Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (10): 3004-3016    DOI: 10.1016/j.jia.2022.07.039
Special Issue: 动物科学合辑Animal Science
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
MiR-140 downregulates fatty acid synthesis by targeting transforming growth factor alpha (TGFA) in bovine mammary epithelial cells

CHU Shuang-feng1, 2, ZHAO Tian-qi1, 2, Abdelaziz Adam Idriss ARBAB1, 2, YANG Yi2, 3, CHEN Zhi1, 2, YANG Zhang-ping1, 2

1College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R.China

2Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, P.R.China

3Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

脂肪是维持生命不可缺少的营养物质和基本代谢产物,牛奶中富含脂肪酸,包括多种饱和脂肪酸和不饱和脂肪酸。miRNAmRNA在乳腺组织乳脂代谢的调控中起重要作用有研究表明,脂质代谢具有复杂的转录调控作用,但人们对通过miRNA-mRNA相互作用调控乳脂合成的机制知之甚少。本研究以泌乳后期(分娩后270d315d)的牛乳腺组织进行转录组测序,鉴定调控乳脂代谢的关键基因共筛选出1207个差异共表达基因,其中包括828个上调基因和379个下调基因。选择转化生长因子-α (TGFA) 基因为本实验的靶向目的基因,采用荧光素酶报告基因、Western blottingqRT-PCR检测进行进一步的功能研究。结果了miR-140TGFA的上游调控因子,miR-140能抑制(P < 0.01)牛乳腺上皮细胞 (BMECs) 和甘油三酯(TAGs)产生相反,TGFA促进(P < 0.01)不饱和脂肪酸和TAG生成。拯救实验进一步表明了miR-140/TGFA调控机制。综上所述,这些结果表明了miR-140/TGFA通路可以抑制(P < 0.01)奶牛乳腺上皮细胞中的乳脂代谢的进行,通过遗传手段改善牛奶品质。本研究的创新点主要表现为:目前,国内外的研究大部分集中于四个泌乳阶段的研究,而很少有人专注于两个泌乳阶段的研究,而且大家的研究方向都倾向于泌乳初期,盛期和中期的研究,很少有人把注意力放在泌乳后期的两个阶段,以至于奶牛泌乳后期乳脂代谢的大数据都很少,不能使得牧场工作人员对奶牛饲养工作有更全面的了解,而本研究集中于泌乳后期的两个阶段的研究,有效的帮助牧场工作人员对泌乳后期奶牛体内脂质代谢知识的了解,也弥补了国内外在此阶段研究缺失的遗憾。



Abstract  

Fat is an indispensable nutrient and basic metabolite for sustaining life, and milk is particularly rich in fatty acids, including a variety of saturated and unsaturated fatty acids.  MicroRNA (miRNA) and mRNA play an important role in the regulation of milk fat metabolism in mammary gland tissue.  It has been shown that lipid metabolism has a complex transcriptional regulation, but the mechanism by which milk fat synthesis is regulated through miRNA–mRNA interactions is poorly understood.  In this study, we performed transcriptome sequencing with bovine mammary gland tissue in the late lactation (270 and 315 days after parturition) to identify the key gene that regulating milk fat metabolism.  A total of 1 207 differentially coexpressed genes were selected, 828 upregulated genes and 379 downregulated genes were identified.  The transforming growth factor alpha (TGFA) gene was selected as the target gene, and luciferase reporter assay, Western blotting and qRT-PCR were used for further study.  The results demonstrated that miR-140 was an upstream regulator of TGFA, and miR-140 could inhibit (P<0.01) unsaturated fatty acid and triglyceride (TAGs) production in bovine mammary epithelial cells (BMECs).  In contrast, TGFA promoted (P<0.01) unsaturated fatty acid and TAG production.  Rescue experiments further indicated the miR-140/TGFA regulatory mechanism.  Taken together, these results suggest that the miR-140/TGFA pathway can inhibit (P<0.01) milk fat metabolism and improve milk quality by genetic means.

Keywords:  bovine mammary epithelial cells        TGFA       transcriptome sequencing       miR-140       fatty acid metabolism  
Received: 28 June 2021   Accepted: 07 May 2022
Fund: 

This research was supported by the National Natural Science Foundation of China (31802035, 31872324 and 31601915).

About author:  CHU Shuang-feng, Tel: +86-15861327537, E-mail: DX120200142@yzu.edu.cn; Correspondence YANG Zhang-ping, Tel: +86-514-87979307, E-mail: yzp@yzu.edu.cn; CHEN Zhi, E-mail: zhichen@yzu.edu.cn. *These authors contributed equally to this study.

