Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (3): 1108-1125    DOI: 10.1016/j.jia.2024.06.001
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Transcriptional activation of MdDEF30 by MdWRKY75 enhances apple resistance to Cytospora canker 

Hongchen Jia1, Youwei Du1, Yuanyuan Liu1, Shuanghong Wang1, Yan Wang1, Sadia Noorin1, Mark L.  Gleason2, Rong Zhang1#, Guangyu Sun1#

1State Key Laboratory of Crop Stress Resistance and High-efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, China

2 Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA

 Highlights 
Apple genome harbors 29 defensin genes with complete structure responding to various biotic and abiotic stimuli.
MdDEF30 functions dually by inducing apple resistance and in vitro antifungal activity against Cytospora mali.
MdWRKY75 positively regulates MdDEF30 leading to enhanced resistance to Cytospora canker.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

防御素在植物的生长发育和抵御病原菌侵染过程中发挥重要的作用,然而苹果中防御素对苹果树腐烂病菌抗性的作用尚不清楚。本研究中,共鉴定出29个苹果防御素蛋白,它们具有保守的序列特征。基于表达分析,发现苹果防御素在苹果各组织中均有分布,5个防御素基因的表达受到苹果壳囊孢的显著诱导。构建5个防御素的转基因愈伤,过表达防御素基因均能增强对苹果壳囊孢的抗性。其中,MdDEF30表达受苹果壳囊孢菌强烈诱导并显著提高愈伤抗性。进一步的体外活性实验证实MdDEF30能抑制壳囊孢的生长。MdDEF30能够促进活性氧积累和激活防卫相关基因PR4PR10CML13MPK3的表达。通过构建MdDEF30共表达网络,发现转录因子MdWRKY75可能调控MdDEF30的表达。利用酵母单杂、荧光酶素报告基因和染色质免疫共沉淀荧光定量实验证实MdWRKY75能够与MdDEF30启动子直接结合。接种实验表明MdWRKY75正调控对苹果树腐烂病抗性,并且激活MdDEF30的表达。这些结果阐明苹果树通过MdWRKY75正向调控具抗菌活性和诱导抗性的MdDEF30表达抵御壳囊孢菌侵染的分子机理。



Abstract  
Defensin, an essential component of plant development, is indispensable in pathogen resistance.  However, the molecular function of defensins under pathological conditions of Cytospora canker has not been characterized in apple plants.  The present study exhibits a detailed overview of the phylogeny and structure of 29 defensins (MdDEF) in apple.  Expression analysis revealed that MdDEF genes were spatiotemporally diverse across apple tissues.  Five MdDEF genes were found to be significantly up-regulated following a challenge with Cytospora mali.  The transgenic overexpression of five defensin genes in apple calli enhanced resistance to Cmali.  Among them, MdDEF30 was strongly induced and conferred the highest resistance level in vivo.  Meanwhile, antifungal activity assays in vitro demonstrated that a recombinant protein produced from MdDEF30 could inhibit the growth of Cmali.  Notably, MdDEF30 promoted the accumulation of reactive oxygen species (ROS) and activated defense-related genes such as PR4, PR10, CML13, and MPK3.  Co-expression regulatory network analysis showed that MdWRKY75 may regulate the expression of MdDEF30.  Further yeast one-hybrid (Y1H), luciferase, and chromatin Immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) assays verified that MdWRKY75 could directly bind to the promoter of MdDEF30.  Importantly, pathogen inoculation assays confirmed that MdWRKY75 positively regulates resistance by transcriptionally activating MdDEF30.  Overall, these results demonstrated that MdDEF30 promotes resistance to Cmali in apple plants and that MdWRKY75 regulates MdDEF30 expression during the induction of resistance, thereby clarifying biochemical mechanisms of resistance to Cmali in apple trees.


