Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Monitoring abandoned cropland in the hilly and gully regions of the Loess Plateau using Landsat time series images

Chenxiao Duan1, 2, 3, Jiabei Li1, 2, Shufang Wu1, 2#, Liming Yu4, Hao Feng2Kadambot H M Siddique3

1 Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid AreasMinistry of EducationNorthwest A&F University, Yangling 712100China

2 Institute of Water Saving Agriculture in Arid Areas of ChinaNorthwest A&F UniversityYangling 712100China

3 The UWA Institute of AgricultureThe University of Western AustraliaPerthWA 6001Australia

4 Faculty of Modern Agricultural EngineeringKunming University of Science and TechnologyKunming 650500China

 Highlights 

l Two distinct change detection methods were proposed to monitor abandoned cropland using Landsat images in the hilly and gully regions.

The land-use trajectory method identified abandoned cropland more accurately than the NDVI time series method.

l The extent, degree, and spatial distribution characteristics of abandoned cropland were analyzed.

Topographic factors significantly influenced cropland abandonment in the study area.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

耕地撂荒已成为全球性问题,对耕地可持续管理、国家粮食安全和生态环境保护等构成重大威胁遥感技术对于大尺度区域内撂荒耕地的识别监测至关重要然而,目前关于黄土丘陵沟壑区撂荒耕地的有效识别方法空间分布格局的研究较少。本研究基于2019-2021Landsat-8影像,提出了土地利用轨迹和归一化植被指数(NDVI)时间序列法,对延河流域撂荒耕地进行监测并分析其空间分布。结果表明,利用随机森林算法可靠的土地覆盖样本和优化特征数据集可以实现高精度的年度土地利用分类土地利用图的总体精度(OA)和Kappa系数分别超过90%0.88,证明了三年来分类的有效性。我们使用两种不同的变化检测方法对研究区撂荒耕地进行识别,并评估其精度和有效性。土地利用轨迹法撂荒耕地的提取效果优于NDVI时间序列法,其OA值83.5%F184.7%。根据土地利用轨迹检测结果,2021研究区的撂荒耕地面积为164.6 km2,撂荒率为16.3%。此外,耕地撂荒主要发生在自然条件恶劣的西北部,南部和东部地区撂荒较少。地形地貌对撂荒耕地的空间分布有显著影响,撂荒耕地大多位于海拔较高、坡度较大的山区。撂荒率一般随海拔和坡度的升高而增加。本研究结果黄土丘陵沟壑区撂荒耕地识别方法的选择及其空间分布分析提供了有价值的参考和指导。我们提出的方法为类似复杂地形地区的撂荒耕地监测和优化土地利用变化检测提供了可靠的解决方案。



Abstract  

Cropland abandonment has become a global issue that poses significant threats to sustainable cropland management, national food security, and the ecological environment. Remote sensing technology is crucial for identifying and monitoring abandoned cropland in large-scale areas. However, limited information is available on the effective identification methods and spatial distribution patterns of abandoned cropland in the hilly and gully regions. This study introduced two methods—the land-use trajectory and normalized difference vegetation index (NDVI) time series—for monitoring abandoned cropland and evaluating its spatial distribution in the Yanhe River Basin using Landsat-8 images from 2019 to 2021. The results showed that using a random forest algorithm, high-precision annual land-use classifications were achieved with the generation of reliable land-cover samples and an optimized feature dataset. The overall accuracy (OA) and Kappa coefficient of the land-use maps exceeded 90% and 0.88, respectively, demonstrating the effectiveness of the classification over three years. These two distinct change detection methods were used to identify abandoned cropland in the study area, and their accuracy and effectiveness were evaluated. The land-use trajectory method performed better than the NDVI time series method for extracting abandoned cropland, with an OA of 83.5% and an F1 score of 84.7%. According to the land-use trajectory detection results, the study area had 164.6 km2 of abandoned cropland area in 2021, with an abandonment rate of 16.3%. Furthermore, cropland abandonment mainly occurred in the northwestern part of the region, which has harsh natural conditions, while abandonment was rare in the southern and eastern regions. Topography and landforms significantly influenced the spatial distribution of abandoned cropland, with most abandoned cropland located in mountainous regions with higher elevations and steeper slopes. The abandonment rate generally increased with the elevation and slope. These findings provide valuable references and guidance for selecting appropriate methods to identify abandoned cropland and analyze its spatial distribution in the hilly and gully regions. Our proposed methods offer robust solutions for monitoring abandoned cropland and optimizing land-use change detection in similar regions with complex landforms.

