Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Integrating meta-QTL analysis and VIGS to decipher GhPCMP-E17-mediated abiotic stress tolerance in upland cotton

Qiwen Yang1, Dandan Li1, Yan Zhao1, Xueli Zhang1, Wenmin Yuan1, Ying Li1, Junning Yang1, Junji Su1, 2#, Caixiang Wang1#

1 State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China

2 Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China

 Highlights 

l MQTLs for abiotic stress-related were identified in upland cotton.

Nine major MQTLs were detected in upland cotton.

l A key gene (GhPCMP-E17) with drought and salt stress tolerance was identified.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

棉花为一种重要的全球经济作物,其产量和纤维品质受非生物胁迫威胁日益严重。本研究对已发表的31篇文献中的3016个非生物胁迫相关数量性状位点Quantitative Trait Loci,QTLs)进行Meta-QTL分析,共鉴定出34MQTL。其中在9个具有包含较多初始QTL数量、高R2值及窄置信区间(CIs)等特征的主效MQTLs区段内,共注释到297个基因。结合转录组数据筛选出5个差异基因,进一步通过qRT-PCR确定GhPCMP-E17为进一步功能鉴定的候选基因。通过病毒诱导基因沉默(Virus-Induced Gene Silencing, VIGS)技术发现:与TRV:00植株相比,GhPCMP-E17沉默植株在干旱和盐胁迫条件下表现出更严重的萎黄现象;沉默GhPCMP-E17会削弱抗氧化酶的功能,从而增加活性氧的积累。上述结果表明,沉默GhPCMP-E17基因表达可增强棉花植株对干旱和盐胁迫的敏感性。本研究为陆地棉适应性非生物作物育种提供了优良的遗传资源。



Abstract  

Cotton (Gossypium spp.), a globally important cash crop, is increasingly threatened by abiotic stresses that significantly affect yield and fiber quality. In this study, data on 3,016 abiotic stress-related quantitative trait loci (QTLs) described in 31 published papers were integrated through meta-QTL analysis, a total of 34 MQTLs were identified. Nine major MQTLs with numerous initial QTLs, high R2 values, narrow confidence intervals (CIs), and close colocalizations were successfully detected. Combined with the transcriptome data, the candidate gene GhPCMP-E17 was identified. Through virus-induced gene silencing (VIGS) technology, the role of GhPCMP-E17 in the response to abiotic stress was clarified. Compared with the TRV:00 plants, the GhPCMP-E17-silenced plants presented more severe wilting and yellowing under drought and salt stress conditions. Silencing GhPCMP-E17 weakens the function of antioxidant enzymes, thereby increasing the accumulation of reactive oxygen species. These results indicate that downregulation of GhPCMP-E17 gene expression enhances the sensitivity of cotton plants to drought and salt stress. This research provides excellent genetic resources for adaptive abiotic crop breeding in upland cotton.

Keywords:  upland cotton       abiotic stress        meta-quantitative trait loci (MQTLs)        GhPCMP-E17        virus-induced gene silencing (VIGS)  
Accepted: Online: 13 November 2025  
Fund: 

This work was funded by the Major Project of the Joint Fund of Gansu Province, China (25JRRA1132) and the Youth Mentorship Fund of Gansu Agricultural University, China (GAU-QDFC-2024-10).

Cite this article: 

Qiwen Yang, Dandan Li, Yan Zhao, Xueli Zhang, Wenmin Yuan, Ying Li, Junning Yang, Junji Su, Caixiang Wang. 2025. Integrating meta-QTL analysis and VIGS to decipher GhPCMP-E17-mediated abiotic stress tolerance in upland cotton. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.11.017

Abdelraheem A, Esmaeili N, O’Connell M, Zhang J. 2019. Progress and perspective on drought and salt stress tolerance in cotton. Industrial Crops and Products130, 118-129.

Abdelraheem A, Liu F, Song M, Zhang J F. 2017. A meta-analysis of quantitative trait loci for abiotic and biotic stress resistance in tetraploid cotton. Molecular Genetics and Genomics, 292, 1221-1235.