Keywords:  apple calli       defensin        gene family        Cytospora mali        induced resistance        antifungal activity        weighted correlation network analysis (WGCNA)        transcription factors  
Received: 10 November 2023   Accepted: 12 April 2024
Fund: 
This research was funded by the National Key R&D Program of China (2023YFD1401401) and the China Agriculture Research System (CARS27).  
About author:  Hongchen Jia, E-mail: JHC@nwafu.edu.cn; #Correspondence Guangyu Sun, E-mail: sgy@nwsuaf.edu.cn; Rong Zhang, E-mail: rongzh@nwsuaf.edu.cn

Cite this article: 

Hongchen Jia, Youwei Du, Yuanyuan Liu, Shuanghong Wang, Yan Wang, Sadia Noorin, Mark L. Gleason, Rong Zhang, Guangyu Sun. 2025. Transcriptional activation of MdDEF30 by MdWRKY75 enhances apple resistance to Cytospora canker . Journal of Integrative Agriculture, 24(3): 1108-1125.

Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, et al. 2012. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research40, 597–603.

Boyd L A, Ridout C, O’Sullivan D M, Leach J E, Leung H. 2013. Plant–pathogen interactions: Disease resistance in modern agriculture. Trends in Genetics29, 233–240.

Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant13, 1194–1202.

Chen L G, Zhang L P, Xiang S Y, Chen Y L, Zhang H Y, Yu D Q. 2021. The transcription factor WRKY75 positively regulates jasmonate-mediated plant defense to necrotrophic fungal pathogens. Journal of Experimental Botany72, 1473–1489.

Collum T D, Culver J N. 2016. The impact of phytohormones on virus infection and disease. Current Opinion in Virology17, 25–31.

Costa L S M, Pires Á S, Damaceno N B, Rigueiras P O, Maximiano M R, Franco O L, Porto W F. 2020. In silico characterization of class II plant defensins from Arabidopsis thalianaPhytochemistry179, 112511.

Daccord N, Celton J M, Linsmith G, Becker C, Choisne N, Schijlen E, de Geest H V, Bianco L, Micheletti D, Velasco R, Pierro E A D, Gouzy J, Rees D J G, Guérif P, Muranty H, Durel C E, Laurens F, Lespinasse Y, Gaillard Y, Aubourg S, et al. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics49, 1099–1106.

Delplace F, Huard-Chauveau C, Berthomé R, Roby D. 2022. Network organization of the plant immune system: From pathogen perception to robust defense induction. The Plant Journal109, 447–470.

Djami-Tchatchou A T, Tetorya M, Godwin J, Codjoe J M, Li H, Shah D M. 2023. Small cationic cysteine-rich defensin-derived antifungal peptide controls white mold in soybean. Journal of Fungi9, 873.

Du Y W, Jia H C, Yang Z, Wang S H, Liu Y Y, Ma H Y, Liang X F, Wang B, Zhu M Q, Meng Y N, Gleason M L, Hsiang T, Noorin S, Zhang R, Sun G Y. 2023. Sufficient coumarin accumulation improves apple resistance to Cytospora mali under high-potassium status. Plant Physiology192, 1396–1419.

Edwards D, Batley J. 2010. Plant genome sequencing: Applications for crop improvement. Plant Biotechnology Journal8, 2–9.

Gao X H, Ding J Q, Liao C B, Xu J L, Liu X X, Lu W Y. 2021. Defensins: The natural peptide antibiotic. Advanced Drug Delivery Reviews179, e114008.

Huang C Y, Araujo K, Sánchez J N, Kund G, Trumble J, Roper C, Godfrey K E, Jin H L. 2021. A stable antimicrobial peptide with dual functions of treating and preventing citrus Huanglongbing. Proceedings of the National Academy of Sciences of the United States of America118, e2019628118.

Huang Y L, Zhang L K, Zhang K, Chen S M, Hu J B, Cheng F. 2022. The impact of tandem duplication on gene evolution in Solanaceae species. Journal of Integrative Agriculture21, 1004–1014.

Jiang C Y, Wang D, Zhang J, Xu Y, Zhang C H, Zhang J X, Wang X P, Wang Y J. 2021. VqMYB154 promotes polygene expression and enhances resistance to pathogens in Chinese wild grapevine. Horticulture Research8, 151.

