Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (10): 3081-3089    DOI: 10.1016/j.jia.2022.11.008
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Resistance analysis of the rice variety Huaidao 5 against root-knot nematode Meloidogyne graminicola

FENG Hui1, ZHOU Can-rong1, ZHU Feng2, LE Xiu-hu3, JING De-dao4, Paul DALY1, ZHOU Dong-mei1, WEI Li-hui1#

1 Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R.China
2 Plant Protection and Quarantine Station of Jiangsu Province, Nanjing 210009, P.R.China
3 School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, P.R.China
4 Zhenjiang Institute of Agricultural Science in Hilly Area of Jiangsu Province, Jurong 212400, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

拟禾本科根结线虫(Meloidogyne graminicola)是水稻上最具破坏性的植物寄生线虫之一,显著影响水稻产量。利用抗性品种是防治线虫病害最有效的管理措施。然而,然而目前拟禾本科根结线虫抗性水稻种质资源十分有限。本研究筛选获得了一个拟禾本科根结线虫抗性水稻品种淮稻5号,评估了其对拟禾本科根结线虫趋化吸引、早期侵染、根结形成的影响,并初步分析其抗性遗传特征。基于普朗克凝胶的吸引观察发现与感病对照品种南粳9108相似,接种8h二龄幼虫J2)在淮稻5号根尖大量聚集平板接种12 hJ2侵入根伸长区,但向根尖迁移受阻,根内线虫数量下降,表明淮稻5号不能阻碍J2早期侵入,但能抑制其取食位点的建立。同时,通过室内盆钵栽培和水培系统模拟旱地和灌溉条件,发现在两种水稻栽培条件下,淮稻5号的根结数量均低于对照感病品种,并且线虫的发育受到显著抑制。进一步将淮稻5号与南粳9108进行杂交,结果其杂交F1子代显著降低了根结线虫的繁殖水平,表明淮稻5号的对拟禾本科根结线虫的抗性可能由主效基因控制。综上,本研究鉴定了淮稻5号为高抗拟禾本科根结线虫新的水稻种质资源,有助于促进根结线虫抗性水稻品种的选育。



Abstract  

Meloidogyne graminicola has emerged as one of the most destructive plant-parasitic nematodes affecting rice (Oryza sativa) production worldwide.  Resistance to Mgraminicola in rice could be the most effective option for its management.  However, sources of germplasm with resistance to Mgraminicola in rice remain limited.  Here, we describe the root attraction, gall formation and genetic analysis of the resistance to Mgraminicola in the rice variety Huidao 5.  A nematode attraction assay showed that second-stage juveniles (J2s) of Mgraminicola were attracted at the root tip of Huaidao 5 within 8 h without a significant reduction in attraction compared to the susceptible rice variety Nanjing 9108.  Microscopic observation of the infection revealed that the J2s invaded root tissues 12 h after inoculation, but their subsequent movement to the root tip was hindered in Huaidao 5, resulting in decreased nematode number compared to Nanjing 9108.  Additionally, we used the soil and hydroponic culture systems to simulate upland and flooding conditions in the paddy fields respectively, and found that gall number was significantly reduced, and nematode development was clearly suppressed in Huaidao 5.  To investigate the genetic basis of this resistance, cross breeding was performed between the Huaidao 5 and Nanjing 9108 varieties.  There was no reduction in the resistance of the F1 offspring to Mgraminicola in the greenhouse or field trials, suggesting that a dominant gene could control resistance in Huaidao 5.  In summary, this study provides a detailed characterization of a novel source of resistance to Mgraminicola in rice, which is of great potential for use in crop breeding.

Keywords:  root-knot nematode       Meloidogyne graminicola         rice        resistance  
Received: 11 July 2022   Accepted: 19 October 2022
Fund: 

This research was funded by the National Natural Science Foundation of China (32172383), the Jiangsu Agriculture Science and Technology Innovation Project, China (CX (21)1011), and the General Program of Hebei Natural Science Foundation, China (C2019402344).

About author:  FENG Hui, E-mail: fenghui@jaas.ac.cn; #Correspondence WEI Li-hui, Tel: +86-25-84390783, E-mail: weilihui@jaas.ac.cn

Cite this article: 

FENG Hui, ZHOU Can-rong, ZHU Feng, LE Xiu-hu, JING De-dao, Paul DALY, ZHOU Dong-mei, WEI Li-hui. 2023. Resistance analysis of the rice variety Huaidao 5 against root-knot nematode Meloidogyne graminicola. Journal of Integrative Agriculture, 22(10): 3081-3089.

Ali I, Tang L, Dai J, Kang M, Mahmood A, Wang W, Liu B, Liu L, Cao W, Zhu Y. 2021. Responses of grain yield and yield related parameters to post-heading low-temperature stress in Japonica rice. Plants10, 1425.

Cabasan M T N, Kumar A, Bellafiore S, De Waele D. 2014. Histopathology of the rice root-knot nematode, Meloidogyne graminicola, on Oryza sativa and OglaberrimaNematology16, 73–81.

