Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (5): 1351-1365    DOI: 10.1016/j.jia.2022.08.024
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Late sowing enhances lodging resistance of wheat plants by improving the biosynthesis and accumulation of lignin and cellulose
DONG Xiu-chun1, 2, QIAN Tai-feng1, CHU Jin-peng1, ZHANG Xiu1, LIU Yun-jing1, DAI Xing-long1#, HE Ming-rong1#

1 State Key Laboratory of Crop Biology, Ministry of Science and Technology/Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural Affairs/Agronomy College, Shandong Agricultural University, Tai’an 271018, P.R.China

2 Jining Agricultural Technology Extension Center, Jining 272113, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  推迟播期利于提高小麦抗倒伏能力,但其内在机制尚不明确。本研究以冬小麦品种泰农18为供试材料,于2015–2016和2016–2017连续两个生长季进行大田试验,设置10月8日(常规播期)和10月22日(推迟播期)2个播期,旨在明确播期对木质素和纤维素代谢、茎秆形态特征、抗倒伏性能和产量的影响。结果表明,推迟播期通过促进茎秆中木质素和纤维素的合成与积累提高小麦抗倒伏能力。与常规播期相比,推迟播期促进木质素和纤维素合成相关基因(TaPALTaCCRTaCOMTTaCADTaCesA13478)表达水平和酶(TaPAL和TaCAD)活性水平提前4–12天到达相应峰值,并在大多数取样期显著提高除TaPALTaCCRTaCesA1和TaPAL之外的上述基因表达与酶活性水平,进而促进木质素和纤维素在茎秆伸长期的快速积累。木质素和纤维素的平均积累速率和最大积累速率越高,其最大积累量越多,纤维素的积累持续期也相应延长,拔节期及之后的茎秆木质素/纤维素比值、木质素含量以及拔节后11天的纤维素含量得以提高。进一步的研究表明,促进木质素和纤维素的合成与积累能够有效提高茎秆充实度、机械强度和抗倒伏性。然而,推迟播期增强小麦抗倒伏性能的关键功能基因有待进一步确定。

Abstract  

Delayed sowing mitigates lodging in wheat.  However, the mechanism underlying the enhanced lodging resistance in wheat has yet to be fully elucidated.  Field experiments were conducted to investigate the effects of sowing date on lignin and cellulose metabolism, stem morphological characteristics, lodging resistance, and grain yield.  Seeds of Tainong 18, a winter wheat variety, were sown on October 8 (normal sowing) and October 22 (late sowing) during both of the 2015–2016 and 2016–2017 growing seasons.  The results showed that late sowing enhanced the lodging resistance of wheat by improving the biosynthesis and accumulation of lignin and cellulose.  Under late sowing, the expression levels of key genes (TaPAL, TaCCR, TaCOMT, TaCAD, and TaCesA1, 3, 4, 7, and 8) and enzyme activities (TaPAL and  TaCAD) related to lignin and cellulose biosynthesis peaked 4–12 days earlier, and except for the TaPAL, TaCCR, and TaCesA1 genes and TaPAL, in most cases they were significantly higher than under normal sowing.  As a result, lignin and cellulose accumulated quickly during the stem elongation stage.  The mean and maximum accumulation rates of lignin and cellulose increased, the maximum accumulation contents of lignin and cellulose were higher, and the cellulose accumulation duration was prolonged.  Consequently, the lignin/cellulose ratio and lignin content were increased from 0 day and the cellulose content was increased from 11 days after jointing onward.  Our main finding is that the improved biosynthesis and accumulation of lignin and cellulose were responsible for increasing the stem-filling degree, breaking strength, and lodging resistance.  The major functional genes enhancing lodging resistance in wheat that are induced by delayed sowing need to be determined.

Keywords:  cellulose        late sowing       lignin       lodging resistance       wheat  
Received: 22 February 2022   Accepted: 22 April 2022
Fund: 

This work was supported by the National Key Research and Development Program of China (2016YFD0300403), the National Natural Science Foundation of China (31801298) and the Fund of Shandong ‘Double Top’ Program, China (SYL2017YSTD05).

About author:  DONG Xiu-chun, E-mail: xcdong83@163.com; #Correspondence DAI Xing-long, E-mail: adaisdny@163.com; HE Ming-rong, E-mail: mrhe@sdau.edu.cn

Cite this article: 

DONG Xiu-chun, QIAN Tai-feng, CHU Jin-peng, ZHANG Xiu, LIU Yun-jing, DAI Xing-long, HE Ming-rong. 2023. Late sowing enhances lodging resistance of wheat plants by improving the biosynthesis and accumulation of lignin and cellulose. Journal of Integrative Agriculture, 22(5): 1351-1365.

