Allen A M, Winfield M O, Burridge A J, Downie R C, Benbow H R, Barker G, Wilkinson P A, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, Griffiths S, Bentley A R, Alda M, Jack P, Phillips A L, et al. 2017. Characterization of a wheat breeders’ array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnology Journal, 15, 390–401.
Bednarek J, Boulaflous A, Girousse C, Ravel C, Tassy C, Barret P, Bouzidi M F, Mouzeyar S. 2012. Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat. Journal of Experimental Botany, 63, 5945–5955.
Cao S, Xu D, Hanif M, Xia X, He Z. 2020. Genetic architecture underpinning yield component traits in wheat. Theoretical and Applied Genetics, 133, 1811–1823.
Cavanagh C R, Chao S, Wang S, Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva M L, Bockelman H, Talbert L, et al. 2013. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Sciences of the United States of America, 110, 8057–8062.
Chen X, Lu S, Wang Y, Zhang X, Ming F. 2015. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice. Plant Journal, 82, 302–314.
Cheng R, Kong Z, Zhang L, Xie Q, Jia H, Yu D, Huang Y, Ma Z. 2017. Mapping QTLs controlling kernel dimensions in a wheat inter-varietal RIL mapping population. Theoretical and Applied Genetics, 130, 1405–1414.
Corsi B, Obinu L, Zanella C M, Cutrupi S, Day R, Geyer M, Lillemo M, Lin M, Mazza L, Percival-Alwyn L, Stadlmeier M, Mohler V, Hartl L, Cockram J. 2021. Identification of eight QTL controlling multiple yield components in a German multi-parental wheat population, including Rht24, WAPO-A1, WAPO-B1 and genetic loci on chromosomes 5A and 6A. Theoretical and Applied Genetics, 134, 1435–1454.
Cui F, Zhang N, Fan X L, Zhang W, Zhao C H, Yang L J, Pan R Q, Chen M, Han J, Zhao X Q, Ji J, Tong Y P, Zhang H X, Jia J Z, Zhao G Y, Li J M. 2017. Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Scientific Reports, 7, 3788.
Cuthbert J L, Somers D J, Brule-Babel A L, Brown P D, Crow G H. 2008. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 117, 595–608.
Debernardi J M, Lin H, Chuck G, Faris J D, Dubcovsky J. 2017. microRNA172 plays a crucial role in wheat spike morphogenesis and grain threshability. Development, 144, 1966–1975.
Donmez E, Sears R, Shroyer J, Paulsen G. 2001. Genetic gain in yield attributes of winter wheat in the Great Plains. Crop Science, 41, 1412–1419.
Gasperini D, Greenland A, Hedden P, Dreos R, Harwood W, Griffiths S. 2012. Genetic and physiological analysis of Rht8 in bread wheat: An alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids. Journal of Experimental Botany, 63, 4419–4436.
Gegas V C, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan J H, Snape J W. 2010. A genetic framework for grain size and shape variation in wheat. Plant Cell, 22, 1046–1056.
Guo M, Rupe M A, Dieter J A, Zou J, Spielbauer D, Duncan K E, Howard R J, Hou Z, Simmons C R. 2010. Cell number regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. Plant Cell, 22, 1057–1073.
Hai L, Guo H, Wagner C, Xiao S, Friedt W. 2008. Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Science, 175, 226–232.
Hu M, Zhang H, Cao J, Zhu X, Wang S, Jiang H, Wu Z, Lu J, Chang C, Sun G. 2016. Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Molecular Breeding, 36, 1–11.
Hu W, Liao S, Zhao D, Jia J, Xu W, Cheng S. 2022. Identification and validation of quantitative trait loci for grain size in bread wheat (Triticum aestivum L.). Agriculture, 12, 822.
Kato H, Motomura T, Komeda Y, Saito T, Kato A. 2010. Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in Arabidopsis thaliana. Journal of Plant Physiology, 167, 571–577.