Acuña-Galindo M A, Mason R E, Subramanian N K, Hays D B. 2015. Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Science, 55, 477-492.

Akohoue F, Miedaner T. 2022. Meta-analysis and co-expression analysis revealed stable QTL and candidate genes conferring resistances to Fusarium and Gibberella ear rots while reducing mycotoxin contamination in maize. Frontiers in Plant Science, 13, 1050891.

An C, Jenkins J N, Wu J, Guo Y, McCarty J C. 2010. Use of fiber and fuzz mutants to detect QTL for yield components, seed, and fiber traits of upland cotton. Euphytica, 172, 21-34.

Anilkumar C, Sah R P, Muhammed Azharudheen T P, Behera S, Singh N, Prakash N R, Sunitha N C, Devanna B N, Marndi B C, Patra B C, Nair S K. 2022. Understanding complex genetic architecture of rice grain weight through QTL-meta analysis and candidate gene identification. Scientific Reports, 12, 13832.

Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J. 2004. BioMercator: Integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics, 20, 2324-2326.

Bournonville C F, Díaz-Ricci J C. 2011. Quantitative determination of superoxide in plant leaves using a modified NBT staining method. Phytochemical Analysis, 22, 268-271.

Castro D, Contreras L M, Kurz L, Wilkesman J. 2017. Detection of guaiacol peroxidase on electrophoretic gels. Methods in Molecular Biology, 1626, 199-204.

Cervilla L M, Blasco B, Ríos J J, Romero L, Ruiz J M. 2007. Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Annals of Botany, 100, 747-756.

Goffinet B, Gerber S. 2000. Quantitative trait loci: a meta-analysis. Genetics, 155, 463-473.

Darvasi A, Soller M. 1997. A simple method to calculate resolving power and confidence interval of QTL map location. Behavior Genetics, 27, 125-132.

Fan Y, Shabala S, Ma Y, Xu R, Zhou M. 2015. Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genomics, 16, 43.

Giannopolitis C N, Ries S K. 1977. Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiology, 59, 315-318.

Guo B, Sleper D, Lu P, Shannon J, Nguyen H, Arelli P. 2006. QTLs associated with resistance to soybean cyst nematode in soybean: Meta-analysis of QTL locations. Crop Science, 46, 595-602.

Guo K, Chen T, Zhang P, Liu Y, Che Z, Shahinnia F, Yang D. 2023. Meta-QTL analysis and in-silico transcriptome assessment for controlling chlorophyll traits in common wheat. Plant Genome, 16, e20294.

Haigler C H, Betancur L, Stiff M R, Tuttle J R. 2012. Cotton fiber: A powerful single-cell model for cell wall and cellulose research. Frontiers in Plant Science, 3, 104.

Han Z, Ku L, Zhang Z, Zhang J, Guo S, Liu H, Zhao R, Ren Z, Zhang L, Su H, Dong L, Chen Y. 2014. QTLs for seed vigor-related traits identified in maize seeds germinated under artificial aging conditions. PLoS ONE, 9, e92535.

Hashimoto M, Endo T, Peltier G, Tasaka M, Shikanai T. 2003. A nucleus‐encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. The Plant Journal, 36, 541-549.

Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J. 2019. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics51, 739-748.

Hund A, Fracheboud Y, Soldati A, Frascaroli E, Salvi S, Stamp P. 2004. QTL controlling root and shoot traits of maize seedlings under cold stress. Theoretical and Applied Genetics, 109, 618-629.

Joshi G, Soe Y P, Palanog A, Hore T K, Nha C T, Calayugan M I, Inabangan-Asilo M A, Amparado A, Pandey I D, Cruz P C S, Hernandez J E, Swamy B P M. 2023. Meta-QTLs and haplotypes for efficient zinc biofortification of rice. Plant Genome, 16, e20315.

