Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Alleviating negative home plant-soil feedback in vegetables through phosphorus management

Zitian Pu1, 2*, Ruifang Zhang2, 3*, Chi Zhang2, 3, Hong Wang2, 3, Xinxin Wang1, 4#

1 State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China

2 College of Resources and Environment, Hebei Agricultural University, Baoding 071001, China 

3 College of Land and Resources, Hebei Agricultural University, Baoding 071001, China

4 College of Horticulture, Hebei Agricultural University, Baoding 071001, China

 Highlights 

· Low-P soil conditions intensified the negative feedback effects in vegetables.

· High-P application mitigated the negative feedback effects in vegetables.

· Home-PSFs of wild tomatoes exhibited greater sensitivity to soil P levels compared to common tomatoes.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

蔬菜作物的主场植物-土壤反馈(home-PSFs)通常表现为负反馈,严重抑制蔬菜生长。磷作为植物必需的重要营养元素,其土壤有效磷水平可显著影响蔬菜的生长模式。然而,土壤有效磷如何调节蔬菜作物的home-PSFs尚不明确。本研究通过构建12种不同蔬菜组成的home-PSF系统,比较了两种磷水平(低磷:40 mg P kg⁻¹;高磷:200 mg P kg⁻¹)对蔬菜生长的影响。结果显示,低磷处理导致所有供试蔬菜生物量显著降低,且大部分蔬菜将更多生物量分配至根部。此外,低磷条件下丛枝菌根定殖率与根际酸性磷酸酶活性上升,而根长显著减小。在不同磷水平下,蔬菜home-PSFs总体上呈负效应,葱属蔬菜与非菌根蔬菜在高磷条件下表现出正反馈此外,野生番茄的反馈值变幅大于普通番茄。高磷条件下,丛枝菌根定殖率与生物量吸收量反馈值呈正相关;低磷条件下,根径和丛枝菌根定殖率与生物量吸收量反馈值表现出不同的相关性。综上所述,提高磷水平可缓解蔬菜的负home-PSFs,促进生物量积累,且高磷水平在缓解野生番茄负反馈方面效果优于普通番茄。



Abstract  

Home plant-soil feedbacks (home-PSFs) typically demonstrate negative effects in vegetable crops, substantially inhibiting their growth. Phosphorus (P), an essential plant nutrient crucial for growth, influences vegetable crop growth patterns through soil availability levels. However, the relationship between soil available P levels and home-PSFs in vegetable crops requires further investigation. This study established a home PSF system incorporating 12 vegetable crops from 6 families to examine growth responses under two P conditions (low P level: 40 mg P kg-1 soil; high P level: 200 mg P kg-1 soil). The findings revealed that low P conditions significantly decreased overall biomass across all vegetables, with preferential biomass allocation to root development. Furthermore, low P conditions enhanced mycorrhizal colonization and rhizosphere acid phosphatase activity while notably decreasing root length. While vegetables generally exhibited negative home PSFs, allium and nonmycorrhizal plants demonstrated positive responses under high P conditions. Wild tomatoes displayed greater variation in feedback values across P levels compared to common tomatoes. Under high-P conditions, mycorrhizal colonization showed positive correlations with feedback values of biomass and P concentration. Root diameter and mycorrhizal colonization demonstrated distinct correlations with these feedback values under low-P conditions. The research concludes that high P levels effectively mitigate negative home-PSFs in vegetables while increasing biomass production. Additionally, high P levels demonstrated superior efficacy in alleviating negative home-PSFs in wild tomatoes compared to common tomatoes.

Keywords:  home plant-soil feedback       phosphorus levels       negative feedback       growth strategy       vegetable  
Online: 04 September 2025  
Fund: 

This study was financially supported by the Earmarked Fund for Hebei Agriculture Research System (HBCT2023100208 and HBCT 2023100212) and the State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, China (NCCIR2021ZZ-18).

About author:  #Correspondence Xinxin Wang, E-mail: xinxinwang.wur@qq.com *These authors contributed equally to this study.