Kowalski A M, Gooding M, Ferrante A, Slafer G A, Orford S, Gasperini D, Griffiths S. 2016. Agronomic assessment of the wheat semi-dwarfing gene Rht8 in contrasting nitrogen treatments and water regimes. Field Crops Research, 191, 150–160.
Kuzay S, Lin H, Li C, Chen S, Woods D P, Zhang J, Lan T, von Korff M, Dubcovsky J. 2022. WAPO-A1 is the causal gene of the 7AL QTL for spikelet number per spike in wheat. PLoS Genetics, 18, e1009747.
Li A, Hao C, Wang Z, Geng S, Jia M, Wang F, Han X, Kong X, Yin L, Tao S, Deng Z, Liao R, Sun G, Wang K, Ye X, Jiao C, Lu H, Zhou Y, Liu D, Fu X, et al. 2022. Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Molecular Plant, 15, 504–519.
Li F, Wen W, He Z, Liu J, Jin H, Cao S, Geng H, Yan J, Zhang P, Wan Y. 2018. Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers. Theoretical and Applied Genetics, 131, 1903–1924.
Li F, Wen W, Liu J, Zhang Y, Cao S, He Z, Rasheed A, Jin H, Zhang C, Yan J, Zhang P, Wan Y, Xia X. 2019. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biology, 19, 168.
Lin S, Kernighan B W. 1973. An effective heuristic algorithm for the traveling-salesman problem. Operations Research, 21, 498–516.
Liu D, Zhao D H, Zeng J Q, Shawai R S, Tong J Y, Li M, Li F J, Zhou S, Hu W L, Xia X C, Tian Y B, Zhu Q, Wang C P, Wang D S, He Z H, Liu J D, Zhang Y. 2023. Identification of genetic loci for grain yield-related traits in the wheat population Zhongmai 578/Jimai 22. Journal of Integrative Agriculture, 22, 1985–1999.
Liu J, Luo W, Qin N, Ding P, Zhang H, Yang C, Mu Y, Tang H, Liu Y, Li W, Jiang Q, Chen G, Wei Y, Zheng Y, Liu C, Lan X, Ma J. 2018. A 55 K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theoretical and Applied Genetics, 131, 2439–2450.
Lv C, Song Y, Gao L, Yao Q, Zhou R, Xu R, Jia J. 2014. Integration of QTL detection and marker assisted selection for improving resistance to Fusarium head blight and important agronomic traits in wheat. The Crop Journal, 2, 70–78.
Ma L, Li T, Hao C, Wang Y, Chen X, Zhang X. 2016. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnology Journal, 14, 1269–1280.
Meng L, Li H, Zhang L, Wang J. 2015. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 3, 269–283.
Mo Y, Vanzetti L S, Hale I, Spagnolo E J, Guidobaldi F, Al-Oboudi J, Odle N, Pearce S, Helguera M, Dubcovsky J. 2018. Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theoretical and Applied Genetics, 131, 2021–2035.
Mohler V, Albrecht T, Castell A, Diethelm M, Schweizer G, Hartl L. 2016. Considering causal genes in the genetic dissection of kernel traits in common wheat. Journal of Applied Genetics, 57, 467–476.
Ouellette L A, Reid R W, Blanchard S G, Brouwer C R. 2018. LinkageMapView - Rendering high-resolution linkage and QTL maps. Bioinformatics, 34, 306–307.
Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F. 1999. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 400, 256–261.
Qu P, Wang J, Wen W, Gao F, Liu J, Xia X, Peng H, Zhang L. 2021. Construction of consensus genetic map with applications in gene mapping of wheat (Triticum aestivum L.) using 90K SNP array. Frontiers in Plant Science, 12, 727077.
Rimbert H, Darrier B, Navarro J, Kitt J, Choulet F, Leveugle M, Duarte J, Riviere N, Eversole K, Le Gouis J, Davassi A, Balfourier F, Paslier M L, Berard A, Brunel D, Feuillet C, Poncet C, Sourdille P, Paux E. 2018. High throughput SNP discovery and genotyping in hexaploid wheat. PLoS ONE, 13, e0186329.
