Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (12): 4172-4185    DOI: 10.1016/j.jia.2023.09.025
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Transcriptome analysis reveals the genetic basis of crest cushion formation in duck

Lan Huang1, 2, Qixin Guo2, Yong Jiang2, Zhixiu Wang2, Guohong Chen1, 2, Guobin Chang1, 2#, Hao Bai1#

1 Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education/Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China

2 Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

鸟类中很少有能与羽冠的多样性、复杂性和进化性相媲美的形态特征。伴随着动物的进化历程以及环境的变化,颅顶部附属物形态进化迅速,颅顶部附属物的大小、形状和解剖细节可以表现出巨大的差异。润州凤头白鸭因其含有一个球状的羽冠而得名,具有重要的经济和文化价值。目前,关于鸭羽冠形成的分子调控机理研究仍然不够充分。为了探究润州凤头白鸭羽冠的形成机制,更好地对我国地方鸭种质资源挖掘与创新利用,本研究通过转录组测序结合差异表达分析和加权基因共表达网络分析(WGCNA)的分析方法,鉴定了参与润州凤头白鸭羽冠形成和发育的调控基因。结果显示,对胚胎期第28天(E28)凤头组织和头皮组织进行基因表达差异分析,共鉴定到261个差异表达基因(其中表达上调基因112个,表达下调基因139个);对生长第42天(D42)鸭凤头组织和头皮组织进行基因表达差异分析,共鉴定到361个差异表达基因(其中表达上调基因154个,表达下调基因207个)。WGCNA结果显示,3个模块与E28的凤头组织相关,2个模块与D42凤头组织相关。结合差异表达基因和WGCNA模块基因的Venn分析结果显示,D42E28阶段分别有14545个基因与凤头组织的发育相关。GOGene Ontology)注释和KEGGKyoto Encyclopedia of Genes and Genomes)分析结果显示,差异基因WNT16BMP2SLC35F2SLC6A15APOBEC2ABHD6TNNC2MYL1TNNI2主要参与脂肪生成、羽毛结构、组织修复等过程。本研究在转录水平上阐明了嵴状头组织关键发育阶段的表达模式,为嵴垫形成过程中亚表型的形成提供了参考,为嵴垫发育的分子遗传调控机理提供了新的见解。



Abstract  

The Chinese crested duck is a unique duck breed having a bulbous feather shape on its duck head.  However, the mechanisms involved in its formation and development are unclear.  In the present study, RNA sequencing analysis was performed on the crested tissues of 6 Chinese crested ducks and the scalp tissues of 6 cherry valley ducks (CVs) from 2 developmental stages.  This study identified 261 differentially expressed genes (DEGs), 122 upregulated and 139 downregulated, in the E28 stage and 361 DEGs, 154 upregulated and 207 downregulated in the D42 stage between CC and CV ducks.  The subsequent results of weighted gene co-expression network analysis (WGCNA) revealed that the turquoise and cyan modules were associated with the crest trait in the D42 stage, meanwhile, the green, brown, and pink modules were associated with the crest trait in the E28 stage.  Venn analysis of the DEGs and WGCNA showed that 145 and 45 genes are associated between the D42 and E28 stages, respectively.  The expression of WNT16, BMP2, SLC35F2, SLC6A15, APOBEC2, ABHD6, TNNC2, MYL1, and TNNI2 were verified by real-time quantitative PCR.  This study provides an approach to reveal the molecular mechanisms underlying the crested trait development.


Keywords:  crested duck       RNA-sequencing        weighted gene co-expression network analysis        differentially expressed genes  
Received: 19 May 2023   Accepted: 01 August 2023
Fund: 
This work was supported by the earmarked fund for CARS, China (CARS-42), the earmarked fund for Jiangsu Agricultural Industry Technology System, China (JATS (2022) 331) and the Jiangsu Key Research and Development Program, China (BE2021332).
About author:  Lan Huang, E-mail: dx120200133@stu.yzu.edu.cn; #Correspondence Guobin Chang, E-mail: gbchang1975@yzu.edu.cn; Hao Bai, E-mail: bhowen1027@yzu.edu.cn

Cite this article: 

Lan Huang, Qixin Guo, Yong Jiang, Zhixiu Wang, Guohong Chen, Guobin Chang, Hao Bai. 2024. Transcriptome analysis reveals the genetic basis of crest cushion formation in duck. Journal of Integrative Agriculture, 23(12): 4172-4185.