Al Kashgry N A T, Abulreesh H H, El-Sheikh I A, Almaroai Y A, Salem R, Mohamed I, Waly F R, Osman G, Mohamed M S M. 2020. Utilization of a recombinant defensin from maize (Zea mays L.) as a potential antimicrobial peptide. AMB Express10, 208.

Kerenga B K, McKenna J A, Harvey P J, Quimbar P, Garcia-Ceron D, Lay F T, Phan T K, Veneer P K, Vasa S, Parisi K, Shafee T M A, van der Weerden N L, Hulett M D, Craik D J, Anderson M A, Bleackley M R. 2019. Salt-tolerant antifungal and antibacterial activities of the corn defensin ZmD32. Frontiers in Microbiology10, 795.

Kovaleva V, Bukhteeva I, Kit O Y, Nesmelova I V. 2020. Plant defensins from a structural perspective. International Journal of Molecular Sciences21, 5307.

Kurien B T, Scofield R H. 2015. Western blotting: An introduction. Methods in Molecular Biologly1312, 17–30.

Langfelder P, Horvath S. 2008. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics9, 559.

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research30, 325–327.

Li P, Zhao L L, Qi F, Htwe N M P S, Li Q Y, Zhang D W, Lin F C, Shang-Guan K, Liang Y. 2021. The receptor-like cytoplasmic kinase RIPK regulates broad-spectrum ROS signaling in multiple layers of plant immune system. Molecular Plant14, 1652–1667.

Lima A M, Azevedo M I G, Sousa L M, Oliveira N S, Andrade C R, Freitas C D T, Souza P F N. 2022. Plant antimicrobial peptides: An overview about classification, toxicity and clinical applications. International Journal of Biological Macromolecules214, 10–21.

Liu X L, Gong X M, Zhou D M, Jiang Q, Liang Y, Ye R, Zhang S C, Wang Y T, Tang X L, Li F B, Yi J C. 2023. Plant defensin-dissimilar thionin OsThi9 alleviates cadmium toxicity in rice plants and reduces cadmium accumulation in rice grains. Journal of Agricultural and Food Chemistry71, 8367–8380.

Liu Y, Hua Y, Chen H, Zhou T, Yue C, Huang J Y. 2021. Genome-scale identification of plant defensin (PDF) family genes and molecular characterization of their responses to diverse nutrient stresses in allotetraploid rapeseed. PeerJ9, e12007.

Luo J S, Yang Y, Gu T Y, Wu Z M, Zhang Z H. 2019. The Arabidopsis defensin gene AtPDF2.5 mediates cadmium tolerance and accumulation. Plant Cell and Environment42, 2681–2695.

Ngou B P M, Jones J D G, Ding P T. 2022. Plant immune networks. Trends in Plant Science27, 255–273.

Nie J J, Zhou W J, Liu J Y, Tan N, Zhou J, Huang L L. 2021. A receptor-like protein from Nicotiana benthamiana mediates VmE02 PAMP-triggered immunity. New Phytologist229, 2260–2272.

Odintsova T I, Slezina M P, Istomina E A, Korostyleva T V, Kasianov A S, Kovtun A S, Makeev V J, Shcherbakova L A, Kudryavtsev A M. 2019. Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: A focus on structural diversity and role in induced resistance. PeerJ7, e6125.

Omidvar R, Vosseler N, Abbas A, Gutmann B, Grünwald-Gruber C, Altmann F, Siddique S, Bohlmann H. 2021. Analysis of a gene family for PDF-like peptides from ArabidopsisScientific Reports11, 18948.

Peng H X, Wei X Y, Xiao Y X, Sun Y, Biggs A R, Gleason M L, Shang S P, Zhu M Q, Guo Y Z, Sun G Y. 2016. Management of Valsa canker on apple with adjustments to potassium nutrition. Plant Disease100, 884–889.

Quaglia M, Troni E, D’Amato R, Ederli L. 2022. Effect of zinc imbalance and salicylic acid co-supply on Arabidopsis response to fungal pathogens with different lifestyles. Plant Biology24, 30–40.

Rasheed A, Hao Y F, Xia X C, Khan A, Xu Y B, Varshney R K, He Z H. 2017. Crop breeding chips and genotyping platforms: Progress, challenges, and perspectives. Molecular Plant10, 1047–1064.

