Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (11): 3641-3656    DOI: 10.1016/j.jia.2023.07.028
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Consensus linkage map construction and QTL mapping for eight yield-related traits in wheat using BAAFS 90K SNP array

Lihua Liu1, 2, 3*, Pingping Qu1, 2, 3*, Yue Zhou1, 2, 3, Hongbo Li1, 2, 3, Yangna Liu1, 2, 3, Mingming Zhang1, 2, 3, Liping Zhang1, 2, 3, Changping Zhao1, 2, 3#, Shengquan Zhang1, 2, 3#, Binshuang Pang1, 2, 3#

1 Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

2 The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China


Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

利用不同群体和环境鉴定产量相关稳定数量性状位点(QTL)对小麦育种和遗传学研究至关重要。整合连锁图谱在小麦遗传学和基因组学研究中发挥着重要作用。本研究利用2个小麦双亲群体(即京花1×小白冬麦DH群体和L43×陕西白麦F2群体)和小麦BAAFS 90K SNP 芯片构建了一张小麦整合连锁图谱。整合连锁图谱总长为5437.92厘摩,共包括44,503SNP标记。整合图谱中标记的顺序与其在单群体连锁图谱和小麦参考基因组IWGSC RefSeq v2.1中的顺序均具有较高的共线性。分别在6个,2个和2个环境中采集了京花1×小白冬麦DH群体和L43×陕西白麦衍生的F2:3F2:4群体的8个产量相关性状进行QTL定位分析。采用完备区间作图法共定位到32个与产量相关的环境稳定QTL。其中,4QTL,即QPH.baafs-4BQKNS.baafs-4BQTGW.baafs-4QSL.baafs-5A.3能在多个群体和环境中被重复检测到。7个稳定的QTL,即QPH.baafs-2BQKNS.baafs-3DQSL.baafs-3DQKW.baafs-4BQPH.baafs-5DQPH.baafs-6A.1QSL.baafs-6A在前人的研究中没有被报道过。4B染色体上的17.25~44.91Mb6个产量相关性状相关,是影响产量性状的重要区段。矮杆基因Rht24周围含有控制粒长、粒宽、穗长和千粒重的QTL,这些QTL可能来自Rht24的一因多效,也可能是与其紧密连锁的位点。本研究针对稳定QTL共鉴定到254个候选基因,其中TraesCS5A03G1264300TraesCS1B03G0624000TraesCS6A03G0697000值得特别关注,因为它们的同源基因已被证实能调控相应的性状。本研究构建的整合连锁图谱和鉴定到的稳定产量相关性状QTL及其候选基因将有益于小麦产量相关性状的遗传解析,并有助于加快培育兼具理想株型形态和高产的小麦新品种。



Abstract  
Identifying stable quantitative trait loci (QTLs) for yield-related traits across populations and environments is crucial for wheat breeding and genetic studies.  Consensus maps also play important roles in wheat genetic and genomic research.  In the present study, a wheat consensus map was constructed using a doubled haploid (DH) population derived from Jinghua 1×Xiaobaidongmai (JX), an F2 population derived from L43×Shanxibaimai (LS) and the BAAFS Wheat 90K SNP array single nucleotide polymorphism (SNP) array.  A total of 44,503 SNP markers were mapped on the constructed consensus map, and they covered 5,437.92 cM across 21 chromosomes.  The consensus map showed high collinearity with the individual maps and the wheat reference genome IWGSC RefSeq v2.1.  Phenotypic data on eight yield-related traits were collected in the JX population, as well as the F2:3 and F2:4 populations of LS, in six, two and two environments, respectively, and those data were used for QTL analysis.  Inclusive composite interval mapping (ICIM) identified 32 environmentally stable QTLs for the eight yield-related traits.  Among them, four QTLs (QPH.baafs-4B, QKNS.baafs-4B, QTGW.baafs-4B, and QSL.baafs-5A.3) were detected across mapping populations and environments, and nine stable QTLs (qKL.baafs-1D, QPH.baafs-2B, QKNS.baafs-3D, QSL.baafs-3D, QKW.baafs-4B, QPH.baafs-5D, QPH.baafs-6A.1, QSL.baafs-6A, and QSL.baafs-6D) are likely to be new.  The physical region of 17.25–44.91 Mb on chromosome 4B was associated with six yield-related traits, so it is an important region for wheat yield.  The physical region around the dwarfing gene Rht24 contained QTLs for kernel length (KL), kernel width (KW), spike length (SL), and thousand-grain weight (TGW), which are either from a pleiotropic effect of Rht24 or closely linked loci.  For the stable QTLs, 254 promising candidate genes were identified.  Among them, TraesCS5A03G1264300, TraesCS1B03G0624000 and TraesCS6A03G0697000 are particularly noteworthy since their homologous genes have similar functions for the corresponding traits.  The constructed consensus map and the identified QTLs along with their candidate genes will facilitate the genetic dissection of wheat yield-related traits and accelerate the development of wheat cultivars with desirable plant morphology and high yield.