Keywords:  cropland abandonment              Landsat time series       land-use mapping       change detection       spatial distribution       hilly and gully regions  
Online: 18 April 2025  
Fund: 
The work was supported by the National Key R&D Program of China (2023YFD1900300), the State Administration of Foreign Experts Affairs of China (B12007), and the 111 Project, China. We also gratefully acknowledge the support by the China Scholarship Council (202306300092).
About author:  Chenxiao Duan, E-mail: dcxvayy00@163.com; #Correspondence Shufang Wu, Mobile: +86-13572267814, E-mail: wsfjs@163.com

Cite this article: 

Chenxiao Duan, Jiabei Li, Shufang Wu, Liming Yu, Hao Feng, Kadambot H M Siddique. 2025. Monitoring abandoned cropland in the hilly and gully regions of the Loess Plateau using Landsat time series images. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.04.021

Alcantara C, Kuemmerle T, Prishchepov A V, Radeloff V C. 2012. Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sensing of Environment, 124, 334–347.

Baumann M, Kuemmerle T, Elbakidze M, Ozdogan M, Radeloff V C, Keuler N S, Prishchepov A V, Kruhlov I, Hostert P. 2011. Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy, 28, 552–562.

Beilin R, Lindborg R, Stenseke M, Pereira H M, Llausàs A, Slätmo E, Cerqueira Y, Navarro L, Rodrigues P, Reichelt N, Munro N, Queiroz C. 2014. Analysing how drivers of agricultural land abandonment affect biodiversity and cultural landscapes using case studies from Scandinavia, Iberia and Oceania. Land Use Policy, 36, 60–72.

Belgiu M, Drăguţ L. 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31.

Breiman L. 2001. Random forests. Machine Learning, 45, 5–32.

Campbell J E, Lobell D B, Genova R C, Field C B. 2008. The global potential of bioenergy on abandoned agriculture lands. Environmental Science and Technology, 42, 5791–5794.

Carducci B, Keats E C, Ruel M, Haddad L, Osendarp S J M, Bhutta Z A. 2021. Food systems, diets and nutrition in the wake of COVID-19. Nature Food, 2, 68–70.

Carlson T N, Ripley D A. 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62, 241–252.

Chen H, Tan Y, Deng X, Xiao W. 2020. Progress and prospects on information acquisition methods of abandoned farmland. Transactions of the Chinese Society of Agricultural Engineering, 36, 258–268. (in Chinese)

Chen H, Tan Y, Xiao W, Xu S, Xia H, Ding G, Xia H, Prishchepov A V. 2024. Spatiotemporal variation in determinants of cropland abandonment across Yangtze River Economic Belt, China. Catena, 245, 108326.

Chen J, Chen J, Liao A, Cao X, Chen L, Chen X, He C, Han G, Peng S, Lu M, Zhang W, Tong X, Mills J. 2015. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 7–27.

Chen X, Huang Q, Xiong Y, Yang Q, Li H, Hou Z, Huang G. 2023. Tracking the spatio-temporal change of the main food crop planting structure in the Yellow River Basin over 2001–2020. Computers and Electronics in Agriculture, 212, 108102.

Congalton R G. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, 35–46.

Crawford C L, Yin H, Radeloff V C, Wilcove D S. 2022. Rural land abandonment is too ephemeral to provide major benefits for biodiversity and climate. Science Advances, 8, eabm8999.