Cite this article: 

CHU Shuang-feng, ZHAO Tian-qi, Abdelaziz Adam Idriss ARBAB, YANG Yi, CHEN Zhi, YANG Zhang-ping. 2022. MiR-140 downregulates fatty acid synthesis by targeting transforming growth factor alpha (TGFA) in bovine mammary epithelial cells. Journal of Integrative Agriculture, 21(10): 3004-3016.

Tunick M H, Van Hekken D L. 2015. Dairy Products and Health: Recent Insights. Journal of Agricultural and Food Chemistry, 63, 9381-9388.

Tsiafoulis C G, Papaemmanouil C, Alivertis D, Tzamaloukas O, Miltiadou D, Balayssac S, Malet-Martino M, Gerothanassis IP. 2019. NMR-Based Μetabolomics of the Lipid Fraction of Organic and Conventional Bovine Milk. Molecules, 24, 1067-1085.

Cabezas-Garcia E H, Gordon A W, Mulligan F J, Ferris C P. 2021. Revisiting the Relationships between Fat-to-Protein Ratio in Milk and Energy Balance in Dairy Cows of Different Parities, and at Different Stages of Lactation. Animals (Basel), 11, 3256-3287.

Kenéz Á, Kulcsár A, Kluge F, Benbelkacem I, Hansen K, Locher L, Meyer U, Rehage J, Dänicke S, Huber K. 2015. Changes of Adipose Tissue Morphology and Composition during Late Pregnancy and Early Lactation in Dairy Cows. PLoS One, 10, 0127208 -0127219.

Li S, Wang Q, Lin X, Jin X, Liu L, Wang C, Chen Q, Liu J, Liu H. 2017. The Use of "Omics" in Lactation Research in Dairy Cows. International Journal of Molecular Sciences, 18, 983-1000.

McCabe C, Suarez-Trujillo A, Casey T, Boerman J. 2021. Relative Late Gestational Muscle and Adipose Thickness Reflect the Amount of Mobilization of These Tissues in Periparturient Dairy Cattle. Animals (Basel), 11, 2157-2172.

Eder J M, Gorden P J, Lippolis J D, Reinhardt T A, Sacco R E. 2020. Lactation stage impacts the glycolytic function of bovine CD4+ T cells during ex vivo activation. Scientific Reports, 10, 4045-4059.  

Bovenhuis H, Visker M H P W, Lundén, A. 2013. Selection for milk fat and milk protein composition[J]. Advances in Animal Biosciences, 4, 612-617.

Burdge G C, Tricon S, Morgan R, Kliem K E, Childs C, Jones E, Russell J J, Grimble R F, Williams C M, Yaqoob P, Calder P C. 2005. Incorporation of cis-9, trans-11 conjugated linoleic acid and vaccenic acid (trans-11 18: 1) into plasma and leucocyte lipids in healthy men consuming dairy products naturally enriched in these fatty acids. British Journal of Nutrition, 94, 237-243.

Yonezawa T, Yonekura S, Kobayashi Y, Hagino A, Katoh K, Obara Y. 2004. Effects of long-chain fatty acids on cytosolic triacylglycerol accumulation and lipid droplet formation in primary cultured bovine mammary epithelial cells. Journal of Dairy Science, 87, 2527-2534.

Divoux A, Xie H, Li J L, Karastergiou K, Perera R J, Chang R J, Fried S K, Smith S R. 2017. MicroRNA-196 Regulates HOX Gene Expression in Human Gluteal Adipose Tissue. Obesity (Silver Spring), 25, 1375-1383.

Rodriguez A, Griffiths-Jones S, Ashurst J L, Bradley A. 2004. Identification of mammalian microRNA host genes and transcription units. Genome Research, 14, 1902-1910.

Huang W, Li M D. 2009. Nicotine modulates expression of miR-140*, which targets the 3'-untranslated region of dynamin 1 gene (Dnm1). International Journal of Neuropsychopharmacology, 12, 537-546.

Takata A, Otsuka M, Kojima K, Yoshikawa T, Kishikawa T, Yoshida H, Koike K. 2011. MicroRNA-22 and microRNA-140 suppress NF-κB activity by regulating the expression of NF-κB coactivators. Biochemical and Biophysical Research Communications, 411, 826-831.

Liao W, Liang P, Liu B, Xu Z, Zhang L, Feng M, Tang Y, Xu A. 2020. MicroRNA-140-5p Mediates Renal Fibrosis Through TGF-β1/Smad Signaling Pathway by Directly Targeting TGFBR1. Frontiers in Physiology, 11, 1093-1103.