Cite this article: 

Zitian Pu, Ruifang Zhang, Chi Zhang, Hong Wang, Xinxin Wang. 2025. Alleviating negative home plant-soil feedback in vegetables through phosphorus management. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.09.003

Abiem I, Chapman H M. 2025. Investigating plant-soil feedbacks in tropical montane forest trees. Journal of Tropical Ecology, 41, 1-5.

Allen W J, Meyerson L A, Flick A J, Cronin J T. 2018. Intraspecific variation in indirect plant-soil feedbacks influences a wetland plant invasion. Ecology, 99, 1430-1440.

Alvey S, Bagayoko M, Neumann G, Buerkert A. 2001. Cereal/legume rotations affect chemical properties and biological activities in two West African soils. Plant and Soil, 231, 45-54.

Awodele S O, Bennett J A. 2022. Soil biota legacies of alfalfa production vary with field conditions and among varieties and species. Agriculture Ecosystems Environment, 335, 107944.

Bao S D. 2000. Soil Agrochemical Analysis Third Edition. China Agriculture Press,  Beijing.

Barber N A, Kiers E T, Theis N, Hazzard R V, Adler L S. 2013. Linking agricultural practices, mycorrhizal fungi, and traits mediating plant-insect interactions. Ecological Applications, 23, 1519-1530.

Bauer J T, Koziol L, Bever J D. 2018. Ecology of floristic quality assessment: Testing for correlations between coefficients of conservatism, species traits and mycorrhizal responsiveness. Aob Plants, 10, plx073.

Bennett J A, Klironomos J. 2019. Mechanisms of plant-soil feedback: Interactions among biotic and abiotic drivers. New Phytologist, 222, 91-96.

Bukowski A R, Petermann J S. 2014. Intraspecific plant-soil feedback and intraspecific overyielding in Arabidopsis thaliana. Ecology and Evolution, 4, 2533-2545.

Cadot S, Gfeller V, Hu L F, Singh N, Sanchez-Vallet A, Glauser G, Croll D, Erb M, Van der Heijden M G A, Schlaeppi K. 2021. Soil composition and plant genotype determine benzoxazinoid-mediated plant-soil feedbacks in cereals. Plant Cell and Environment, 44, 3502-3514.

Cao K P, Zhang L L, Ullah A, Ibrahim M, Zhang Y, Gao D M, Zhou X A, Wu F Z, Liu S W. 2025. Moderate P fertilizer promotes cucumber yields and modulates bacterial community in the wheat cover crop system. Agronomy-Basel, 15, 624.

Carrillo J, Ingwell L L, Li X H, Kaplan I. 2019. Domesticated tomatoes are more vulnerable to negative plant-soil feedbacks than their wild relatives. Journal of Ecology, 107, 1753-1766.

Chen X D, Jiang N, Condron L M, Dunfield K E, Chen Z H, Wang J K, Chen L J. 2019. Impact of long-term phosphorus fertilizer inputs on bacterial phoD gene community in a maize field, Northeast China. Science of the Total Environment, 669, 1011-1018.

Cortois R, Schroder-Georgi T, Weigelt A, Van der Putten W H, De Deyn G B. 2016. Plant-soil feedbacks: Role of plant functional group and plant traits. Journal of Ecology, 104, 1608-1617.

Dias T, Dukes A, Antunes P M. 2015. Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. Journal of the Science of Food and Agriculture, 95, 447-454.

Fitzpatrick C R, Gehant L, Kotanen P M, Johnson M T J. 2017. Phylogenetic relatedness, phenotypic similarity and plant-soil feedbacks. Journal of Ecology, 105, 786-800.

Gavito M, Curtis P, Mikkelsen T, Jakobsen I. 2000. Atmospheric CO2 and mycorrhiza effects on biomass allocation and nutrient uptake of nodulated pea (Pisum sativum L.) plants. Journal of Experimental Botany, 51, 1931-1938.

Geelhoed J S. 1997. Effects of sulphate and pH on the plan-t availability of phosphate adsorbed on goethite. Plant and Soil, 197, 241-249.

Guo R Y, Qin W, Jiang C G, Kang L Y, Nendel C, Chen Q. 2018. Sweet corn significantly increases nitrogen retention and reduces nitrogen leaching as summer catch crop in protected vegetable production systems. Soil Tillage Research, 180, 148-153.