Crist E P. 1985. A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sensing of Environment, 17, 301–306.

Dara A, Baumann M, Kuemmerle T, Pflugmacher D, Rabe A, Griffiths P, Hölzel N, Kamp J, Freitag M, Hostert P. 2018. Mapping the timing of cropland abandonment and recultivation in northern Kazakhstan using annual Landsat time series. Remote Sensing of Environment, 213, 49–60.

Díaz G I, Nahuelhual L, Echeverría C, Marín S. 2011. Drivers of land abandonment in Southern Chile and implications for landscape planning. Landscape and Urban Planning, 99, 207–217.

Dong S, Xin L, Li S, Xie H, Zhao Y, Wang X, Li X, Song H, Lu Y. 2023. The extent and spatial distribution of terrace abandonment in China. Acta Geologica Sinica, 78, 3–15.

Duan C, Chen J, Li J, Su S, Lei Q, Feng H, Wu S, Zhang T, Siddique K H M, Zou Y. 2022. Biomaterial amendments combined with ridge–furrow mulching improve soil hydrothermal characteristics and wolfberry (Lycium barbarum L.) growth in the Qaidam Basin of China. Agricultural Water Management, 259, 107213.

Estacio I, Basu M, Sianipar C P M, Onitsuka K, Hoshino S. 2022. Dynamics of land cover transitions and agricultural abandonment in a mountainous agricultural landscape: Case of Ifugao rice terraces, Philippines. Landscape and Urban Planning222, 104394.

Estel S, Kuemmerle T, Alcántara C, Levers C, Prishchepov A, Hostert P. 2015. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sensing of Environment163, 312–325.

FAO (Food and Agriculture Organization). 2016. FAOSTAT, Methods & Standards. [2022-10-10]. Http://www.fao. org/ag/agn/nutrition/Indicatorsfiles/Agriculture.pdf

Fayet C M J, Reilly K H, Harn C V, Verburg P H. 2022. The potential of European abandoned agricultural lands to contribute to the Green Deal objectives: Policy perspectives. Environmental Science and Policy, 133, 44–53.

Fischer J, Hartel T, Kuemmerle T. 2012. Conservation policy in traditional farming landscapes. Conservation Letters, 5, 167–175.

Gellrich M, Baur P, Koch B, Zimmermann N E. 2007. Agricultural land abandonment and natural forest re-growth in the Swiss mountains: A spatially explicit economic analysis. Agriculture, Ecosystems and Environment, 118, 93–108.

Guo A, Yue W, Yang J, Xue B, Xiao W, Li M, He T, Zhang M, Jin X, Zhou Q. 2023. Cropland abandonment in China: Patterns, drivers, and implications for food security. Journal of Cleaner Production, 418, 138154. 

Guo H, Sun L, Wu S, Siddique K H M. 2025. The process and driving mechanism of abandoned terraces in mountain region at the watershed scale. Ecological Engineering, 215, 107582.

Guo H, Sun L, Yao A, Chen Z, Feng H, Wu S, Siddique K H M. 2023. Abandoned terrace recognition based on deep learning and change detection on the Loess Plateau in China. Land Degradation and Development, 34, 2349–2365.

Han Z, Song W. 2019. Spatiotemporal variations in cropland abandonment in the Guizhou–Guangxi karst mountain area, China. Journal of Cleaner Production238, 117888.

Han Z, Song W. 2020. Abandoned cropland: Patterns and determinants within the Guangxi Karst Mountainous Area, China. Applied Geography, 122, 102245.

Haralick R M, Shanmugam K, Dinstein I. 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3, 610–621.

He S, Shao H, Xian W, Yin Z, You M, Zhong J, Qi J. 2022. Monitoring cropland abandonment in hilly areas with Sentinel-1 and Sentinel-2 timeseries. Remote Sensing, 14, 3806.

He T, Zhang M, Xiao W, Zhai G, Wang Y, Guo A, Wu C. 2023. Quantitative analysis of abandonment and grain production loss under armed conflict in Ukraine. Journal of Cleaner Production, 412, 137367.