Zhang X, Chang A, Li Y, Gao Y, Wang H, Ma Z, Li X, Wang B. 2015. miR-140-5p regulates adipocyte differentiation by targeting transforming growth factor-β signaling. Scientific Reports, 5, 18118-18130.

Crandall D L, Cervoni P, Kral J G. 1993. Site specific variations in rat adipose tissue transforming growth factor-α: Effects of age. Drug Development Research, 29, 167-169.

Singh B, Coffey RJ. 2014. From wavy hair to naked proteins: the role of transforming growth factor alpha in health and disease. Seminars in Cell & Developmental Biology, 28, 12-21.

Piantoni P, Wang P, Drackley J K, Hurley W L, Loor J J. 2010. Expression of metabolic, tissue remodeling, oxidative stress, and inflammatory pathways in mammary tissue during involution in lactating dairy cows. Bioinformatics and Biology Insights, 4, 85-97.

Li C, Cai W, Zhou C, Yin H, Zhang Z, Loor J J, Sun D, Zhang Q, Liu J, Zhang S. 2016. RNA-Seq reveals 10 novel promising candidate genes affecting milk protein concentration in the Chinese Holstein population. Scientific Reports, 6, 26813-26824.

Chen Z, Chu S, Liang Y, Xu T, Sun Y, Li M, Zhang H, Wang X, Mao Y, Loor J J, Wu Y, Yang Z. 2020. miR-497 regulates fatty acid synthesis via LATS2 in bovine mammary epithelial cells. Food & Function, 11, 8625-8636.

Chen Z, Chu S, Wang X, Sun Y, Xu T, Mao Y, Loor J J, Yang Z. 2019. MiR-16a Regulates Milk Fat Metabolism by Targeting Large Tumor Suppressor Kinase 1 (LATS1) in Bovine Mammary Epithelial Cells. Journal of Agricultural and Food Chemistry, 67, 11167-11178.

Politz M, Lennen R, Pfleger B. 2013. Quantification of Bacterial Fatty Acids by Extraction and Methylation. Bio-Protocol, 3, 1-10.

Chen Z, Chu S, Wang X, Fan Y, Zhan T, Arbab A AI, Li M, Zhang H, Mao Y, Loor J J, Yang Z. 2019. MicroRNA-106b Regulates Milk Fat Metabolism via ATP Binding Cassette Subfamily A Member 1 (ABCA1) in Bovine Mammary Epithelial Cells. Journal of Agricultural and Food Chemistry, 67, 3981-3990. 

Bhat S A, Ahmad S M, Ibeagha-Awemu E M, Bhat B A, Dar M A, Mumtaz P T, Shah R A, Ganai N A. Comparative transcriptome analysis of mammary epithelial cells at different stages of lactation reveals wide differences in gene expression and pathways regulating milk synthesis between Jersey and Kashmiri cattle. PLoS One, 14, 0211773-0211800.

Xuan R, Chao T, Wang A, Zhang F, Sun P, Liu S, Guo M, Wang G, Ji Z, Wang J, Cheng M. 2020. Characterization of microRNA profiles in the mammary gland tissue of dairy goats at the late lactation, dry period and late gestation stages. PLoS One, 15, 0234427-0234452.

Shen B, Zhang L, Lian C, Lu C, Zhang Y, Pan Q, Yang R, Zhao Z. 2016. Deep Sequencing and Screening of Differentially Expressed MicroRNAs Related to Milk Fat Metabolism in Bovine Primary Mammary Epithelial Cells. International Journal of Molecular Sciences, 17, 200-216.

Iliopoulos D, Drosatos K, Hiyama Y, Goldberg I J, Zannis V I. 2010. MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. Journal of Lipid Research, 51, 1513-23.

Bauman D E, Griinari J M. 2003. Nutritional regulation of milk fat synthesis. Annual Review of Nutrition, 23, 203-227.

Bionaz M, Loor J J. 2008. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics, 9, 366-387.

Evans R M, Barish G D, Wang Y X. 2004. PPARs and the complex journey to obesity. Nature Medicine, 10, 355-61.

Dubois V, Eeckhoute J, Lefebvre P, Staels B. 2017. Distinct but complementary contributions of PPAR isotypes to energy homeostasis. The Journal of Clinical Investigation, 127, 1202-1214.

Abumrad N A, Goldberg I J. 2016. CD36 actions in the heart: Lipids, calcium, inflammation, repair and more? Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1861, 1442-1449.