Guo T, Zhang J, Christie P, Li X. 2006. Influence of nitrogen and sulfur fertilizers and inoculation with arbuscular mycorrhizal fungi on yield and pungency of spring onion. Journal of Plant Nutrition, 29, 1767-1778.

Haling R E, Brown L K, Stefanski A, Kidd D R, Ryan M H, Sandral G A, George T S, Lambers H, Simpson R J. 2018. Differences in nutrient foraging among Trifolium subterraneum cultivars deliver improved P-acquisition efficiency. Plant and Soil, 424, 539-554.

House G L, Bever J D. 2018. Disturbance reduces the differentiation of mycorrhizal fungal communities in grasslands along a precipitation gradient. Ecological Applications, 28, 736-748.

Van der Heijden M G A, Martin F M, Selosse M A, Sanders I R. 2015. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist, 205, 1406-1423.

Veen G F, Keiser A D, Van der Putten W H, Wardle D A. 2018. Variation in home-field advantage and ability in leaf litter decomposition across successional gradients. Functional Ecology, 32, 1563-1574.

Wagg C, Boller B, Schneider S, Widmer F, Van der Heijden M G A. 2015. Intraspecific and intergenerational differences in plant-soil feedbacks. Oikos, 124, 994-1004.

Iannucci A, Fragasso M, Beleggia R, Nigro F, Papa R. 2017. Evolution of the crop rhizosphere: Impact of domestication on root exudates in tetraploid wheat (Triticum turgidum L.). Frontiers in Plant Science, 8, 2124.

Koziol L, Bever J D. 2015. Mycorrhizal response trades off with plant growth rate and increases with plant successional status. Ecology, 96, 1768-1774.

Koziol L, Bever J D. 2017. The missing link in grassland restoration: Arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession. Journal of Applied Ecology, 54, 1301-1309.

Koziol L, Bever J D. 2019. Mycorrhizal feedbacks generate positive frequency dependence accelerating grassland succession. Journal of Ecology, 107, 622-632.

Kulmatiski A, Beard K H, Stevens J R, Cobbold S M. 2008. Plant-soil feedbacks: A meta-analytical review. Ecology Letters, 11, 980-992.

Kural-Rendon C, Ford N E, Hooser K, Wagner M R. 2025. Intraspecific plant-soil feedbacks alter root traits in a perennial grass. Rhizosphere, 35, 101120.

Lambers H, Raven J A, Shaver G R, Smith S E. 2008. Plant nutrient-acquisition strategies change with soil age. Trends in Ecology Evolution, 23, 95-103.

Liu J R, Peng J, Xia H Q, Li P C, Li Z Y, Sun M, Zheng C S, Dong H L. 2021. High soil available phosphorus favors carbon metabolism in cotton leaves in pot trials. Journal of Plant Growth Regulation, 40, 974-985.

Lopez-Arredondo D L, Leyva-Gonzalez M A, Gonzalez-Morales S I, Lopez-Bucio J, Herrera-Estrella L. 2014. Phosphate nutrition: Improving low-phosphate tolerance in crops. Annual Review of Plant Biology, 65, 95-123.

Luo R Y, Kuzyakov Y, Zhu B, Qiang W, Zhang Y, Pang X Y. 2022. Phosphorus addition decreases plant lignin but increases microbial necromass contribution to soil organic carbon in a subalpine forest. Global Change Biology, 28, 4194-4210.

Minas A, Garcia-Parisi P A, Omacini M. 2024. The soil legacy produced by grass- endophyte-mycorrhizae fungi interaction increases legume establishment. Symbiosis, 93, 297-308.

Mehrabi Z, Tuck S L. 2015. Relatedness is a poor predictor of negative plant-soil feedbacks. New Phytologist, 205, 1071-1075.

Middleton E L, Bever J D. 2012. Inoculation with a native soil community advances succession in a grassland restoration. Restoration Ecology, 20, 218-226.