Hilker T, Wulder M A, Coops N C, Linke J, McDermid G, Masek J G, Gao F, White J C. 2009. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment, 113, 1613–1627.

Hong C, Prishchepov A V, Bavorova M. 2024a. Cropland abandonment in mountainous China: Patterns and determinants at multiple scales and policy implications. Land Use Policy, 145, 107292.

Hong C, Prishchepov A V, Jin X, Zhou, Y. 2024b. Mapping cropland abandonment and distinguishing from intentional afforestation with Landsat time series. International Journal of Applied Earth Observation and Geoinformation, 127, 103693.

Hou D, Meng F, Prishchepov A V. 2021. How is urbanization shaping agricultural land-use? Unraveling the nexus between farmland abandonment and urbanization in China. Landscape and Urban Planning, 214, 104170.

Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment83, 195–213.

Jiang Y, He X, Yin X, Chen F. 2023. The pattern of abandoned cropland and its productivity potential in China: A four-years continuous study. Science of the Total Environment, 870, 161928.

Kennedy R E, Yang Z, Cohen W B. 2010. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr–Temporal segmentation algorithms. Remote Sensing of Environment114, 2897–2910.

Kuemmerle T, Olofsson P, Chaskovskyy O, Baumann M, Ostapowicz K, Woodcock C E, Houghton R A, Hostert P, Keeton W S, Radeloff V C. 2011. Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine. Global Change Biology, 17, 1335–1349.

Li H, Song W. 2021. Cropland abandonment and influencing factors in Chongqing, China. Land, 10, 1206.

Li J, Zhou Z X. 2015. Coupled analysis on landscape pattern and hydrological processes in Yanhe watershed of China. Science of the Total Environment, 505, 927–938.

Li S, Li X. 2017. Global understanding of farmland abandonment: A review and prospects. Journal of Geographical Sciences, 27, 1123–1150.

Li S, Li X, Sun L, Cao G, Fischer G, Tramberend S. 2018. An estimation of the extent of cropland abandonment in mountainous regions of China. Land Degradation and Development, 29, 1327–1342.

Li S, Li X, Xin L, Tan M, Wang X, Wang R, Jiang M, Wang Y. 2017. Extent and distribution of cropland abandonment in Chinese mountainous areas. Resources Science, 39, 1801–1811. (in Chinese)

Li Z, Yan J, Hua X, Xin L, Li X. 2014. Factors influencing the cultivated land abandonment of households of different types: A case study of 12 typical villages in Chongqing Municipality. Geographical Research, 33, 721–734. (in Chinese)

Liu B, Song W. 2023. Mapping abandoned cropland using Within-Year Sentinel-2 time series. Catena, 223, 106924.

Liu J, Kuang W, Zhang Z, Xu X, Qin Y, Ning J, Zhou W, Zhang S, Li R, Yan C, Wu S, Shi X, Jiang N, Yu D, Pan X, Chi W. 2014. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. Journal of Geographical Sciences, 24, 195–210.

Long Y, Sun J, Wellens J, Colinet G, Wu W, Meersmans J. 2024. Mapping the spatiotemporal dynamics of cropland abandonment and recultivation across the Yangtze River Basin. Remote Sensing, 16, 1052.

Löw F, Fliemann E, Abdullaev I, Conrad C, Lamers J P A. 2015. Mapping abandoned agricultural land in Kyzyl-Orda, Kazakhstan using satellite remote sensing. Applied Geography, 62, 377–390.

Lu D, Su K, Wang Z, Hou M, Li X, Lin A, Yang Q. 2025. Patterns and drivers of terrace abandonment in China: Monitoring based on multi-source remote sensing data. Land Use Policy, 148, 107388.

Luo K, Moiwo J P. 2022. Rapid monitoring of abandoned farmland and information on regulation achievements of government based on remote sensing technology. Environmental Science and Policy, 132, 91–100.