Acreche M M, Slafer G A. 2011. Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crops Research, 122, 40–48.
Ahmad I, Ahmad S, Yang X, Meng X, Yang B, Liu T, Han Q. 2021. Effect of uniconazole and nitrogen level on lodging resistance and yield potential of maize under medium and high plant density. Plant Biology, 23, 485–496.
Ahmad I, Kamran M, Ali S, Bilegjargal B, Cai T, Ahmad S, Meng X, Su W, Liu T, Han Q. 2018. Uniconazole application strategies to improve lignin biosynthesis, lodging resistance and production of maize in semiarid regions. Field Crops Research, 222, 66–77.
Ahmad I, Meng X, Kamran M, Ali S, Ahmad S, Liu T, Cai T, Han Q. 2020. Effects of uniconazole with or without micronutrient on the lignin biosynthesis, lodging resistance, and winter wheat production in semiarid regions. Journal of Integrative Agriculture, 19, 62–77.
Appenzeller L, Doblin M, Barreiro R, Wang H, Niu X, Kollipara K, Carrigan L, Tomes D, Chapman M, Dhugga S. 2004. Cellulose synthesis in maize: Isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose, 11, 287–299.
Baldwin L, Głazowska S, Mravec J, Fangel J, Zhang H, Felby C, Willats W G, Schjoerring J K. 2017. External nitrogen input affects pre- and post-harvest cell wall composition but not the enzymatic saccharification of wheat straw. Biomass and Bioenergy, 98, 70–79.
Bi C, Chen F, Jackson L, Gill B S, Li W. 2011. Expression of lignin biosynthetic genes in wheat during development and upon interaction by fungal pathogens. Plant Molecular Biology Reporter, 29, 149–161.
Bremner J M. 1960. Determination of nitrogen in soil by the Kjeldahl method. Journal of Agricultural Science, 55, 11–33.
Chen C, Chang J, Wang S, Lu J, Liu Y, Si H, Sun G, Ma C. 2021. Cloning, expression analysis and molecular marker development of cinnamyl alcohol dehydrogenase gene in common wheat. Protoplasma, 258, 881–889.
Chen J, Lv F, Liu J, Ma Y, Wang Y, Chen B, Meng Y, Zhou Z. 2014. Effect of late planting and shading on cellulose synthesis during cotton fiber secondary wall development. PLoS ONE, 9, e105088.
Chen X G, Shi C Y, Yin Y P, Wang Z L, Shi Y H, Peng D L, Ni Y L, Cai T. 2011. Relationship between lignin metabolism and lodging resistance in wheat. Acta Agronomica Sinica, 37, 1616–1622. (in Chinese)
Dai X, Wang Y, Dong X, Qian T, Yin L, Dong S, Chu J, He M. 2017. Delayed sowing can increase lodging resistance while maintaining grain yield and nitrogen use efficiency in winter wheat. The Crop Journal, 5, 541–552.
Desprez T, Juraniec M, Crowell E F, Jouy H, Pochylova Z, Parcy F, Höfte H, Gonneau M, Vernhettes S. 2007. Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 104, 15572–15577.
Domon J M, Baldwin L, Acket S, Caudeville E, Arnoult S, Zub H, Gillet F, Lejeune-Henaut I, Brancourt-Hulmel M, Pelloux J, Rayon C. 2013. Cell wall compositional modifications of Miscanthus ecotypes in response to cold acclimation. Phytochemistry, 85, 51–61.
Feng S W, Ru Z G, Ding W H, Hu T Z, Li G. 2019. Study of the relationship between field lodging and stem quality traits of winter wheat in the North China Plain. Crop and Pasture Science, 70, 772–780.
Hagiwara M, Izusawa H, Inoue N, Matano T. 1999. Varietal differences of shoot growth characters related to lodging in tartary buckwheat. Fagopyrum, 16, 67–72.
Hamann T, Osborne E, Youngs H L, Misson J, Nussaume L, Somerville C. 2004. Global expression analysis of CESA and CSL genes in Arabidopsis. Cellulose, 11, 279–286.
Houston K, Burton R A, Sznajder B, Rafalski A J, Dhugga K S, Mather D E, Taylor J, Steffenson B J, Waugh R, Fincher G B. 2015. A genome-wide association study for culm cellulose content in barley reveals candidate genes co-expressed with members of the CELLULOSE SYNTHASE A gene family. PLoS ONE, 10, e0130890.
Hu Y, Javed H H, Asghar M A, Peng X, Brestic M, Skalický M, Ghafoor A Z, Cheema H N, Zhang F, Wu Y. 2022. Enhancement of lodging resistance and lignin content by application of organic carbon and silicon fertilization in Brassica napus L. Frontiers in Plant Science, 13, 807048.
Kamran M, Ahmad I, Wu X, Liu T, Ding R, Han Q. 2018. Application of paclobutrazol: A strategy for inducing lodging resistance of wheat through mediation of plant height, stem physical strength, and lignin biosynthesis. Environmental Science and Pollution Research, 25, 29366–29378.
