Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (7): 1944-1957    DOI: 10.1016/S2095-3119(20)63329-9
Special Issue: 农业生态环境-遥感合辑Agro-ecosystem & Environment—Romote sensing
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine
LUO Chong1, LIU Huan-jun1, 2, LU Lü-ping2, LIU Zheng-rong2, KONG Fan-chang2, ZHANG Xin-le2
1 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, P.R.China
2 School of Pubilc Adminstration and Law, Northeast Agricultural University, Harbin 150030, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

快速、准确地获取大区域、高分辨率的作物类型分布图对农业精准管理与可持续发展具有重要意义。受遥感影像质量和数据处理能力的限制,使用遥感技术进行大尺度的作物分类仍是一项巨大的挑战。本研究的目的是使用Google Earth Engine(GEE)结合Sentinel-1和Sentinel-2影像绘制黑龙江省的作物分布图,首先收集2018年作物生长关键期(5月至9月)覆盖研究区域所有可用的Sentinel-1与Sentinel-2影像,并对影像进行月度合成,然后将月度合成影像的不同反射率波段、植被指数与极化波段作为输入量结合随机森林方法进行作物分类。结果表明使用本研究提出的方法可以准确地获得黑龙江省作物分布图,作物分类总体精度达到89.75%。本研究还发现相比仅使用传统波段(可见光波段和近红外波段)进行作物分类,增加短波红外波段可以显著改善作物分类的准确性,其次是增加红边波段,增加常见植被指数和Sentinel-1数据对作物分类的精度提升不大。本研究还分析了作物分类的时效性,结果表明当7月份的影像可用时,作物分类精度的提升幅度最大,作物分类的总体精度可以达到80%以上。本研究结果为基于遥感的大尺度、高分辨率作物分布图的制作提供支持。




Abstract  
Rapid and accurate access to large-scale, high-resolution crop-type distribution maps is important for agricultural management and sustainable agricultural development.  Due to the limitations of remote sensing image quality and data processing capabilities, large-scale crop classification is still challenging.  This study aimed to map the distribution of crops in Heilongjiang Province using Google Earth Engine (GEE) and Sentinel-1 and Sentinel-2 images.  We obtained Sentinel-1 and Sentinel-2 images from all the covered study areas in the critical period for crop growth in 2018 (May to September), combined monthly composite images of reflectance bands, vegetation indices and polarization bands as input features, and then performed crop classification using a Random Forest (RF) classifier.  The results show that the Sentinel-1 and Sentinel-2 monthly composite images combined with the RF classifier can accurately generate the crop distribution map of the study area, and the overall accuracy (OA) reached 89.75%.  Through experiments, we also found that the classification performance using time-series images is significantly better than that using single-period images.  Compared with the use of traditional bands only (i.e., the visible and near-infrared bands), the addition of shortwave infrared bands can improve the accuracy of crop classification most significantly, followed by the addition of red-edge bands.  Adding common vegetation indices and Sentinel-1 data to the crop classification improved the overall classification accuracy and the OA by 0.2 and 0.6%, respectively, compared to using only the Sentinel-2 reflectance bands.  The analysis of timeliness revealed that when the July image is available, the increase in the accuracy of crop classification is the highest.  When the Sentinel-1 and Sentinel-2 images for May, June, and July are available, an OA greater than 80% can be achieved.  The results of this study are applicable to large-scale, high-resolution crop classification and provide key technologies for remote sensing-based crop classification in small-scale agricultural areas.
Keywords:  Sentinel-1        Sentinel-2        monthly composites        crop mapping        Google Earth Engine  
Received: 08 March 2020   Accepted:
Fund: The paper was funded by the National Key R&D Program of China (2017YFD0201803) and the Talent Recruitment Project of Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences.
Corresponding Authors:  Correspondence LIU Huan-jun, E-mail: huanjunliu@yeah.net   
About author:  LUO Chong, E-mail: luochong93@yeah.net;

Cite this article: 

LUO Chong, LIU Huan-jun, LU Lü-ping, LIU Zheng-rong, KONG Fan-chang, ZHANG Xin-le. 2021. Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine. Journal of Integrative Agriculture, 20(7): 1944-1957.