Kumar S, Singh V P, Saini D K, Sharma H, Saripalli G, Kumar S, Balyan H S, Gupta P K. 2021. Meta-QTLs, ortho-MQTLs, and candidate genes for thermotolerance in wheat (Triticum aestivum L.). Molecular Breeding, 41, 69.

Kumar V, Goyal V, Mandlik R, Kumawat S, Sudhakaran S, Padalkar G, Rana N, Deshmukh R, Roy J, Sharma T R, Sonah H. 2022. Pinpointing genomic regions and candidate genes associated with seed oil and protein content in soybean through an integrative transcriptomic and QTL Meta-analysis. Cells, 12, 97.

Liu H, Mullan D, Zhang C, Zhao S, Li X, Zhang A, Lu Z, Wang Y, Yan G. 2020. Major genomic regions responsible for wheat yield and its components as revealed by meta-QTL and genotype-phenotype association analyses. Planta, 252, 65.

Liu R, Gong J, Xiao X, Zhang Z, Li J, Liu A, Lu Q, Shang H, Shi Y, Ge Q, Iqbal M S, Deng X, Li S, Pan J, Duan L, Zhang Q, Jiang X, Zou X, Hafeez A, Chen Q, et al. 2018. GWAS analysis and QTL identification of fiber quality traits and yield components in upland cotton using enriched high-density SNP markers. Frontiers in Plant Science, 9, 1067.

Maryum Z, Luqman T, Nadeem S, Khan S, Wang B, Ditta A, Khan M K R. 2022. An overview of salinity stress, mechanism of salinity tolerance and strategies for its management in cotton. Frontiers in Plant Science, 13, 907937.

Parida A K, Dagaonkar V S, Phalak M S, Umalkar G V, Aurangabadkar L P. 2007. Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnology Reports, 1, 37-48.

Qian F, Jing J, Zhang Z, Chen S, Sang Z, Li W. 2023. GWAS and meta-QTL analysis of yield-related ear traits in maize. Plants (Basel), 12, 3806.

Quraishi U M, Pont C, Ain Q U, Flores R, Burlot L, Alaux M, Quesneville H, Salse J. 2017. Combined genomic and genetic data integration of major agronomical traits in bread wheat (Triticum aestivum L.). Frontiers in Plant Science, 8, 1843.

Ramel F, Sulmon C, Bogard M, Couée I, Gouesbet G. 2009. Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biology, 9, 1-18.

Ramírez-Tejero J A, Jiménez-Ruiz J, Serrano A, Belaj A, León L, de la Rosa R, Mercado-Blanco J, Luque F. 2021. Verticillium wilt resistant and susceptible olive cultivars express a very different basal set of genes in roots. BMC Genomics, 22, 229.

Reinisch A J, Dong J M, Brubaker C L, Stelly D M, Wendel J F, Paterson A H. 1994. A detailed RFLP map of cotton, Gossypium hirsutum × Gossypium barbadense: Chromosome organization and evolution in a disomic polyploid genome. Genetics, 138, 829-847.

Rogers G M, Poore M H, Paschal J C. 2002. Feeding cotton products to cattle. Veterinary Clinics (Food Animal Practice), 18, 267-294.

Said J I, Lin Z, Zhang X, Song M, Zhang J. 2013. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics, 14, 776.

Said J I, Song M, Wang H, Lin Z, Zhang X, Fang D D, Zhang J. 2015. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Molecular Genetics and Genomics, 290, 1003-1025.

Saini D K, Srivastava P, Pal N, Gupta P K. 2022. Meta-QTLs, ortho-meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 135, 1049-1081.

Semagn K, Beyene Y, Warburton M L, Tarekegne A, Mugo S, Meisel B, Sehabiague P, Prasanna B M. 2013. Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. BMC Genomics, 14, 313.

Sosnowski O, Charcosset A, Joets J. 2012. BioMercator V3: An upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics, 28, 2082-2083.