Middleton E L, Richardson S, Koziol L, Palmer C E, Yermakov Z, Henning J A, Schultz P A, Bever J D. 2015. Locally adapted arbuscular mycorrhizal fungi improve vigor and resistance to herbivory of native prairie plant species. Ecosphere, 6, 276.

Murphy J, Riley J P. 1986. A modified single solution method for the determination of phosphate in natural waters. Current Contents/Agriculture Biology Environmental Sciences, 16, 16.

Oehl F, Laczko E, Bogenrieder A, Stahr K, Bosch R, Van der Heijden M, Sieverding E. 2010. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biology Biochemistry, 42, 724-738.

Pang J Y, Bansal R, Zhao H X, Bohuon E, Lambers H, Ryan M H, Ranathunge K, Siddique K H M. 2018. The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply. New Phytologist, 219, 518-529.

Perez-Jaramillo J E, R. Mendes R, Raaijmakers J M, 2016. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biology, 90, 635-644.

Poorter H, Niklas K J, Reich P B, Oleksyn J, Poot P, Mommer L. 2012. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50.

Postma J A, Dathe A, Lynch J P. 2014. The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiology, 166, 590-U948.

Pu Z T, Hu R L, Wang D D, Wang C, Chen Y L, Wang S, Zhuge Y P, Xie Z H. 2024. The impact of arbuscular mycorrhizal fungi on soybean growth strategies in response to salt stress. Plant and Soil, 509, 929-943.

Pu Z T, Zhang R F, Wang H, Li Q Y, Zhang J H, Wang X X. 2023. Root morphological and physiological traits and arbuscular mycorrhizal fungi shape phosphorus-acquisition strategies of 12 vegetable species. Frontiers in Plant Science, 14, 1150832.

Van der Putten W H, Bardgett R D, Bever J D, Bezemer T M, Casper B B, Fukami T, Kardol P, Klironomos J N, Kulmatiski A, Schweitzer J A, Suding K N, Van de Voorde T F J, Wardle D A. 2013. Plant-soil feedbacks: The past, the present and future challenges. Journal of Ecology, 101, 265-276.

Qi Y B, Zhou R, Nie L C, Sun M T, Wu X T, Jiang F L. 2022. The effects of catch crops on properties of continuous cropping soil and growth of vegetables in greenhouse. Agronomy-Basel, 12, 1179.

Raven J A, Lambers H, Smith S E, Westoby M. 2018. Costs of acquiring phosphorus by vascular land plants: Patterns and implications for plant coexistence. New Phytologist, 217, 1420-1427.

Richardson A E, Lynch J P, Ryan P R, Delhaize E, Smith F A, Smith S E, Harvey P R, Ryan M H, Veneklaas E J, Lambers H, Oberson A, Culvenor R A, Simpson R J. 2011. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil, 349, 121-156.

Roucou A, Violle C, Fort F, Roumet P, Ecarnot M, Vile D. 2018. Shifts in plant functional strategies over the course of wheat domestication. Journal of Applied Ecology, 55, 25-37.

Schandry N, Becker C. 2020. Allelopathic plants: Models for studying plant-interkingdom interactions. Trends in Plant Science, 25, 176-185.

Schmidt J E, Bowles T M, Gaudin A C M. 2016. Using ancient traits to convert soil health into crop yield: Impact of selection on maize root and rhizosphere function. Frontiers in Plant Science, 7, 373.

Schnoor T K, Lekberg Y, Rosendahl S, Olsson P A. 2011. Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza, 21, 211-220.

Shen J B, Yuan L X, Zhang J L, Li H G, Bai Z H, Chen X P, Zhang W F, Zhang F S. 2011. Phosphorus dynamics: From soil to plant. Plant Physiology, 156, 997-1005.

Smith S E, Jakobsen I, Gronlund M, Smith F A. 2011. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 156, 1050-1057.

Smith-Ramesh L M, Reynolds H L. 2017. The next frontier of plant-soil feedback research: Unraveling context dependence across biotic and abiotic gradients. Journal of Vegetation Science, 28, 484-494.

Stagnari F, Maggio A, Galieni A, Pisante M. 2017. Multiple benefits of legumes for agriculture sustainability: An overview. Chemical and Biological Technologies in Agriculture, 4, 2.