Kaur S, Dhugga K S, Gill K, Singh J. 2016. Novel structural and functional motifs in cellulose synthase (CesA) genes of bread wheat (Triticum aestivum L.). PLoS ONE, 11, e0147046.
Khobra R, Sareen S, Meena B K, Kumar A, Tiwar V, Singh G P. 2019. Exploring the traits for lodging tolerance in wheat genotypes: A review. Physiology and Molecular Biology of Plants, 25, 589–600.
Kong E, Liu D, Guo X, Yang W, Sun J, Li X, Zhang K, Cui D, Lin J, Zhang A. 2013. Anatomical and chemical characteristics associated with lodging resistance in wheat. The Crop Journal, 1, 43–49.
Kotake T, Aohara T, Hirano K, Sato A, Kaneko Y, Tsumuraya Y, Takatsuji H, Kawasaki S. 2011. Rice Brittle culm 6 encodes a dominant-negative form of CesA Protein that perturbs cellulose synthesis in secondary cell walls. Journal of Experimental Botany, 62, 2053–2062.
Li C, Luo Y, Jin M, Sun S, Wang Z, Li Y. 2021. Response of lignin metabolism to light quality in wheat population. Frontiers in Plant Science, 12, 729647.
Ma Q H. 2007. Characterization of a cinnamoyl-CoA reductase that is associated with stem development in wheat. Journal of Experimental Botany, 58, 2011–2021.
Ma Q H, Luo H R. 2015. Biochemical characterization of caffeoyl coenzyme A 3-O-methyltransferase from wheat. Planta, 242, 113–122.
McFarlane H E, Doring A, Persson S. 2014. The cell biology of cellulose synthesis. Annual Review of Plant Biology, 65, 69–94.
Melich A. 1953. Determination of P, Ca, Mg, K, Na, and NH4. North Carolina Soil Testing Division, NC State University, Raleigh, North Carolina, USA. pp. 23–89.
Morrison T A, Kessler J R, Hatfield R D, Buxton D R. 1994. Activity of two lignin biosynthesis enzymes during development of a maize internode. Journal of the Science of Food and Agriculture, 65, 133–139.
Niu L, Feng S, Ding W, Li G. 2016. Influence of speed and rainfall on large-scale wheat lodging from 2007 to 2014 in China. PLoS ONE, 11, e0157677.
Peake A S, Bell K L, Fischer R A, Gardner M, Das B T, Poole N, Mumford M. 2020. Cultivar × management interaction to reduce lodging and improve grain yield of irrigated spring wheat: Optimising plant growth regulator use, N application timing, row spacing and sowing date. Frontiers in Plant Science, 11, 401.
Peng D, Chen X, Yin Y, Lu K, Yang W, Tang Y, Wang Z. 2014. Lodging resistance of winter wheat (Triticum aestivm L.): Lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crops Research, 157, 1–7.
Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville C R. 2007. Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 104, 15566–15571.
Shah A N, Tanveer M, Abbas A, Yildirim M, Shah A A, Ahmad M I, Wang Z, Sun W, Song Y. 2021. Combating dual challenges in maize under high planting density: Stem lodging and kernel abortion. Frontiers in Plant Science, 12, 699085.
Spink J H, Semere T, Sparkes D L, Whaley J M, Foulkes M J, Clare R W, Scott R K. 2005. Effect of sowing date on the optimum plant density of winter wheat. Annals of Applied Biology, 137, 179–188.
Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H. 2003. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiology, 133, 73–83.
Turner S, Gallois P, Brown D. 2007. Tracheary element differentiation. Annals of Applied Biology, 58, 407–433.
Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. 2010. Lignin biosynthesis and structure. Plant Physiology, 153, 895–905.
Walkley A, Black I A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.
Wang C, Hu D, Liu X B, She H Z, Ruan R W, Yang H, Yi Z L, Wu D Q. 2015a. Effects of uniconazole on the lignin metabolism and lodging resistance of culm in common buckwheat (Fagopyrum esculentum M.). Field Crops Research, 180, 46–53.
Wang C, Ruan R W, Yuan X H, Hu D, Yang H, Li Y, Yi Z L. 2015b. Effects of nitrogen fertilizer and planting density on the lignin synthesis in the culm in relation to lodging resistance of buckwheat. Plant Production Science, 18, 218–227.
Wang L, Guo K, Li Y, Tu Y, Hu H, Wang B, Cui X. 2010. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biology, 10, 282.
Wang M, Zhu X, Wang K, Lu C, Luo M, Shan T, Zhang Z. 2018. A wheat caffeic acid 3-O-methltransferase TaCOMT-3D positively contributes to both resistance to sharp eyespot disease and stem mechanical strength. Scientific Reports, 8, 6543.
Weng F, Zhang W, Wu X, Xu X, Ding Y, Li G, Liu Z, Wang S. 2017. Impact of low-temperature, overcast and rainy weather during the reproductive growth stage on lodging resistance of rice. Scientific Reports, 7, 1–9.