Altieri M A, Funes-Monzote F R, Petersen P. 2012. Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agronomy for Sustainable Development, 32, 1–13.
Arief U M, Nafi A Y. 2018. An accurate assessment tool based on intelligent technique for suitability of soybean cropland: case study in Kebumen Regency, Indonesia. Heliyon, 4, e00684.
Belgiu M, Csillik O. 2018. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204, 509–523.
Boryan C, Yang Z, Mueller R, Craig M. 2011. Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto International, 26, 341–358.
Cai Y, Guan K, Peng J, Wang S, Seifert C, Wardlow B, Li Z. 2018. A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sensing of Environment, 210, 35–47.
Chen B, Xiao X, Li X, Pan L, Doughty R, Ma J, Dong J, Qin Y, Zhao B, Wu Z. 2017. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 104–120.
Chen D, Huang J, Jackson T J. 2005. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sensing of Environment, 98, 225–236.
Chen S, Martin M P, Saby N P, Walter C, Angers D A, Arrouays D. 2018. Fine resolution map of top- and subsoil carbon sequestration potential in France. Science of the Total Environment, 630, 389–400.
Cihlar J, Manak D, D’Iorio M. 1994. Evaluation of compositing algorithms for AVHRR data over land. IEEE Transactions on Geoscience and Remote Sensing, 32, 427–437.
Claverie M, Ju J, Masek J G, Dungan J L, Vermote E F, Roger J C, Skakun S V, Justice C. 2018. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sensing of Environment, 219, 145–161.
Clevers J G, Gitelson A A. 2013. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3. International Journal of Applied Earth Observation Geoinformation, 23, 344–351.
Cohen J. 1960. A coefficient of agreement for nominal scales. Educational and psychological measurement, 20, 37–46.
Congalton R G. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, 35–46.
Conrad C, Fritsch S, Zeidler J, Rücker G, Dech S. 2010. Per-field irrigated crop classification in arid Central Asia using SPOT and ASTER data. Remote Sensing, 2, 1035–1056.
Davidson A, Fisette T, Mcnairn H, Daneshfar B. 2017. Detailed crop mapping using remote sensing data (crop data layers). In: Handbook on Remote Sensing for Agricultural Statistics: Handbook of the Global Strategy to Improve Agricultural and Rural Statistics (GSARS). Rome, Italy. pp. 91–117.
Davis K F, Rulli M C, Seveso A, D’Odorico P. 2017. Increased food production and reduced water use through optimized crop distribution. Nature Geoscience, 10, 919.
Díaz-Uriarte R, De Andres S A. 2006. Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7, 3.
Gao B, Huang T, Ju X, Gu B, Huang W, Xu L, Rees R M, Powlson D S, Smith P, Cui S. 2018. Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Global Change Biology, 24, 5590–5606.
Gitelson A A, Kaufman Y J, Merzlyak M N. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289–298.
Goutte C, Gaussier E. 2005. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. Advances in Information Retrieval, 3408, 345–359.
Griffiths P, Nendel C, Hostert P. 2019. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sensing of Environment, 220, 135–151.
Hao P Y, Tang H J, Chen Z X, Meng Q Y, Kang Y P. 2020. Early-season crop type mapping using 30-m reference time series. Journal of Integrative Agriculture, 19, 1897–1911.
Hu Q, Wu W B, Song Q, Lu M, Chen D, Yu Q Y, Tang H J. 2017. How do temporal and spectral features matter in crop classification in Heilongjiang Province, China? Journal of Integrative Agriculture, 16, 324–336.
Huang Y, Chen Z, Tao Y U, Huang X, Gu X F. 2018. Agricultural remote sensing big data: Management and applications. Journal of Integrative Agriculture, 17, 1915–1931.
Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213.
Inglada J, Vincent A, Arias M, Marais-Sicre C. 2016. Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series. Remote Sensing, 8, 362.
Jiang Q, Zhao Y, Wang Z, Fu Q, Wang T, Zhou Z, Dong Y. 2018. Simulating the evolution of the land and water resource system under different climates in Heilongjiang Province, China. Water, 10, 868.
Kussul N, Lavreniuk M, Skakun S, Shelestov A. 2017. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geoscience Remote Sensing Letters, 14, 778–782.
Kussul N, Lemoine G, Gallego F J, Skakun S V, Lavreniuk M, Shelestov A Y. 2016. Parcel-based crop classification in ukraine using Landsat-8 data and Sentinel-1A data. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing, 9, 2500–2508.