Sun K, Fu L Y, Song Y, Yuan L, Zhang H R, Wen D, Yang N, Wang X, Yue Y Q, Li X H, Wang K. 2021. Effects of continuous cucumber cropping on crop quality and soil fungal community. Environmental Monitoring and Assessment, 193, 436.

Teste F P, Kardol P, Turner B L, Wardle D A, Zemunik G, Renton M, Laliberte E. 2017. Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science, 355, 173-176.

Trouvelot A, Kough J, Gianinazzi-Pearson V. 1986. Mesure du taux de mycorhizationVA d'un système radiculaire. Recherche de méthodes d'estimation ayant une signification fonctionnelle. In: GianinazziPearson V, Gianinazzi S, eds., Physiological and Genetical Aspects of Mycorrhizae. INRA Press Paris, France. pp. 217-221.

Tsao S, Yin M C. 2001. In-vitro antimicrobial activity of four diallyl sulphides occurring naturally in garlic and Chinese leek oils. Journal of Medical Microbiology, 50, 646-649.

De Vries F T, Wallenstein M D. 2017. Below-ground connections underlying above-ground food production: A framework for optimising ecological connections in the rhizosphere. Journal of Ecology, 105, 913-920.

Wang G Z, Van der Putten WH, Klironomos J, Zhang F S, Zhang J L. 2025. Steering plant-soil feedback for sustainable agriculture. Science, 389, 6758.

Wang X X, Hoffland E, Mommer L, Feng G, Kuyper T W. 2019. Maize varieties can strengthen positive plant-soil feedback through beneficial arbuscular mycorrhizal fungal mutualists. Mycorrhiza, 29, 251-261.

Wang X X, Wang X J, Sun Y, Cheng Y, Liu S T, Chen X P, Feng G, Kuyper T W. 2018. Arbuscular mycorrhizal fungi negatively affect nitrogen acquisition and grain yield of maize in a N deficient soil. Frontiers in Microbiology, 9, 418.

Wang Y, Zhou Y Y, Ye J, Jin C Z, Hu Y H. 2023. Continuous cropping inhibits photosynthesis of Polygonatum odoratum. Plants-Basel, 12, 3374.

Wiggins B, Kinkel L. 2005. Green manures and crop sequences influence potato diseases and pathogen inhibitory activity of indigenous streptomycetes. Phytopathology, 95, 178-185.

Yacine Y, Kutakova E, Zandt D I, Hadincova V, Semerad J, Cajthaml T, Mvnzbergova Z. 2024. Between-versus within-species variation in plant-soil feedback relates to different functional traits, but exudate variability is involved at both scales. Functional Ecology, 38, 1156-1171.

Yu J Q, Matsui Y. 1994. Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.). Journal of Chemical Ecology, 20, 21-31.

Zhang H Y, Hu K L, Zhang L J, Ji Y Z, Qin W. 2019. Exploring optimal catch crops for reducing nitrate leaching in vegetable greenhouse in North China. Agricultural Water Management, 212, 273-282.

Zhu X Y, Zhao P, Wang J, Zhang Q Q, Yu Y C, Liu M, Jin R, Tang Z H. 2024. Long-term stationary fertilization decreased soil health in field-grown sweetpotato by increasing soil-borne diseases or allelochemicals. Applied Soil Ecology, 203, 105658.

[1] Yufan Gao, Fei Yin, Chen Hong, Xiangfu Chen, Hang Deng, Yongjian Liu, Zhenyu Li, Qing Yao. Intelligent field monitoring system for cruciferous vegetable pests using yellow sticky board images and an improved Cascade R-CNN[J]. >Journal of Integrative Agriculture, 2025, 24(1): 220-234.
[2] Shuo Yuan, Ruonan Li, Yinjie Zhang, Hao'an Luan, Jiwei Tang, Liying Wang, Hongjie Ji, Shaowen Huang.

Effects of long-term partial substitution of inorganic fertilizer with pig manure and/or straw on nitrogen fractions and microbiological properties in greenhouse vegetable soils [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2083-2098.