Cabasan M T N, Kumar A, De Waele D. 2018. Evaluation of resistance and tolerance of rice genotypes from crosses of Oryza glaberrima and Osativa to the rice root-knot nematode, Meloidogyne graminicolaTropical Plant Pathology43, 230–241.

Curtis R H C, Robinson A F, Perry R N. 2009. Hatch and host location. In: Perry R N, Moesn M, Starr J L, eds., Root-Knot Nematodes. Commonwealth Agricultural Bureaux International, Wallingford, UK. pp. 139–162.

Dutta T K, Powers S J, Gaur H S, Birkett M, Curtis R H C. 2012. Effect of small lipophilic molecules in tomato and rice root exudates on the behaviour of Meloidogyne incognita and MgraminicolaNematology14, 309–320.

Feng H, Nie G, Chen X, Zhang J, Zhou D, Wei L. 2017. Morphological and molecular identification of Meloidogyne graminicola isolated from Jiangsu province. Jiangsu Journal of Agricultural Sciences33, 794–801. (in Chinese)

Feng H, Wei L, Lin M, Zhou Y. 2014. Assessment of rice cultivars in China for field resistance to Aphelenchoides besseyiJournal of Integrative Agriculture13, 2221–2228.

Fernandez L, Cabasan M T N, De Waele D. 2013. Life cycle of the rice root-knot nematode Meloidogyne graminicola at different temperatures under non-flooded and flooded conditions. Archives of Phytopathology and Plant Protection47, 1042–1049.

Hajano J U D, Zhang H, Ren Y, Lu C, Wang X. 2016. Screening of rice (Oryza sativa) cultivars for resistance to rice black streaked dwarf virus using quantitative PCR and visual disease assessment. Plant Pathology65, 1509–1517.

De Ilarduya O M, Moore A E, Kaloshian I. 2001. The tomato Rme1 locus is required for Mi-1-mediated resistance to root-knot nematodes and the potato aphid. The Plant Journal27, 417–425.

Khan M R, Zaidi B, Haque Z. 2012. Nematicides control rice root-knot, caused by Meloidogyne graminicolaPhytopathologia Mediterranea51, 298–306.

Kumari C, Dutta T K, Banakar P, Rao U. 2016. Comparing the defence-related gene expression changes upon root-knot nematode attack in susceptible versus resistant cultivars of rice. Scientific Reports6, 22846.

Kyndt T, Fernandez D, Gheysen G. 2014. Plant-parasitic nematode infections in rice: Molecular and cellular insights. Annual Review of Phytopathology52, 135–153.

Kyndt T, Zemene H Y, Haeck A, Singh R, De Vleesschauwer D, Denil S, De Meyer T, Hofte M, Demeestere K, Gheysen G. 2017. Below-ground attack by the root knot nematode Meloidogyne graminicola predisposes rice to blast disease. Molecular Plant–Microbe Interactions30, 255–266.

Lahari Z, Nkurunziza R, Bauters L, Gheysen G. 2020. Analysis of Asian rice (Oryza sativa) genotypes reveals a new source of resistance to the root-knot nematode Meloidogyne javanica and the root-lesion nematode Pratylenchus zeaePhytopathology110, 1572–1577.

Lahari Z, Ribeiro A, Talukdar P, Martin B, Heidari Z, Gheysen G, Price A H, Shrestha R. 2019. QTL-seq reveals a major root-knot nematode resistance locus on chromosome 11 in rice (Oryza sativa L.). Euphytica215, 117.

Liu Z, Ma C, Hou L, Wu X, Wang D, Zhang L, Liu P. 2022. Exogenous SA affects rice seed germination under salt stress by regulating Na+/K+ balance and endogenous GAs and ABA homeostasis. International Journal of Molecular Sciences23, 3293.

Mantelin S, Bellafiore S, Kyndt T. 2017. Meloidogyne graminicola: A major threat to rice agriculture. Molecular Plant Pathology18, 3–15.

Mattos V S, Leite R R, Cares J E, Gomes A, Moita A W, Lobo V L S, Carneiro R. 2019. Oryza glumaepatula, a new source of resistance to Meloidogyne graminicola and histological characterization of its defense mechanisms. Phytopathology109, 1941–1948.

Muthayya S, Sugimoto J D, Montgomery S, Maberly G F. 2014. An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences1324, 7–14.

Padgham J L, Duxbury J M, Mazid A M, Abawi G S, Hossain M. 2004. Yield loss caused by Meloidogyne graminicola on lowland rainfed rice in Bangladesh. Journal of Nematology36, 42–48.

Pankaj H K S, Prasad J S. 2010. The rice root-knot nematode, Meloidogyne graminicola: An emerging problem in rice–wheat cropping system. Indian Journal of Nematology40, 1–11.

Petitot A S, Kyndt T, Haidar R, Dereeper A, Collin M, de Almeida Engler J, Gheysen G, Fernandez D. 2017. Transcriptomic and histological responses of African rice (Oryza glaberrima) to Meloidogyne graminicola provide new insights into root-knot nematode resistance in monocots. Annals of Botany119, 885–899.

Phan N T, De Waele D, Lorieux M, Xiong L, Bellafiore S. 2018. A hypersensitivity-like response to Meloidogyne graminicola in rice (Oryza sativa). Phytopathology108, 521–528.