Sathoff A E, Velivelli S, Shah D M, Samac D A. 2019. Plant defensin peptides have antifungal and antibacterial activity against human and plant pathogens. Phytopathology109, 402–408.

Schilling S, Kennedy A, Pan S, Jermiin L S, Melzer R. 2020. Genome-wide analysis of MIKC-type MADS-box genes in wheat: Pervasive duplications, functional conservation and putative neofunctionalization. The New Phytologist225, 511–529.

Shafee T M A, Lay F T, Phan T K, Anderson M A, Hulett M D. 2017. Convergent evolution of defensin sequence, structure and function. Cellular and Molecular Life Science74, 663–682.

Shahin-Kaleybar B, Niazi A, Afsharifar A, Nematzadeh G, Yousefi R, Retzl B, Hellinger R, Muratspahić E, Gruber C W. 2020. Isolation of cysteine-rich peptides from Citrullus colocynthisBiomolecules10, 1326.

Shen W Z, Zhang X, Liu J E, Tao K H, Li C, Xiao S, Zhang W Q, Li J F. 2022. Plant elicitor peptide signalling confers rice resistance to piercing-sucking insect herbivores and pathogens. Plant Biotechnology Journal20, 991–1005.

Sparkes I A, Runions J, Kearns A, Hawes C. 2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols1, 2019–2025.

Tetorya M, Li H, Djami-Tchatchou A T, Buchko G W, Czymmek K J, Shah D M. 2023. Plant defensin MtDef4-derived antifungal peptide with multiple modes of action and potential as a bio-inspired fungicide. Molecular Plant Pathology24, 896–913.

Wang W, Zhao P, Zhou X, Xiong H X, Sun M. 2015. Genome-wide identification and characterization of cystatin family genes in rice (Oryza sativa L.). Plant Cell Reports34, 1579–1592.

Wang Z, Deng J, Liang T T, Su L L, Zheng L L, Chen H J, Liu D Q. 2022. Lilium regale Wilson WRKY3 modulates an antimicrobial peptide gene, LrDef1, during response to Fusarium oxysporumBMC Plant Biology22, 257.

Waszczak C, Carmody M, Kangasjärvi J. 2018. Reactive oxygen species in plant signaling. Annual Review of Plant Biology69, 209–236.

Wei H, Movahedi A, Xu C, Sun W B, Wang X L, Li D W, Zhuge Q. 2020. Overexpression of PtDefensin enhances resistance to Septotis populiperda in transgenic poplar. Plant Science292, 110379.

Yuan M H, Ngou B P M, Ding P T, Xin X. 2021. PTI-ETI crosstalk: An integrative view of plant immunity. Current Opinion in Plant Biology62, e102030.

Zelman A K, Berkowitz G A. 2023. Plant elicitor peptide (Pep) signaling and pathogen defense in tomato. Plants12, 2856.

Zhang H Y, Zhang L P, Wu S G, Chen Y L, Yu D Q, Chen L G. 2020. AtWRKY75 positively regulates age-triggered leaf senescence through gibberellin pathway. Plant Diversity43, 331–340.

Zhou J, Zhang Y L. 2020. Plant immunity: Danger perception and signaling. Cell181, 978–989.

Zhu Y X, Zhang X M, Zhang Q H, Chai S Y, Yin W C, Gao M, Li Z, Wang X P. 2022. The transcription factors VaERF16 and VaMYB306 interact to enhance resistance of grapevine to Botrytis cinerea infection. Molecular Plant Pathology23, 1415–1432.

Zorin E A, Kliukova M S, Afonin A M, Gribchenko E S, Gordon M L, Sulima A S, Zhernakov A I, Kulaeva O A, Romanyuk D A, Kusakin P G, Tsyganova A V, Tsyganov V E, Tikhonovich I A, Zhukov V A. 2022. A variable gene family encoding nodule-specific cysteine-rich peptides in pea (Pisum sativum L.). Frontiers in Plant Science13, 884726.

No related articles found!
No Suggested Reading articles found!