Sakamoto T, Matsuoka M. 2004. Generating high-yielding varieties by genetic manipulation of plant architecture. Current Opinion in Biotechnology, 15, 144–147.
Sharp P, Kreis M, Shewry P, Gale M. 1988. Location of β-amylase sequences in wheat and its relatives. Theoretical and Applied Genetics, 75, 286–290.
Simons K J, Fellers J P, Trick H N, Zhang Z, Tai Y S, Gill B S, Faris J D. 2006. Molecular characterization of the major wheat domestication gene Q. Genetics, 172, 547–555.
Tian X, Xia X, Xu D, Liu Y, Xie L, Hassan M A, Song J, Li F, Wang D, Zhang Y, Hao Y, Li G, Chu C, He Z, Cao S. 2022. Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat. New Phytologist, 233, 738–750.
Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L. 2014. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnology Journal, 12, 787–796.
Wen W, He Z, Gao F, Liu J, Jin H, Zhai S, Qu Y, Xia X. 2017. A high-density consensus map of common wheat integrating four mapping populations scanned by the 90K SNP array. Frontiers in Plant Science, 8, 1389.
Winfield M O, Allen A M, Burridge A J, Barker G L, Benbow H R, Wilkinson P A, Coghill J, Waterfall C, Davassi A, Scopes G. 2016. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnology Journal, 14, 1195–1206.
Wingen L U, West C, Leverington-Waite M, Collier S, Orford S, Goram R, Yang C Y, King J, Allen A M, Burridge A, Edwards K J, Griffiths S. 2017. Wheat landrace genome diversity. Genetics, 205, 1657–1676.
Witcombe J, Virk D. 2001. Number of crosses and population size for participatory and classical plant breeding. Euphytica, 122, 451–462.
Wu Y, Close T J, Lonardi S. 2010. Accurate construction of consensus genetic maps via integer linear programming. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8, 381–394.
Würschum T, Langer S M, Longin C F H, Tucker M R, Leiser W L. 2017. A modern Green Revolution gene for reduced height in wheat. The Plant Journal, 92, 892–903.
Xie Q, Li N, Yang Y, Lv Y, Yao H, Wei R, Sparkes D L, Ma Z. 2018. Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology. Planta, 247, 1089–1098.
Yan X, Zhao L, Ren Y, Dong Z, Cui D, Chen F. 2019. Genome-wide association study revealed that the TaGW8 gene was associated with kernel size in Chinese bread wheat. Scientific Reports, 9, 1–10.
Yu X, Xia S, Xu Q, Cui Y, Gong M, Zeng D, Zhang Q, Shen L, Jiao G, Gao Z, Hu J, Zhang G, Zhu L, Guo L, Ren D, Qian Q. 2020. ABNORMAL FLOWER AND GRAIN 1 encodes OsMADS6 and determines palea identity and affects rice grain yield and quality. Science China (Life Sciences), 63, 228–238.
Zhan P, Ma S, Xiao Z, Li F, Wei X, Lin S, Wang S, Ji Z, Fu Y, Pan J, Zhou M, Liu Y, Chang Z, Li L, Bu S, Liu Z, Zhu H, Liu G, Zhang G. 2022. Natural variations in grain length 10 (GL10) regulate rice grain size. Journal of Genetics and Genomics, 49, 405–413.
Zhang J, Dell B, Biddulph B, Drake-Brockman F, Walker E, Khan N, Wong D, Hayden M, Appels R. 2013. Wild-type alleles of Rht-B1 and Rht-D1 as independent determinants of thousand-grain weight and kernel number per spike in wheat. Molecular Breeding, 32, 771–783.
Zhang X, Jia H, Li T, Wu J, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z, Chen C, Carver B F, Yan L. 2022. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science, 376, 180–183.
Zhu T, Wang L, Rimbert H, Rodriguez J, Deal K, De Oliveira R, Choulet F, Keeble-Gagnère G, Tibbits J, Rogers J, Eversole K, Appels R, Gu Y Q, Mascher M, Dvorak J, Luo M. 2021. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. The Plant Journal, 107, 303–314.
|