Weng J K, Chapple C. 2010. The origin and evolution of lignin biosynthesis. New Phytologist, 187, 273–285.
Wu L, Zhang W, Ding Y, Zhang J, Camnula E D, Weng F, Liu Z, Ding C, Tang S, Chen L, Wang S, Li G. 2017. Shading contributes to the reduction of stem mechanical strength by decreasing cell wall synthesis in japonica rice (Oryza sativa L.). Frontiers in Plant Science, 8, 881.
Ye Y, Wang S, Wu K, Ren Y, Jiang H, Chen J, Tao L, Fu X, Liu B, Wu Y. 2021. A semi-dominant mutation in OsCESA9 improves salt tolerance and favors field straw decay traits by altering cell wall properties in rice. Rice, 14, 19.
Yin L, Dai X, He M. 2018. Delayed sowing improves nitrogen utilization efficiency in winter wheat without impacting yield. Field Crops Research, 221, 90–97.
Yu M, Wang M, Gyalpo T, Basang Y. 2021. Stem lodging resistance in hulless barley: Transcriptone and metabolome analysis of lignin biosynthesis pathways in contrasting genotypes. Genomics, 113, 935–943.
Yuen S H, Pollard A G. 1953. Determination of nitrogen in soil and plant materials: Use of boric acid in the micro-Kjeldahl method. Journal of the Science of Food and Agriculture, 4, 490–496.
Zandstra H G. 1968. Automated determination of phosphorus in sodium bicarbonate extracts. Canadian Journal of Soil Science, 48, 219–220.
Zhang J, Li G, Song Y, Liu Z, Yang C, Tang S, Zheng C, Wang S, Ding Y. 2014. Lodging resistance characteristics of high-yielding rice populations. Field Crops Research, 161, 64–74. 
Zhang M, Wang H, Yi Y, Ding J, Zhu M, Li C, Guo W, Feng C, Zhu X. 2017. Effect of nitrogen levels and nitrogen ratios on lodging resistance and yield potential of winter wheat (Triticum aestivum L.). PLoS ONE, 12, e0187543.
Zhang Q, Cheetamun R, Dhugga K S, Rafalski J A, Tingey S V, Shirley N J, Taylor J, Hayes K, Beatty M, Bacic A, Burton R A, Fincher G B. 2014. Spatial gradients in cell wall composition and transcriptional profiles along elongating maize internodes. BMC Plant Biology, 14, 27.
Zhang R, Jia Z, Ma X, Ma H, Zhao Y. 2020. Characterising the morphological characters and carbohydrate metabolism of oat culms and their association with lodging resistance. Plant Biology, 22, 267–276.
Zhang W, Wu L, Ding Y, Weng F, Wu X, Li G, Liu Z, Tang S, Ding C, Wang S. 2016. Top-dressing nitrogen fertilizer rate contributes to decrease culm physical strength by reducing structural carbohydrate content in japonica rice. Journal of Integrative Agriculture, 15, 992–1004.
Zheng M, Chen J, Shi Y, Li Y, Yin Y, Yang D, Luo Y, Pang D, Xu X, Li W, Ni J, Wang Y, Wang Z, Li Y. 2017. Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat. Scientific Reports, 7, 41805.
[1] Zihui Liu, Xiangjun Lai, Yijin Chen, Peng Zhao, Xiaoming Wang, Wanquan Ji, Shengbao Xu. Selection and application of four QTLs for grain protein content in modern wheat cultivars[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2557-2570.
[2] Gensheng Zhang, Mudi Sun, Xinyao Ma, Wei Liu, Zhimin Du, Zhensheng Kang, Jie Zhao. Yr5-virulent races of Puccinia striiformis f. sp. tritici possess relative parasitic fitness higher than current main predominant races and potential risk[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2674-2685.
[3] Wenjie Yang, Jie Yu, Yanhang Li, Bingli Jia, Longgang Jiang, Aijing Yuan, Yue Ma, Ming Huang, Hanbing Cao, Jinshan Liu, Weihong Qiu, Zhaohui Wang. Optimized NPK fertilizer recommendations based on topsoil available nutrient criteria for wheat in drylands of China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2421-2433.
[4] Yibo Hu, Feng Qin, Zhen Wu, Xiaoqin Wang, Xiaolong Ren, Zhikuan Jia, Zhenlin Wang, Xiaoguang Chen, Tie Cai. Heterogeneous population distribution enhances resistance to wheat lodging by optimizing the light environment[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2211-2226.
[5] Bingli Jiang, Wei Gao, Yating Jiang, Shengnan Yan, Jiajia Cao, Litian Zhang, Yue Zhang, Jie Lu, Chuanxi Ma, Cheng Chang, Haiping Zhang. Identification of P-type plasma membrane H+-ATPases in common wheat and characterization of TaHA7 associated with seed dormancy and germination[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2164-2177.
[6] Zhikai Cheng, Xiaobo Gu, Yadan Du, Zhihui Zhou, Wenlong Li, Xiaobo Zheng, Wenjing Cai, Tian Chang.