Su J, Li D, Yuan W, Li Y, Ju J, Wang N, Ling P, Feng K, Wang C. 2024. Integrating RTM-GWAS and meta‑QTL data revealed genomic regions and candidate genes associated with the first fruit branch node and its height in upland cotton. Theoretical and Applied Genetics, 137, 207.

Sukumaran S, Reynolds M P, Sansaloni C. 2018. Genome-wide association analyses identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought, and heat stress environments. Frontiers in Plant Science, 9, 81.

Veyrieras J B, Goffinet B, Charcosset A. 2007. MetaQTL: A package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics, 8, 49.

Wang C X, Li M L, Zhang D G, Zhang X L, Liu J J, Su J J. 2024. Knockdown of the atypical protein kinase genes GhABC1K2-A05 and GhABC1K12-A07 make cotton more sensitive to salt and PEG stress. Journal of Integrative Agriculture, 23, 3370-3386.

Welcker C, Sadok W, Dignat G, Renault M, Salvi S, Charcosset A, Tardieu F. 2011. A common genetic determinism for sensitivities to soil water deficit and evaporative demand: Meta-analysis of quantitative trait Loci and introgression lines of maize. Plant Physiology, 157, 718-729.

Xie D F, Cheng R Y, Fu X, Zhang X Y, Price M, Lan Y L, Wang C B, He X J. 2021. A combined morphological and molecular evolutionary analysis of karst-environment adaptation for the genus Urophysa (Ranunculaceae). Frontiers in Plant Science, 12, 667988.

Xu J, Liu Y, Liu J, Cao M, Wang J, Lan H, Xu Y, Lu Y, Pan G, Rong T. 2012. The genetic architecture of flowering time and photoperiod sensitivity in maize as revealed by QTL review and meta analysis. Journal of Integrative Plant Biology, 54, 358-373.

Yang Y, Amo A, Wei D, Chai Y, Zheng J, Qiao P, Cui C, Lu S, Chen L, Hu Y G. 2021. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theoretical and Applied Genetics, 134, 3083-3109.

Yu J, Jung S, Cheng C H, Lee T, Zheng P, Buble K, Crabb J, Humann J, Hough H, Jones D, Campbell J T, Udall J, Main D. 2021. CottonGen: The community database for cotton genomics, genetics, and breeding research. Plants (Basel), 10, 2805.

Yuan W, Li Y, Zhang W, Ju J, Guo X, Yang J, Lin H, Wang C, Ma Q, Su J. 2025. Pinpointing MQTLs and candidate genes related to early maturity in upland cotton through the integration of meta‑analysis, RNA-seq, and VIGS approaches. Industrial Crops and Products, 223, 120195.

Zhang J, Yu J, Pei W, Li X, Said J, Song M, Sanogo S. 2015. Genetic analysis of Verticillium wilt resistance in a backcross inbred line population and a meta-analysis of quantitative trait loci for disease resistance in cotton. BMC Genomics, 16, 577.

Zhao L, Lü Y, Chen W, Yao J, Li Y, Li Q, Pan J, Fang S, Sun J, Zhang Y. 2020. Genome-wide identification and analyses of the AHL gene family in cotton (Gossypium). BMC Genomics, 21, 69.

Zhao X, Peng Y, Zhang J, Fang P, Wu B. 2018. Identification of QTLs and meta-QTLs for seven agronomic traits in multiple maize populations under well-watered and water-stressed conditions. Crop Science, 58, 507-520.

