan, Tingfang Zhou, Jianfeng Weng, Zhuanfang Hao, Degui Zhang, Hongjun Yong, Jingyu Xu, Mingshun Li, Xinhai Li. Genome-wide association and co-expression uncovered ZmMYB71 controls kernel starch content in maize[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4496-4514.
[14] Hong Ren, Zheng Liu, Xinbing Wang, Wenbin Zhou, Baoyuan Zhou, Ming Zhao, Congfeng Li. Long-term excessive nitrogen application decreases spring maize nitrogen use efficiency via suppressing root physiological characteristics[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4195-4210.
[15] Yulong Wang, Aizhong Yu, Pengfei Wang, Yongpan Shang, Feng Wang, Hanqiang Lü, Xiaoneng Pang, Yue Li, Yalong Liu, Bo Yin, Dongling Zhang, Jianzhe Huo, Keqiang Jiang, Qiang Chai. No-tillage with total green manure mulching increases maize yield through improved soil moisture and temperature environment and enhanced maize root structure and photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4211-4224.
No Suggested Reading articles found!