Nahlé Z, Hsieh M, Pietka T, Coburn C T, Grimaldi P A, Zhang M Q, Das D, Abumrad N A. 2008. CD36-dependent regulation of muscle FoxO1 and PDK4 in the PPAR delta/beta-mediated adaptation to metabolic stress. The Journal of Biological Chemistry, 283, 14317-14326.

Samovski D, Sun J, Pietka T, Gross R W, Eckel R H, Su X, Stahl P D, Abumrad N A. 2015. Regulation of AMPK activation by CD36 links fatty acid uptake to β-oxidation. Diabetes, 64, 353-359.

Vargas-Bello-Pérez E, Zhao W, Bionaz M, Luo J, Loor J J. 2019. Nutrigenomic Effect of Saturated and Unsaturated Long Chain Fatty Acids on Lipid-Related Genes in Goat Mammary Epithelial Cells: What Is the Role of PPARγ? Veterinary Sciences, 6, 54-73.

Zhou L, Song Z, Hu J, Liu L, Hou Y, Zhang X, Yang X, Chen K. 2021. ACSS3 represses prostate cancer progression through downregulating lipid droplet-associated protein PLIN3. Theranostics, 11, 841-860.

Littlejohn M D, Tiplady K, Lopdell T, Law T A, Scott A, Harland C, Sherlock R, Henty K, Obolonkin V, Lehnert K, Macgibbon A, Spelman R J, Davis S R, Snell R G. 2014. Expression variants of the lipogenic AGPAT6 gene affect diverse milk composition phenotypes in Bos taurus. PLoS One, 9, 85757-85769. 

Shi H, Luo J, Zhu J, Li J, Sun Y, Lin X, Zhang L, Yao D, Shi H. 2013. PPAR γ Regulates Genes Involved in Triacylglycerol Synthesis and Secretion in Mammary Gland Epithelial Cells of Dairy Goats. PPAR Research, 2013, 310948-310958.

Guillou H, Zadravec D, Martin P G, Jacobsson A. 2010. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Progress in Lipid Research, 49, 186-199.

Leroux C, Bernard L, Faulconnier Y, Rouel J, de la Foye A, Domagalski J, Chilliard Y. 2016. Bovine Mammary Nutrigenomics and Changes in the Milk Composition due to Rapeseed or Sunflower Oil Supplementation of High-Forage or High-Concentrate Diets. Journal of Nutrigenetics and Nutrigenomics, 9, 65-82.

Shi H B, Wu M, Zhu J J, Zhang C H, Yao D W, Luo J, Loor J J. 2017. Fatty acid elongase 6 plays a role in the synthesis of long-chain fatty acids in goat mammary epithelial cells. Journal of Dairy Science, 100, 4987-4995. 

[1] SHAN Yan-ju, JI Gai-ge, ZHANG Ming, LIU Yi-fan, TU Yun-jie, JU Xiao-jun, SHU Jing-ting, ZOU Jian-min. Use of transcriptome sequencing to explore the effect of CSRP3 on chicken myoblasts[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1159-1171.
[2] CHEN Zhi, LIANG Yu-sheng, ZONG Wei-cheng, GUO Jia-he, ZHOU Jing-peng, MAO Yong-jiang, JI De-jun, JIAO Pei-xin, Juan J LOOR, YANG Zhang-ping. NH4Cl promotes apoptosis and inflammation in bovine mammary epithelial cells via the circ02771/miR-194b/TGIF1 axis[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1161-1176.
[3] ZHU Ying-chun, YUAN Gao-peng, JIA Sheng-feng, AN Guo-lin, LI Wei-hua, SUN De-xi, LIU Jun-pu. Transcriptomic profiling of watermelon (Citrullus lanatus) provides insights into male flowers development[J]. >Journal of Integrative Agriculture, 2022, 21(2): 407-421.
[4] HAN Jiao, YU Guo-hong, WANG Li, LI Wei, HE Rui, WANG Bing, HUANG Sheng-cai, CHENG Xian-guo. A mitochondrial phosphate transporter, McPht gene, confers an acclimation regulation of the transgenic rice to phosphorus deficiency[J]. >Journal of Integrative Agriculture, 2018, 17(09): 1932-1945.
[5] SONG Yang, LIU Hong-di, ZHOU Qiang, ZHANG Hong-jun, ZHANG Zhi-dong, LI Ya-dong, WANG Hai-bo, LIU Feng-zhi. High-throughput sequencing of highbush blueberry transcriptome and analysis of basic helix-loop-helix transcription factors[J]. >Journal of Integrative Agriculture, 2017, 16(03): 591-604.
No Suggested Reading articles found!