[1] Hongge Li, Shurong Tang, Zhen Peng, Guoyong Fu, Yinhua Jia, Shoujun Wei, Baojun Chen, Muhammad Shahid Iqbal, Shoupu He, Xiongming Du. Genetic dissection and origin of pleiotropic loci underlying multi-level fiber quality traits in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3250-3263.
[2] Wanting Yu, Yonglu Dai, Junmin Chen, Aimin Liang, Yiping Wu, Qingwei Suo, Zhong Chen, Xingying Yan, Chuannan Wang, Hanyan Lai, Fanlong Wang, Jingyi Zhang, Qinzhao Liu, Yi Wang, Yaohua Li, Lingfang Ran, Jie Xiang, Zhiwu Pei, Yuehua Xiao, Jianyan Zeng. Upregulation of the glycine-rich protein-encoding gene GhGRPL enhances plant tolerance to abiotic and biotic stressors by promoting secondary cell wall development[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3311-3327.
[3] Caixiang Wang, Meili Li, Dingguo Zhang, Xueli Zhang, Juanjuan Liu, Junji Su. Knockdown of the atypical protein kinase genes GhABC1K2-A05 and GhABC1K12-A07 make cotton more sensitive to salt and PEG stress[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3370-3386.
[4] TIAN Xiao-min, HAN Peng, WANG Jing, SHAO Pan-xia, AN Qiu-shuang, Nurimanguli AINI, YANG Qing-yong, YOU Chun-yuan, LIN Hai-rong, ZHU Long-fu, PAN Zhen-yuan, NIE Xin-hui. Association mapping of lignin response to Verticillium wilt through an eight-way MAGIC population in Upland cotton[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1324-1337.
[5] DU Qiao-li, FANG Yuan-peng, JIANG Jun-mei, CHEN Mei-qing, LI Xiang-yang, XIE Xin. Genome-wide identification and characterization of the JAZ gene family and its expression patterns under various abiotic stresses in Sorghum bicolor[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3540-3555.
[6] Muhammad Riaz, Jehanzeb Farooq, Saghir Ahmed, Muhammad Amin, Waqas Shafqat Chattha, Maria Ayoub, Riaz Ahmed Kainth. Stability analysis of different cotton genotypes under normal and water-deficit conditions[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1257-1265.
[7] LIU Zheng-jie, ZHAO Yan-peng, ZENG Ling-he, ZHANG Yuan, WANG Yu-mei, HUA Jin-ping. Characterization of GhSERK2 and its expression associated with somatic embryogenesis and hormones level in Upland cotton[J]. >Journal of Integrative Agriculture, 2018, 17(03): 517-529.
[8] LI Yan-jun, SUN Shi-chao, ZHANG Xin-yu, WANG Xiang-fei, LIU Yong-chang, XUE Fei, SUN Jie. New clues concerning pigment biosynthesis in green colored fiber provided by proteomics-based analysis[J]. >Journal of Integrative Agriculture, 2018, 17(01): 46-53.
[9] GUO Xiu-hua, CAI Cai-ping, YUAN Dong-dong, ZHANG Ren-shan, XI Jing-long, GUO Wang-zhen. Development and identification of Verticillium wilt-resistant upland cotton accessions by pyramiding QTL related to resistance[J]. >Journal of Integrative Agriculture, 2016, 15(3): 512-520.
[10] KUANG Meng, WEI Shou-jun, WANG Yan-qin, ZHOU Da-yun, MA Lei, FANG Dan, YANG Wei-hua. Development of a core set of SNP markers for the identification of upland cotton cultivars in China[J]. >Journal of Integrative Agriculture, 2016, 15(05): 954-962.
[11] XIA Zhe, ZHANG Xin, LIU Yang-yang, JIA Zi-fang, ZHAO Hai-hong, LI Cheng-qi , WANG;Qing-lian . Major Gene Identification and Quantitative Trait Locus Mapping for Yield- Related Traits in Upland Cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2014, 13(2): 299-309.
[12] HU Ming-yu, LUO Ming, XIAO Yue-hua, LI Xian-bi, TAN Kun-ling, HOU Lei, DONG Jing, LI De-mou, SONG Shui-qing, ZHAO Juan, ZANG Zhen-le, LI Bao-li , PEI Yan. Brassinosteroids and Auxin Down-Regulate DELLA Genes in Fiber Initiation and Elongation of Cotton[J]. >Journal of Integrative Agriculture, 2011, 10(8): 1168-1176.
No Suggested Reading articles found!