Rahman M L. 1990. Effect of different cropping sequences on the root-knot nematode, Meloidogyne graminicola, and yield of deepwater rice. Nematologia Mediterranea18, 213–217.

Shivakumara T N, Dutta T K, Chaudhary S, von Reuss S H, Williamson V M, Rao U. 2019. Homologs of Caenorhabditis elegans chemosensory genes have roles in behavior and chemotaxis in the root-knot nematode Meloidogyne incognitaMolecular Plant–Microbe Interactions32, 876–887.

Singh D, Dutta T K, Shivakumara T N, Dash M, Bollinedi H, Rao U. 2021. Suberin biopolymer in rice root exodermis reinforces preformed barrier against Meloidogyne graminicola infection. Rice Science28, 301–312.

Soriano I R, Reversat G. 2003. Management of Meloidogyne graminicola and yield of upland rice in South-Luzon, Philippines. Nematology5, 879–884.

Soriano I R, Schmit V, Brar D S, Prot J, Reversat G. 1999. Resistance to rice root-knot nematode Meloidogyne graminicola identified in Oryza longistaminata and OglaberrimaNematology1, 395–398.

Soriano I R S, Prot J C, Matias D M. 2000. Expression of tolerance for Meloidogyne graminicola in rice cultivars as affected by soil type and flooding. Journal of Nematology32, 309–317.

Tandingan I C, Prot J C, Davlde R G. 1996. Influence of water management on tolerance of rice cultivars for Meloidogyne graminicolaFundamental and Applied Nematology19, 189–192.

Teixeira M A, Wei L, Kaloshian I. 2016. Root-knot nematodes induce pattern-triggered immunity in Arabidopsis thaliana roots. New Phytologist211, 276–287.

Upadhyay V, Bhardwaj N R, Neelam P K S. 2014. Meloidogyne graminicola (Golden and Birchfield) threat to rice production. Research Journal of Agriculture and Forestry Sciences2, 31–36.

Ventura W, Watanabe I, Castillo M B, De la Cruz A. 1981. Involvement of nematodes in the soil sickness of a dryland rice-based cropping system. Soil Science and Plant Nutrition27, 305–315.

De Waele D, Elsen A. 2007. Challenges in tropical plant nematology. Annual Review of Phytopathology45, 457–485.

Wang X, Jacob Y, Mastrantuono S, Bazzano J, Voisin R, Esmenjaud D. 2004. Spectrum and inheritance of resistance to the root-knot nematode Meloidogyne hapla in Rosa multiflora and RindicaPlant Breeding123, 79–83.

Yao S, Huang Y, Yang J. 2020. The screening of resistance against Meloidogyne graminicola in oats. Agriculture10, 352.

Zhan L, Ding Z, Peng D, Peng H, Kong L, Liu S, Liu Y, Li Z, Huang W. 2018. Evaluation of Chinese rice varieties resistant to the root-knot nematode Meloidogyne graminicolaJournal of Integrative Agriculture17, 621–630.

[1] WU Xian-xin, ZANG Chao-qun, ZHANG Ya-zhao, XU Yi-wei, WANG Shu, LI Tian-ya, GAO Li.

Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1740-1749.

[2] Yan Jia-hui, Jia Jian-ping, JIANG Li-ling, Peng De-liang, Liu Shi-ming, Hou Sheng-ying, YU Jing-wen, Li Hui-xia, Huang Wen-kun. Resistance of barley varieties to Heterodera avenae in the Qinghai–Tibet Plateau, China[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1401-1413.
[3] CHENG Wan-li, ZENG Li, YANG Xue, HUANG Dian, YU Hao, CHEN Wen, CAI Min-min, ZHENG Long-yu, YU Zi-niu, ZHANG Ji-bin. Preparation and efficacy evaluation of Paenibacillus polymyxa KM2501-1 microbial organic fertilizer against root-knot nematodes[J]. >Journal of Integrative Agriculture, 2022, 21(2): 542-551.
[4] Pornthip RUANPANUN, Prakit SOMTA. Identification and resistant characterization of legumes sources against Meloidogyne incognita #br#[J]. >Journal of Integrative Agriculture, 2021, 20(1): 168-177.
[5] HUANG Bin, WANG Qian, GUO Mei-xia, FANG Wen-sheng, WANG Xiao-ning, WANG Qiu-xia, YAN Dong-dong, OUYANG Can-bin, LI Yuan, CAO Ao-cheng. The synergistic advantage of combining chloropicrin or dazomet with fosthiazate nematicide to control root-knot nematode in cucumber production[J]. >Journal of Integrative Agriculture, 2019, 18(9): 2093-2106.
[6] GUO Xiao, YANG Xiao-hui, YANG Yu, MAO Zhen-chuan, LIU Feng, MA Wei-qing, XIE Bing-yan, LI Guang-cun. Bacterial artificial chromosome library construction of root-knot nematode resistant pepper genotype HDA149 and identification of clones linked to Me3 resistant locus[J]. >Journal of Integrative Agriculture, 2017, 16(01): 57-64.
No Suggested Reading articles found!