Bartels T, Brinkmeier J, Portmann S, Krautwald-Junghanns M E, Kummerfeld N, Boos A. 2001. Osteological investigations of the incidence of cranial alterations in domestic ducks with feather crests. Annals of Anatomy-Anatomischer Anzeiger183, 73–80.

Bartels T, Krautwald-Junghanns M E, Portmann S, Brinkmeier J, Kummerfeld N, Sohn H G, Dorsch B. 2000. The use of conventional radiography and computer-assisted tomography as instruments for demonstration of gross pathological lesions in the cranium and cerebrum in the crested breed of the domestic duck. Avian Pathology29, 101–108.

Chen M J, Xie W Y, Jiang S G, Wang X Q, Yan H C, Gao C Q. 2019. Molecular Signaling and nutritional regulation in the context of poultry feather growth and regeneration. Frontiers in Physiology10, 1609.

Chang G B, Yuan X Y, Guo Q X, Bai H, Cao X F, Li M, Wang Z X, Li B C, Wang S S, Jiang Y, Wang Z Q, Zhang Y, Xu Q, Song Q Q, Pan R, Zheng S H, Qiu L L, Gu T T, Wu X S, Bi Y L, et al. 2023. The first crested duck genome reveals clues to genetic compensation and crest cushion formation.Genomics, Proteomics & Bioinformatics21, 438–500.

Cnotka J, Frahm H D, Mpotsaris A, Rehkamper G. 2007. Motor incoordination, intracranial fat bodies, and breeding strategy in crested ducks. Poultry Science86, 1850–1855.

Dick A, Risau W, Drexler H. 1998. Expression of Smad1 and Smad2 during embryogenesis suggests a role in organ development. Developmental Dynamics211, 293–305.

Fessing M Y, Atoyan R, Shander B, Mardaryev A N, Botchkarev V V, Poterlowicz K, Peng Y, Efimova T, Botchkarev V A. 2010. BMP signaling induces cell-type-specific changes in gene expression programs of human keratinocytes and fibroblasts. Journal of Investigative Dermatology130, 398–404.

Flanders K C, Kim E S, Roberts A B. 2001. Immunohistochemical expression of smads 1–6 in the 15-day gestation mouse embryo: Signaling by BMPs and TGF-βs. Developmental Dynamics220, 141–154.

Frahm H D, Rehkämper G. 1998. Allometric comparison of the brain and brain structures in the white crested polish chicken with uncrested domestic chicken breeds. Brain Behavior and Evolution52, 292–307.

Frahm H D, Rehkamper G. 2004. Brain size, brain composition and intracranial fat bodies in a population of free-living crested ducks (‘Hochbrutflugenten’). British Poultry Science45, 590–597.

Frahm H D, Rehkamper G, Werner C W. 2001. Brain alterations in crested versus non-crested breeds of domestic ducks. Poultry Science80, 1249–1257.

Jiang Y, Ma X Y, Xie M, Zhou Z K, Tang J, Chang G B, Chen G H, Hou S S. 2022. Dietary threonine deficiency affects expression of genes involved in lipid metabolism in adipose tissues of Pekin ducks in a genotype-dependent manner. Journal of Integrative Agriculture21, 2691–2699.

Joller S, Ammann P, Flury C, Drogemuller C. 2018. Evaluation of HOXC8 in crested Swiss chicken. Animal Genetics49, 334–336.

Khumpeerawat P, Duangjinda M, Phasuk Y. 2021. Factors affecting gene expression associated with the skin color of black-bone chicken in Thailand. Poultry Science100, 1041–1050.

Liao X D, Cao S M, Li T T, Shao Y X, Zhang L Y, Lu L, Zhang R J, Hou S S, Luo X G. 2022. Regulation of bone phosphorus retention and bone development possibly by BMP and MAPK signaling pathways in broilers. Journal of Integrative Agriculture21, 3017–3025.

Lou J Y, Guo Q X, Jiang Y, Chen G H, Chang G B, Bai H. 2023. Effects of the number of crested cushions in runzhou white-crested ducks on serum biochemical parameters. Animals13, 466.

Miyazono K, Maeda S,Imamura T. 2005. BMP receptor signaling: Transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine & Growth Factor Reviews16, 251–263.

Moris A, Murray S,Cardinaud S. 2014. AID and APOBECs span the gap between innate and adaptive immunity. Frontiers in Microbiology5, 534.