Keywords:  consensus map        QTL        yield-related traits        wheat (Triticum aestivum L.)  
Received: 12 April 2023   Accepted: 21 June 2023
Fund: 
This work was funded by the Major Project of Agricultural Biological Breeding, China (2022ZD0401902) and the Science and Technology Innovation Project of Beijing Academy of Agriculture and Forestry Sciences, China (KJCX20230301 and KJCX20230307).
About author:  Lihua Liu, Tel: +86-10-51503767, E-mail: llh216@163.com; Pingping Qu, Tel: +86-10-51503966, E-mail: quping070222@163.com; #Correspondence Binshuang Pang, Tel: +86-10-51503966, E-mail: pangbinshuang1122@aliyun.com; Shengquan Zhang, Tel: +86-10-51503104, E-mail: zsq8200@126.com; Changping Zhao, Tel: +86-10-51503968, E-mail: cp_zhao@vip.sohu.com * These authors contributed equally to this study.

Cite this article: 

Lihua Liu, Pingping Qu, Yue Zhou, Hongbo Li, Yangna Liu, Mingming Zhang, Liping Zhang, Changping Zhao, Shengquan Zhang, Binshuang Pang. 2024. Consensus linkage map construction and QTL mapping for eight yield-related traits in wheat using BAAFS 90K SNP array. Journal of Integrative Agriculture, 23(11): 3641-3656.

Allen A M, Winfield M O, Burridge A J, Downie R C, Benbow H R, Barker G, Wilkinson P A, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, Griffiths S, Bentley A R, Alda M, Jack P, Phillips A L, et al. 2017. Characterization of a wheat breeders’ array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnology Journal15, 390–401.

Bednarek J, Boulaflous A, Girousse C, Ravel C, Tassy C, Barret P, Bouzidi M F, Mouzeyar S. 2012. Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat. Journal of Experimental Botany63, 5945–5955.

Cao S, Xu D, Hanif M, Xia X, He Z. 2020. Genetic architecture underpinning yield component traits in wheat. Theoretical and Applied Genetics133, 1811–1823.

Cavanagh C R, Chao S, Wang S, Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva M L, Bockelman H, Talbert L, et al. 2013. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Sciences of the United States of America110, 8057–8062.

Chen X, Lu S, Wang Y, Zhang X, Ming F. 2015. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice. Plant Journal82, 302–314.

Cheng R, Kong Z, Zhang L, Xie Q, Jia H, Yu D, Huang Y, Ma Z. 2017. Mapping QTLs controlling kernel dimensions in a wheat inter-varietal RIL mapping population. Theoretical and Applied Genetics130, 1405–1414.

Corsi B, Obinu L, Zanella C M, Cutrupi S, Day R, Geyer M, Lillemo M, Lin M, Mazza L, Percival-Alwyn L, Stadlmeier M, Mohler V, Hartl L, Cockram J. 2021. Identification of eight QTL controlling multiple yield components in a German multi-parental wheat population, including Rht24WAPO-A1WAPO-B1 and genetic loci on chromosomes 5A and 6A. Theoretical and Applied Genetics134, 1435–1454.

Cui F, Zhang N, Fan X L, Zhang W, Zhao C H, Yang L J, Pan R Q, Chen M, Han J, Zhao X Q, Ji J, Tong Y P, Zhang H X, Jia J Z, Zhao G Y, Li J M. 2017. Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Scientific Reports7, 3788.

Cuthbert J L, Somers D J, Brule-Babel A L, Brown P D, Crow G H. 2008. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theoretical and Applied Genetics117, 595–608.

Debernardi J M, Lin H, Chuck G, Faris J D, Dubcovsky J. 2017. microRNA172 plays a crucial role in wheat spike morphogenesis and grain threshability. Development144, 1966–1975.

Donmez E, Sears R, Shroyer J, Paulsen G. 2001. Genetic gain in yield attributes of winter wheat in the Great Plains. Crop Science41, 1412–1419.

Gasperini D, Greenland A, Hedden P, Dreos R, Harwood W, Griffiths S. 2012. Genetic and physiological analysis of Rht8 in bread wheat: An alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids. Journal of Experimental Botany63, 4419–4436.

Gegas V C, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan J H, Snape J W. 2010. A genetic framework for grain size and shape variation in wheat. Plant Cell22, 1046–1056.

Guo M, Rupe M A, Dieter J A, Zou J, Spielbauer D, Duncan K E, Howard R J, Hou Z, Simmons C R. 2010. Cell number regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. Plant Cell22, 1057–1073.