Spectral purification improves monitoring accuracy of the comprehensive growth evaluation index for film-mulched winter wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1523-1540.

[7] Yongchao Hao, Fanmei Kong, Lili Wang, Yu Zhao, Mengyao Li, Naixiu Che, Shuang Li, Min Wang, Ming Hao, Xiaocun Zhang, Yan Zhao.

Genome-wide association study of grain micronutrient concentrations in bread wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1468-1480.

[8] Xuan Li, Shaowen Wang, Yifan Chen, Danwen Zhang, Shanshan Yang, Jingwen Wang, Jiahua Zhang, Yun Bai, Sha Zhang.

Improved simulation of winter wheat yield in North China Plain by using PRYM-Wheat integrated dry matter distribution coefficient [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1381-1392.

[9] Xinlong Gao, Fan Li, Yikun Sun, Jiaqi Jiang, Xiaolin Tian, Qingwen Li, Kaili Duan, Jie Lin, Huiquan Liu, Qinhu Wang.

Basal defense is enhanced in a wheat cultivar resistant to Fusarium head blight [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1238-1258.

[10] YANG Wei-bing, ZHANG Sheng-quan, HOU Qi-ling, GAO Jian-gang, WANG Han-Xia, CHEN Xian-Chao, LIAO Xiang-zheng, ZHANG Feng-ting, ZHAO Chang-ping, QIN Zhi-lie.

Transcriptomic and metabolomic analysis provides insights into lignin biosynthesis and accumulation and differences in lodging resistance in hybrid wheat [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1105-1117.

[11] Yingxia Dou, Hubing Zhao, Huimin Yang, Tao Wang, Guanfei Liu, Zhaohui Wang, Sukhdev Malhi.

The first factor affecting dryland winter wheat grain yield under various mulching measures: Spike number [J]. >Journal of Integrative Agriculture, 2024, 23(3): 836-848.

[12] Yonghui Fan, Boya Qin, Jinhao Yang, Liangliang Ma, Guoji Cui, Wei He, Yu Tang, Wenjing Zhang, Shangyu Ma, Chuanxi Ma, Zhenglai Huang.

Night warming increases wheat yield by improving pre-anthesis plant growth and post-anthesis grain starch biosynthesis [J]. >Journal of Integrative Agriculture, 2024, 23(2): 536-550.

[13] Wenqiang Wang, Xizhen Guan, Yong Gan, Guojun Liu, Chunhao Zou, Weikang Wang, Jifa Zhang, Huifei Zhang, Qunqun Hao, Fei Ni, Jiajie Wu, Lynn Epstein, Daolin Fu.

Creating large EMS populations for functional genomics and breeding in wheat [J]. >Journal of Integrative Agriculture, 2024, 23(2): 484-493.

[14] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[15] Wei Chen, Jingjuan Zhang, Xiping Deng.

Winter wheat yield improvement by genetic gain across different provinces in China [J]. >Journal of Integrative Agriculture, 2024, 23(2): 468-483.

No Suggested Reading articles found!