Noramly S, Morgan B A. 1998. BMPs mediate lateral inhibition at successive stages in feather tract development. Development125, 3775–3787.

Powell C, Elsaeidi F, Goldman D. 2012. Injury-dependent muller glia and ganglion cell reprogramming during tissue regeneration requires Apobec2a and Apobec2b. Journal of Neuroscience32, 1096–1109.

Romanov M N, Sazanov A A, Smirnov A F. 2004. First century of chicken gene study and mapping – a look back and forward. World’s Poultry Science Journal60, 19–41.

Shu B, Zhang M, Xie R, Wang M, Jin H, Hou W, Tang D, Harris S E, Mishina Y, O’Keefe R J, Hilton M J, Wang Y, Chen D. 2011. BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. Journal of Cell Science124, 3428–3440.

Sun Y F, Liu R R, Zhao G P, Zheng M Q, Sun Y, Yu X Q, Li P,Wen J. 2015. Genome-wide linkage analysis identifies loci for physical appearance traits in chickens. G3-Genes Genomes Genetics5, 2037–2041.

Vonica A, Rosa A, Arduini B L, Brivanlou A H. 2011. APOBEC2, a selective inhibitor of TGFβ signaling, regulates left–right axis specification during early embryogenesis. Developmental Biology350, 13–23.

Wang T, Zhang Y, Guo Y, Zhang X, Yang H, Tian X, Zhu M, Guo Z, Zeng S, Luo K, He Q. 2021. RNA-sequence reveals differentially expressed genes affecting the crested trait of Wumeng crested chicken. Poultry Science100, 101357.

Wang Y Q, Gao Y, Imsland F, Gu X R, Feng C G, Liu R R, Song C, Tixier-Boichard M, Gourichon D, Li Q Y, Chen K W, Li H F, Andersson L, Hu X X, Li N. 2012. The crest phenotype in chicken is associated with ectopic expression of HOXC8 in cranial skin. PLoS ONE7, e34012.

Yoon B S, Ovchinnikov D A, Yoshii I, Mishina Y, Behringer R R, Lyons K M. 2005. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivoProceedings of the National Academy of Sciences of the United States of America102, 5062–5067.

Yuan X Y, Zheng S H, Zhang Y, Guo Q X, Wang S S, Bi Y L, Dai W C, Shen X K, Gu T T, Pan R, Song Q Q, Wang Z X, Zhang Y, Xu Q, Chang G B, Chen G H. 2019. Embryonic morphology observation and HOXC8 gene expression in crest cushions of Chinese Crested duck. Gene688, 98–106.

Zhang Y, Guo Q X, Bian Y Q, Wang Z S, Xu Q, Chang G B, Chen G H. 2020. Whole genome re-sequencing of crested traits and expression analysis of key candidate genes in duck. Gene729, 144–152.

Zhang Y, Luo S W, Hou L E, Gu T T, Zhu G Q, Vongsangnak W, Xu Q, Chen G H. 2022. Weighted gene co-expression network analysis identifies potential regulators in response to Salmonella Enteritidis challenge in the reproductive tract of laying ducks. Journal of Integrative Agriculture21, 2384–2398.

[1] Nurimanguli Aini, Yuanlong Wu, Zhenyuan Pan, Yizan Ma, Qiushuang An, Guangling Shui, Panxia Shao, Dingyi Yang, Hairong Lin, Binghui Tang, Xin Wei, Chunyuan You, Longfu Zhu, Dawei Zhang, Zhongxu Lin, Xinhui Nie. Cotton ethylene response factor GhERF91 is involved in the defense against Verticillium dahliae[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3328-3342.
[2] DU Qing-guo, YANG Juan, Shah SYED MUHAMMAD SADIQ, YANG Rong-xin, YU Jing-juan, LI Wen-xue. Comparative transcriptome analysis of different nitrogen responses in low-nitrogen sensitive and tolerant maize genotypes[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2043-2055.
[3] LI Ming-na, LONG Rui-cai, FENG Zi-rong, LIU Feng-qi, SUN Yan, ZHANG Kun, KANG Jun-mei, WANG Zhen, CAO Shi-hao. Transcriptome analysis of salt-responsive genes and SSR marker exploration in Carex rigescens using RNA-seq[J]. >Journal of Integrative Agriculture, 2018, 17(01): 184-196.
No Suggested Reading articles found!