MacDonald D, Crabtree J R, Wiesinger G, Dax T, Stamou N, Fleury P, Gutierrez L J, Gibon A. 2000. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. Journal of Environmental Management, 59, 47–69.

Major D, Baret F, Guyot G. 1990. A ratio vegetation index adjusted for soil brightness. International Journal of Remote Sensing, 11, 727–740.

McFeeters S K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17, 1425–1432.

Navarro L M, Pereira H M. 2012. Rewilding abandoned landscapes in Europe. Ecosystems, 15, 900–912.

Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62–66.

Pelletier C, Valero S, Inglada J, Champion N, Dedieu G. 2016. Assessing the robustness of random forests to map land cover with high resolution satellite image time series over large areas. Remote Sensing of Environment, 187, 156–168.

Prishchepov A V, Radeloff V C, Baumann M, Kuemmerle T, Müller D. 2012. Effects of institutional changes on land use: Agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet Eastern Europe. Environmental Research Letters, 7, 024021.

Prishchepov A V, Schierhorn F, Löw F. 2021. Unraveling the diversity of trajectories and drivers of global agricultural land abandonment. Land, 10, 97.

Queiroz C, Beilin R, Folke C, Lindborg R. 2014. Farmland abandonment: Threat or opportunity for biodiversity conservation? A global review. Frontiers in Ecology and the Environment, 12, 288–296.

Rikimaru A, Roy P S, Miyatake S. 2002. Tropical forest cover density mapping. Tropical Ecology, 43, 39–47.

Savitzky A, Golay M J E. 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 1627–1639.

Shi T, Li X, Xin L, Xu X. 2018. The spatial distribution of farmland abandonment and its influential factors at the township level: A case study in the mountainous area of China. Land Use Policy, 70, 510–520.

Sieber A, Uvarov N V, Baskin L M, Radeloff V C, Bateman B L, Pankov A B, Kuemmerle T. 2015. Post-Soviet land-use change effects on large mammals’ habitat in European Russia. Biological Conservation, 191, 567–576.

Song W. 2019. Mapping cropland abandonment in mountainous areas using an annual land-use trajectory approach. Sustainability, 11, 5951.

Vuichard N, Ciais P, Belelli L, Smith P, Valentini R. 2008. Carbon sequestration due to the abandonment of agriculture in the former USSR since 1990. Global Biogeochemical Cycles, 22, GB4018.

Wang H, Guo Z, Xie Y, Zhang X, Xi G, Huang H. 2024. Is abandoned cropland continuously growing in China? Quantitative evidence and enlightenment from Landsat-derived annual China land cover dataset. Land, 13, 45.

Wang J, Guan Y, Wang H, Zhou W. 2024. Identifying and monitoring of abandoned farmland in key agricultural production areas on the Qinghai‒Tibet Plateau: A case study of the Huangshui Basin. Journal of Environmental Management, 354, 120380. 

Wang Y, Song W. 2021. Mapping abandoned cropland changes in the hilly and gully region of the Loess Plateau in China. Land, 10, 1341.

Wang Y, Yang A, Xin L, Dong S, Li X. 2024. Spatial and temporal differentiation and influencing factors of fallowing in different types of farmland in China: Based on survey data from 346 mountainous counties. Geographical Research, 43, 1977‒1993. (in Chinese)

Wei Y, Wen J, Zhou Q, Zhang Y, Dong G. 2024. Mapping cropland abandonment in the cloudy hilly regions surrounding the southwest basin of China. Land, 13, 586.

Wei Z, Gu X, Sun Q, Hu X, Gao Y. 2021. Analysis of the spatial and temporal pattern of changes in abandoned farmland based on long time series of remote sensing data. Remote Sensing, 13, 2549.

Wertebach T M, Hölzel N, Kämpf I, Yurtaev A, Tupitsin S, Kiehl K, Kamp J, Kleinebecker T. 2017. Soil carbon sequestration due to post-Soviet cropland abandonment: Estimates from a large-scale soil organic carbon field inventory. Global Change Biology, 23, 3729–3741.