Hai L, Guo H, Wagner C, Xiao S, Friedt W. 2008. Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Science175, 226–232.

Hu M, Zhang H, Cao J, Zhu X, Wang S, Jiang H, Wu Z, Lu J, Chang C, Sun G. 2016. Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Molecular Breeding36, 1–11.

Hu W, Liao S, Zhao D, Jia J, Xu W, Cheng S. 2022. Identification and validation of quantitative trait loci for grain size in bread wheat (Triticum aestivum L.). Agriculture12, 822.

Kato H, Motomura T, Komeda Y, Saito T, Kato A. 2010. Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in Arabidopsis thalianaJournal of Plant Physiology167, 571–577.

Kowalski A M, Gooding M, Ferrante A, Slafer G A, Orford S, Gasperini D, Griffiths S. 2016. Agronomic assessment of the wheat semi-dwarfing gene Rht8 in contrasting nitrogen treatments and water regimes. Field Crops Research191, 150–160.

Kuzay S, Lin H, Li C, Chen S, Woods D P, Zhang J, Lan T, von Korff M, Dubcovsky J. 2022. WAPO-A1 is the causal gene of the 7AL QTL for spikelet number per spike in wheat. PLoS Genetics18, e1009747.

Li A, Hao C, Wang Z, Geng S, Jia M, Wang F, Han X, Kong X, Yin L, Tao S, Deng Z, Liao R, Sun G, Wang K, Ye X, Jiao C, Lu H, Zhou Y, Liu D, Fu X, et al. 2022. Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Molecular Plant15, 504–519.

Li F, Wen W, He Z, Liu J, Jin H, Cao S, Geng H, Yan J, Zhang P, Wan Y. 2018. Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers. Theoretical and Applied Genetics131, 1903–1924.

Li F, Wen W, Liu J, Zhang Y, Cao S, He Z, Rasheed A, Jin H, Zhang C, Yan J, Zhang P, Wan Y, Xia X. 2019. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biology19, 168.

Lin S, Kernighan B W. 1973. An effective heuristic algorithm for the traveling-salesman problem. Operations Research21, 498–516.

Liu D, Zhao D H, Zeng J Q, Shawai R S, Tong J Y, Li M, Li F J, Zhou S, Hu W L, Xia X C, Tian Y B, Zhu Q, Wang C P, Wang D S, He Z H, Liu J D, Zhang Y. 2023. Identification of genetic loci for grain yield-related traits in the wheat population Zhongmai 578/Jimai 22. Journal of Integrative Agriculture22, 1985–1999.

Liu J, Luo W, Qin N, Ding P, Zhang H, Yang C, Mu Y, Tang H, Liu Y, Li W, Jiang Q, Chen G, Wei Y, Zheng Y, Liu C, Lan X, Ma J. 2018. A 55 K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theoretical and Applied Genetics131, 2439–2450.

Lv C, Song Y, Gao L, Yao Q, Zhou R, Xu R, Jia J. 2014. Integration of QTL detection and marker assisted selection for improving resistance to Fusarium head blight and important agronomic traits in wheat. The Crop Journal2, 70–78.

Ma L, Li T, Hao C, Wang Y, Chen X, Zhang X. 2016. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnology Journal14, 1269–1280.

Meng L, Li H, Zhang L, Wang J. 2015. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal3, 269–283.

Mo Y, Vanzetti L S, Hale I, Spagnolo E J, Guidobaldi F, Al-Oboudi J, Odle N, Pearce S, Helguera M, Dubcovsky J. 2018. Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theoretical and Applied Genetics131, 2021–2035.

Mohler V, Albrecht T, Castell A, Diethelm M, Schweizer G, Hartl L. 2016. Considering causal genes in the genetic dissection of kernel traits in common wheat. Journal of Applied Genetics57, 467–476.

Ouellette L A, Reid R W, Blanchard S G, Brouwer C R. 2018. LinkageMapView - Rendering high-resolution linkage and QTL maps. Bioinformatics34, 306–307.

Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F. 1999. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature400, 256–261.

Qu P, Wang J, Wen W, Gao F, Liu J, Xia X, Peng H, Zhang L. 2021. Construction of consensus genetic map with applications in gene mapping of wheat (Triticum aestivum L.) using 90K SNP array. Frontiers in Plant Science12, 727077.

Rimbert H, Darrier B, Navarro J, Kitt J, Choulet F, Leveugle M, Duarte J, Riviere N, Eversole K, Le Gouis J, Davassi A, Balfourier F, Paslier M L, Berard A, Brunel D, Feuillet C, Poncet C, Sourdille P, Paux E. 2018. High throughput SNP discovery and genotyping in hexaploid wheat. PLoS ONE13, e0186329.

Sakamoto T, Matsuoka M. 2004. Generating high-yielding varieties by genetic manipulation of plant architecture. Current Opinion in Biotechnology15, 144–147.