Lee J S, Wen J H, Ainsworth T L, Chen K S, Chen A J. 2008. Improved sigma filter for speckle filtering of SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 47, 202–213.
Liaw A, Wiener M. 2002. Classification and regression by randomForest. R News, 2, 18–22.
Liu C A, Chen Z X, Yun S, Chen J S, Hasi T, Pan H Z. 2019. Research advances of SAR remote sensing for agriculture applications: A review. Journal of Integrative Agriculture, 18, 506–525.
Luo C, Liu H J, Fu Q, Guan H X, Kong F C. 2020. Mapping the fallowed area of paddy fields on Sanjiang Plain of Northeast China to assist water security assessments. Journal of Integrative Agriculture, 19, 1885–1896.
Mahdianpari M, Salehi B, Mohammadimanesh F, Homayouni S, Gill E. 2019. The wetland inventory map of newfoundland at a spatial resolution of 10 m using Sentinel-1 and Sentinel-2 data on the Google Earth Engine Cloud Computing Platform. Remote Sensing, 11, 43.
Meng L, Liu H, Zhang X, Ren C, Ustin S, Qiu Z, Xu M, Guo D. 2019. Assessment of the effectiveness of spatiotemporal fusion of multi-source satellite images for cotton yield estimation. Computers Electronics in Agriculture, 162, 44–52.
Potapov P V, Turubanova S A, Hansen M C, Adusei B, Broich M, Altstatt A, Mane L, Justice C O. 2012. Quantifying forest cover loss in Democratic Republic of the Congo, 2000–2010, with Landsat ETM+ data. Remote Sensing of Environment, 122, 106–116.
Reitsma K D, Clay D E, Clay S A, Dunn B H, Reese C. 2016. Does the US cropland data layer provide an accurate benchmark for land-use change estimates? Agronomy Journal, 108, 266–272.
Rockström J, Williams J, Daily G, Noble A, Matthews N, Gordon L, Wetterstrand H, DeClerck F, Shah M, Steduto P. 2017. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio, 46, 4–17.
Singha M, Dong J, Zhang G, Xiao X. 2019. High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data. Scientific data, 6, 26.
Tian F, Wu B, Zeng H, Zhang X, Xu J. 2019. Efficient identification of corn cultivation area with multitemporal synthetic aperture radar and optical images in the Google Earth Engine Cloud Platform. Remote Sensing, 11, 629.
Tucker C J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.
Vuolo F, Neuwirth M, Immitzer M, Atzberger C, Ng W T. 2018. How much does multi-temporal Sentinel-2 data improve crop type classification? International Journal of Applied Earth Observation Geoinformation, 72, 122–130.
Waldhoff G, Lussem U, Bareth G. 2017. Multi-data approach for remote sensing-based regional crop rotation mapping: A case study for the Rur catchment, Germany. International Journal of Applied Earth Observation Geoinformation, 61, 55–69.
Wolfe R E, Roy D P, Vermote E. 1998. MODIS land data storage, gridding, and compositing methodology: Level 2 grid. IEEE Transactions on Geoscience Remote Sensing, 36, 1324–1338.
Xiao X, Boles S, Liu J, Zhuang D, Liu M. 2002. Characterization of forest types in northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data. Remote Sensing of Environment, 82, 335–348.
Yommy A S, Liu R, Wu S. 2015. SAR image despeckling using refined Lee filter. 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, 2, 260–265.
You L, Wood S, Wood-Sichra U. 2009. Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach. Agricultural Systems, 99, 126–140.
Zhang X W, Liu J F, Qin Z Y, Qin F. 2019. Winter wheat identification by integrating spectral and temporal information derived from multi-resolution remote sensing data. Journal of Integrative Agriculture, 18, 2628–2643.
 
[1] LIU Zheng-chun, WANG Chao, BI Ru-tian, ZHU Hong-fen, HE Peng, JING Yao-dong, YANG Wu-de. Winter wheat yield estimation based on assimilated Sentinel-2 images with the CERES-Wheat model[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1958-1968.
[2] LUO Chong, LIU Huan-jun, FU Qiang, GUAN Hai-xiang, YE Qiang, ZHANG Xin-le, KONG Fan-chang. Mapping the fallowed area of paddy fields on Sanjiang Plain of Northeast China to assist water security assessments[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1885-1896.
[3] HAO Peng-yu, TANG Hua-jun, CHEN Zhong-xin, MENG Qing-yan, KANG Yu-peng. Early-season crop type mapping using 30-m reference time series[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1897-1911.
[4] CUI Bei, ZHAO Qian-jun, HUANG Wen-jiang, SONG Xiao-yu, YE Hui-chun, ZHOU Xian-feng. Leaf chlorophyll content retrieval of wheat by simulated RapidEye, Sentinel-2 and EnMAP data[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1230-1245.
No Suggested Reading articles found!