[3] LI Li-jun, LI Kun, JIANG Bao, LI Ju-mei, MA Yi-bing. Derivation and validation of soil total and extractable cadmium criteria for safe vegetable production[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3792-3803.
[4] ZHANG Yin-Jie, GAO Wei, LUAN Hao-an, TANG Ji-wei, LI Ruo-nan, LI Ming-Yue, ZHANG Huai-zhi, HUANG Shao-wen. Long-term straw addition promotes moderately labile phosphorus formation, decreasing phosphorus downward migration and loss in greenhouse vegetable soil[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2734-2749.
[5] ZHOU Jie-hong, HAN Fei, LI Kai, WANG Yu. Vegetable production under COVID-19 pandemic in China: An analysis based on the data of 526 households[J]. >Journal of Integrative Agriculture, 2020, 19(12): 2854-2865.
[6] GU Hai-ying, WANG Chang-wei. Impacts of the COVID-19 pandemic on vegetable production and countermeasures from an agricultural insurance perspective[J]. >Journal of Integrative Agriculture, 2020, 19(12): 2866-2876.
[7] WANG Zhi-zhi, LIU Yin-quan, SHI Min, HUANG Jian-hua, CHEN Xue-xin. Parasitoid wasps as effective biological control agents[J]. >Journal of Integrative Agriculture, 2019, 18(4): 705-715.
[8] LI Fu-rong, WEN Dian, WANG Fu-hua, SUN Fang-fang, WANG Xu, DU Ying-qiong, LIU Xiang-xiang, WAN Kai. Derivation of soil Pb/Cd/As thresholds for safety of vegetable planting: A case study for pakchoi in Guangdong Province, China[J]. >Journal of Integrative Agriculture, 2019, 18(1): 179-189.
[9] DONG Jin-long, LI Xun, Nazim Gruda, DUAN Zeng-qiang. Interactive effects of elevated carbon dioxide and nitrogen availability on fruit quality of cucumber (Cucumis sativus L.)[J]. >Journal of Integrative Agriculture, 2018, 17(11): 2438-2446.
[10] RONG Qin-lei, LI Ruo-nan, HUANG Shao-wen, TANG Ji-wei, ZHANG Yan-cai, WANG Li-ying. Soil microbial characteristics and yield response to partial substitution of chemical fertilizer with organic amendments in greenhouse vegetable production[J]. >Journal of Integrative Agriculture, 2018, 17(06): 1432-1444.
[11] NING Chuan-chuan, GAO Peng-dong, WANG Bing-qing, LIN Wei-peng, JIANG Ni-hao, CAI Kun-zheng . Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content[J]. >Journal of Integrative Agriculture, 2017, 16(08): 1819-1831.
[12] Ajapnwa Akamin, Jean-Claude Bidogeza, Jules René Minkoua N, Victor Afari-Sefa . Efficiency and productivity analysis of vegetable farming within root and tuber-based systems in the humid tropics of Cameroon[J]. >Journal of Integrative Agriculture, 2017, 16(08): 1865-1873.
[13] FU Dong-hui, JIANG Ling-yan, Annaliese S Mason, XIAO Mei-li, ZHU Long-rong, LI Li-zhi, ZHOU Qing-hong, SHEN Chang-jian, HUANG Chun-hui. Research progress and strategies for multifunctional rapeseed: A case study of China[J]. >Journal of Integrative Agriculture, 2016, 15(8): 1673-1684.
[14] ZHANG Zhi-qiang, WANG Xiu-bin, LI Chun-hua, HUANG Shao-wen, GAO Wei, TANG Ji-wei, JIN Jiyun. Effects of straw addition on increased greenhouse vegetable yield and reduced antibiotic residue in fluvo-aquic soil[J]. >Journal of Integrative Agriculture, 2015, 14(7): 1423-1433.
[15] LIU Yi, YANG Yang, QIN Hong-ling, ZHU Yi-jun , WEI Wen-xue. Differential Responses of Nitrifier and Denitrifier to Dicyandiamide in Short- and Long-Term Intensive Vegetable Cultivation Soils[J]. >Journal of Integrative Agriculture, 2014, 13(5): 1090-1098.
No Suggested Reading articles found!