Wu J, Jin S, Zhu G, Guo J. 2023. Monitoring of cropland abandonment based on long time series remote sensing data: A case study of Fujian Province, China. Agronomy, 13, 1585.

Wu M, Hu Y, Wu H, Liu G, Yang L. 2020. Remote sensing extraction and feature analysis of abandoned farmland in hilly and mountainous areas: A case study of Xingning, Guangdong. Remote Sensing Applications (Society and Environment), 20, 100403.

Wuyun D, Duan M, Sun L, Crusiol L, Wu N, Chen Z. 2024. Pixel-wise parameter assignment in LandTrendr algorithm: Enhancing cropland abandonment monitoring using satellite-based NDVI time-series. Computers and Electronics in Agriculture, 227, 109541.

Xiao G, Zhu X, Hou C, Xia X. 2019. Extraction and analysis of abandoned farmland: A case study of Qingyun and Wudi counties in Shandong Province. Journal of Geographical Sciences, 29, 581–597.

Xue J, Zhang X L, Chen S C, Hu B F, Wang N, Shi Z. 2024. Quantifying the agreement and accuracy characteristics of four satellite-based LULC products for cropland classification in China. Journal of Integrative Agriculture, 23, 283297.

Yang D, Song W. 2023. Tracking land use trajectory to map abandoned farmland in mountainous area. Ecological Informatics, 75, 102103.

Yang J, Huang X. 2021. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth System Science Data, 13, 39073925.

Yang T, Guo X, Yue D, Wang X, Han S. 2019. Information extraction and driving factor assessment of farmland abandonment based on joint change detection. Transactions of the Chinese Society for Agricultural Machinery, 50, 201–208. (in Chinese)

Yin H, Brandão A, Buchner J, Helmers D, Iuliano B G, Kimambo N E, Lewińska K E, Razenkova E, Rizayeva A, Rogova N, Spawn S A, Xie Y, Radeloff V C. 2020. Monitoring cropland abandonment with Landsat time series. Remote Sensing of Environment, 246, 111873.

Yin H, Prishchepov A V, Kuemmerle T, Bleyhl B, Buchner J, Radeloff V C. 2018. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sensing of Environment, 210, 12–24.

Zha Y, Gao J, Ni S. 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24, 583–594.

Zhang M, Li G, He T, Zhai G, Guo A, Chen H, Wu C. 2023. Reveal the severe spatial and temporal patterns of abandoned cropland in China over the past 30 years. Science of the Total Environment, 857, 159591.

Zhang T, Yang J, Zhou H, Dai A, Tan D. 2024. Abandoned cropland mapping and its influencing factors analysis: A case study in the Beijing-Tianjin-Hebei region. Catena, 239, 107876.

Zhang X, Hu M, Guo X, Yang H, Zhang Z, Zhang K. 2018. Effects of topographic factors on runoff and soil loss in Southwest China. Catena, 160, 394402.

Zhao Z, Wang J, Wang L, Rao X, Ran W, Xu C. 2023. Monitoring and analysis of abandoned cropland in the Karst Plateau of eastern Yunnan, China based on Landsat time series images. Ecological Indicators, 146, 109828.

Zheng Q, Ha T, Prishchepov A V, Zeng Y, Yin H, Koh L P. 2023. The neglected role of abandoned cropland in supporting both food security and climate change mitigation. Nature Communications, 14, 6083.

Zheng W, Wang R, Cao Y, Jin N, Feng H, He J. 2022. Remote sensing recognition of plastic-film-mulched farmlands on Loess Plateau based on Google Earth Engine. Transactions of the Chinese Society for Agricultural Machinery, 53, 224–234. (in Chinese)

Zhu X, Xiao G, Zhang D, Guo L. 2021. Mapping abandoned farmland in China using time series MODIS NDVI. Science of the Total Environment, 755, 142651.

No related articles found!
No Suggested Reading articles found!