Sharp P, Kreis M, Shewry P, Gale M. 1988. Location of β-amylase sequences in wheat and its relatives. Theoretical and Applied Genetics75, 286–290.

Simons K J, Fellers J P, Trick H N, Zhang Z, Tai Y S, Gill B S, Faris J D. 2006. Molecular characterization of the major wheat domestication gene QGenetics172, 547–555.

Tian X, Xia X, Xu D, Liu Y, Xie L, Hassan M A, Song J, Li F, Wang D, Zhang Y, Hao Y, Li G, Chu C, He Z, Cao S. 2022. Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat. New Phytologist233, 738–750.

Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L. 2014. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnology Journal12, 787–796.

Wen W, He Z, Gao F, Liu J, Jin H, Zhai S, Qu Y, Xia X. 2017. A high-density consensus map of common wheat integrating four mapping populations scanned by the 90K SNP array. Frontiers in Plant Science8, 1389.

Winfield M O, Allen A M, Burridge A J, Barker G L, Benbow H R, Wilkinson P A, Coghill J, Waterfall C, Davassi A, Scopes G. 2016. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnology Journal14, 1195–1206.

Wingen L U, West C, Leverington-Waite M, Collier S, Orford S, Goram R, Yang C Y, King J, Allen A M, Burridge A, Edwards K J, Griffiths S. 2017. Wheat landrace genome diversity. Genetics205, 1657–1676.

Witcombe J, Virk D. 2001. Number of crosses and population size for participatory and classical plant breeding. Euphytica122, 451–462.

Wu Y, Close T J, Lonardi S. 2010. Accurate construction of consensus genetic maps via integer linear programming. IEEE/ACM Transactions on Computational Biology and Bioinformatics8, 381–394.

Würschum T, Langer S M, Longin C F H, Tucker M R, Leiser W L. 2017. A modern Green Revolution gene for reduced height in wheat. The Plant Journal92, 892–903.

Xie Q, Li N, Yang Y, Lv Y, Yao H, Wei R, Sparkes D L, Ma Z. 2018. Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology. Planta247, 1089–1098.

Yan X, Zhao L, Ren Y, Dong Z, Cui D, Chen F. 2019. Genome-wide association study revealed that the TaGW8 gene was associated with kernel size in Chinese bread wheat. Scientific Reports9, 1–10.

Yu X, Xia S, Xu Q, Cui Y, Gong M, Zeng D, Zhang Q, Shen L, Jiao G, Gao Z, Hu J, Zhang G, Zhu L, Guo L, Ren D, Qian Q. 2020. ABNORMAL FLOWER AND GRAIN 1 encodes OsMADS6 and determines palea identity and affects rice grain yield and quality. Science China (Life Sciences), 63, 228–238.

Zhan P, Ma S, Xiao Z, Li F, Wei X, Lin S, Wang S, Ji Z, Fu Y, Pan J, Zhou M, Liu Y, Chang Z, Li L, Bu S, Liu Z, Zhu H, Liu G, Zhang G. 2022. Natural variations in grain length 10 (GL10) regulate rice grain size. Journal of Genetics and Genomics49, 405–413.

Zhang J, Dell B, Biddulph B, Drake-Brockman F, Walker E, Khan N, Wong D, Hayden M, Appels R. 2013. Wild-type alleles of Rht-B1 and Rht-D1 as independent determinants of thousand-grain weight and kernel number per spike in wheat. Molecular Breeding32, 771–783.

Zhang X, Jia H, Li T, Wu J, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z, Chen C, Carver B F, Yan L. 2022. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science376, 180–183.

Zhu T, Wang L, Rimbert H, Rodriguez J, Deal K, De Oliveira R, Choulet F, Keeble-Gagnère G, Tibbits J, Rogers J, Eversole K, Appels R, Gu Y Q, Mascher M, Dvorak J, Luo M. 2021. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. The Plant Journal107, 303–314.

[1] Mingming Wang, Jia Geng, Zhe Zhang, Zihan Zhang, Lingfeng Miao, Tian Ma, Jiewen Xing, Baoyun Li, Qixin Sun, Yufeng Zhang, Zhongfu Ni. Fine mapping and characterization of a major QTL for grain length, QGl.cau-2D.1, that has pleiotropic effects in synthetic allohexaploid wheat[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2911-2922.
[2] Yiwang Zhong, Xingang Li, Shasha Wang, Sansan Li, Yuhong Zeng, Yanbo Cheng, Qibin Ma, Yanyan Wang, Yuanting Pang, Hai Nian, Ke Wen. Mapping and identification of QTLs for seed fatty acids in soybean (Glycine max L.)[J]. >Journal of Integrative Agriculture, 2024, 23(12): 3966-3982.
No Suggested Reading articles found!