Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (5): 1024-1034    DOI: 10.1016/S2095-3119(18)62109-4
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
The autophagy gene ATG8 affects morphogenesis and oxidative stress tolerance in Sporisorium scitamineum
ZHANG Bin1, CUI Guo-bing1, CHANG Chang-qing2, WANG Yi-xu2, ZHANG Hao-yang1, CHEN Bao-shan3, DENG Yi-zhen1, 2, JIANG Zi-de1 
1 Department of Plant Pathology/State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, P.R.China
2 Integrative Microbiology Research Centre/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, P.R.China
3 College of Life Science and Technology/State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  The basidiomycetous fungus Sporisorium scitamineum causes sugarcane smut that leads to severe economic losses in the major sugarcane growing areas in China, India and Brazil, etc.  Autophagy is a conserved pathway in eukaryotes for bulk degradation and cellular recycling, and was shown to be important for fungal cell growth, development, and pathogenicity.  However, physiological function of autophagy has not been studied in S. scitamineum.  In this study, we identified a conserved Atg8 protein, named as SsAtg8 and characterized its function. Our results showed that autophagy was blocked in the ssatg8Δ mutant, in nitrogen starvation.  The ssatg8Δ mutant formed pseudohypha frequently and was hypersensitive to oxidative stress.  However, mating or filamenation was unaffected in the ssatg8Δ mutant in vitro.  Overall we demonstrate that autophagy is dispensable for S. scitamineum mating/filamentation, while critical for oxidative stress tolerance and proper morphology in sporidial stage.   
Keywords:  Atg8        autophagy        fungus        Sporisorium scitamineum        morphogenesis        oxidative stress tolerance  
Received: 25 July 2018   Accepted:
Fund: This research was supported by the National 973 Program of China (2015CB150600) and the Natural Science Foundation of Guangdong Province, China (2017A030310144).
Corresponding Authors:  Correspondence JIANG Zi-de, Tel: +86-20-38604779, E-mail: zdjiang@scau.edu.cn; DENG Yi-zhen, Tel: +86-20-38348651, E-mail: dengyz@scau.edu.cn   

Cite this article: 

ZHANG Bin, CUI Guo-bing, CHANG Chang-qing, WANG Yi-xu, ZHANG Hao-yang, CHEN Bao-shan, DENG Yi-zhen, JIANG Zi-de. 2019. The autophagy gene ATG8 affects morphogenesis and oxidative stress tolerance in Sporisorium scitamineum. Journal of Integrative Agriculture, 18(5): 1024-1034.

Apostol I, Heinstein P F, Low P S. 1989. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells: Role in defense and signal transduction. Plant Physiology, 90, 109–116.
Asakura M, Ninomiya S, Sugimoto M, Oku M, Yamashita S, Okuno T, Sakai Y, Takano Y. 2009. Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare. The Plant Cell, 21, 1291–1304.
Ashford T P, Porter K R. 1962. Cytoplasmic components in hepatic cell lysosomes. Journal of Cell Biology, 12, 198–202.
Chung K R, Shilts T, Li W, Timmer L W. 2002. Engineering a genetic transformation system for Colletotrichum acutatum, the causal fungus of lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiology Letters, 213, 33–39.
Deng Y Z, Ramos-Pamplona M, Naqvi N I. 2009. Autophagy-assisted glycogen catabolism regulates asexual differentiation in Magnaporthe oryzae. Autophagy, 5, 33–43.
Dufresne M, Bailey J A, Dron M, Langin T. 1998. clk1, a serine/threonine protein kinase-encoding gene, is involved in pathogenicity of Colletotrichum lindemuthianum on common bean. Molecular Plant-Microbe Interactions, 11, 99–108.
Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.
He M, Kershaw M J, Soanes D M, Xia Y, Talbot N J. 2012. Infection-associated nuclear degeneration in the rice blast fungus Magnaporthe oryzae requires non-selective macro-autophagy. PLoS ONE, 7, e33270.
Hu G, Hacham M, Waterman S R, Panepinto J, Shin S, Liu X, Gibbons J, Valyi-Nagy T, Obara K, Jaffe H A, Ohsumi Y, Williamson P R. 2008. PI3K signaling of autophagy is required for starvation tolerance and virulence of Cryptococcus neoformans. Journal of Clinical Investigation, 118, 1186–1197.
Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y. 2000. A ubiquitin-like system mediates protein lipidation. Nature, 408, 488–492.
Jones D T, Taylor W R, Thornton J M. 1992. The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences, 8, 275–282.
Josefsen L, Droce A, Sondergaard T E, Sorensen J L, Bormann J, Schafer W, Giese H, Olsson S. 2012. Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium Graminearum. Autophagy, 8, 326–337.
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO Journal, 19, 5720–5728.
Klionsky D J. 2007. Autophagy: From phenomenology to molecular understanding in less than a decade. Nature Reviews Molecular Cell Biology, 8, 931–937.
Klionsky D J, Cregg J M, Dunn Jr W A, Emr S D, Sakai Y, Sandoval I V, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y. 2003. A unified nomenclature for yeast autophagy-related genes. Developmental Cell, 5, 539–545.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.
Levine B, Klionsky D J. 2004. Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Developmental Cell, 6, 463–477.
Mizushima N. 2018. A brief history of autophagy from cell biology to physiology and disease. Nature Cell Biology, 20, 521–527.
Nadal M, Gold S E. 2010. The autophagy genes ATG8
and ATG1 affect morphogenesis and pathogenicity in Ustilago maydis. Molecular Plant Pathology, 11, 463–478.
Navarro-Yepes J, Burns M, Anandhan A, Khalimonchuk O, del Razo L M, Quintanilla-Vega B, Pappa A, Panayiotidis M I, Franco R. 2014. Oxidative stress, redox signaling, and autophagy: Cell death versus survival. Antioxidants and Redox Signaling, 21, 66–85.
Nguyen L N, Bormann J, Le G T, Starkel C, Olsson S, Nosanchuk J D, Giese H, Schafer W. 2011. Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection. Fungal Genetics and Biology, 48, 217–224.
Palmer G E. 2008. Autophagy in Candida albicans. Methods in Enzymology, 451, 311–322.
Richie D L, Askew D S. 2008. Autophagy in the filamentous fungus Aspergillus fumigatus. Methods in Enzymology, 451, 241–250.
Roetzer A, Gratz N, Kovarik P, Schuller C. 2010. Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiology, 12, 199–216.
Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425, 552.
Scheel D. 1998. Resistance response physiology and signal transduction. Current Opinion in Plant Biology, 1, 305–310.
Sundar A R, Barnabas E L, Malathi P, Viswanathan R. 2012. A mini-review on smut disease of sugarcane caused by Sporisorium scitamineum. In: Botany. Chapter 5. InTech Publisher.
Tsukada M, Ohsumi Y. 1993. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Letters, 333, 169–174.
Veneault-Fourrey C, Barooah M, Egan M, Wakley G, Talbot N J. 2006. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science, 312, 580–583.
Yan M, Dai W, Cai E, Deng Y Z, Chang C, Jiang Z, Zhang L H. 2016. Transcriptome analysis of Sporisorium scitamineum reveals critical environmental signals for fungal sexual mating and filamentous growth. BMC Genomics, 17, 354.
Yang S L, Chung K R. 2012. The NADPH oxidase-mediated production of hydrogen peroxide (H2O2) and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus. Molecular Plant Pathology, 13, 900–914.
Yao Z, Delorme-Axford E, Backues S K, Klionsky D J. 2015. Atg41/Icy2 regulates autophagosome formation. Autophagy, 11, 2288–2299.
Yu J, Zhang Y, Cui H, Hu P, Yu X, Ye Z. 2015. An efficient genetic manipulation protocol for Ustilago esculenta. FEMS Microbiology Letters, 362, doi: 10.1093/femsle/fnv087
Yu Q, Jia C, Dong Y, Zhang B, Xiao C, Chen Y, Wang Y, Li X, Wang L, Zhang B, Li M. 2015. Candida albicans autophagy, no longer a bystander: Its role in tolerance to ER stress-related antifungal drugs. Fungal Genetics and Biology, 81, 238–249.
[1] LIU Na, LIAN Sen, ZHOU Shan-yue, WANG Cai-xia, REN Wei-chao, LI Bao-hua. Involvement of the autophagy-related gene BdATG8 in development and pathogenicity in Botryosphaeria dothidea[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2319-2328.
[2] GUO Xiao-yue, LIU Ning, LIU Bing-hui, ZHOU Li-hong, CAO Zhi-yan, HAN Jian-min, DONG Jin-gao . Melanin, DNA replication, and autophagy affect appressorium development in Setosphaeria turcica by regulating glycerol accumulation and metabolism[J]. >Journal of Integrative Agriculture, 2022, 21(3): 762-773.
No Suggested Reading articles found!