Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (2): 450-459    DOI: 10.1016/S2095-3119(20)63294-4
Section 2: The main factors determining yield and efficiency gaps at different levels Advanced Online Publication | Current Issue | Archive | Adv Search |
The priority of management factors for reducing the yield gap of summer maize in the north of Huang-Huai-Hai region, China
LIU Yue-e, LI Yu-xin, LÜ Tian-fang, XING Jin-feng, XU Tian-jun, CAI Wan-tao, ZHANG Yong, ZHAO Jiu-ran, WANG Rong-huan
Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Understanding yield potential, yield gap and the priority of management factors for reducing the yield gap in current intensive maize production is essential for meeting future food demand with the limited resources. In this study, we conducted field experiments using different planting modes, which were basic productivity (CK), farmer practice (FP), high yield and high efficiency (HH), and super high yield (SH), to estimate the yield gap. Different factorial experiments (fertilizer, planting density, hybrids, and irrigation) were also conducted to evaluate the priority of individual management factors for reducing the yield gap between the different planting modes. We found significant differences between the maize yields of different planting modes. The treatments of CK, FP, HH, and SH achieved 54.26, 58.76, 65.77, and 71.99% of the yield potential, respectively. The yield gaps between three pairs: CK and FP, FP and HH, and HH and SH, were 0.76, 1.23 and 0.85 t ha–1, respectively. By further analyzing the priority of management factors for reducing the yield gap between FP and HH, as well as HH and SH, we found that the priorities of the management factors (contribution rates) were plant density (13.29%)>fertilizer (11.95%)>hybrids (8.19%)>irrigation (4%) for FP to HH, and hybrids (8.94%)>plant density (4.84%)>fertilizer (1.91%) for HH to SH. Therefore, increasing the planting density of FP was the key factor for decreasing the yield gap between FP and HH, while choosing hybrids with density and lodging tolerance was the key factor for decreasing the yield gap between HH and SH.
Keywords:  maize       yield gap       management factors priority       hybrid       plant density       fertilizer       irrigation  
Received: 02 April 2020   Accepted: 28 January 2021
Fund: We thank the National Key Research and Development Program of China (2016YFD0300106) and the National Natural Science Foundation of China (31601247) for their financial support.
Corresponding Authors:  ZHAO Jiu-ran, Tel/Fax: +86-10-51503936, E-mail: maizezhao@126.com; WANG Rong-huan, Tel/Fax: +86-10-51503703, E-mail: ronghuanwang@126.com    
About author:  LIU Yue-e, E-mail: lye0520@163.com

Cite this article: 

LIU Yue-e, LI Yu-xin, LÜ Tian-fang, XING Jin-feng, XU Tian-jun, CAI Wan-tao, ZHANG Yong, ZHAO Jiu-ran, WANG Rong-huan . 2021. The priority of management factors for reducing the yield gap of summer maize in the north of Huang-Huai-Hai region, China. Journal of Integrative Agriculture, 20(2): 450-459.

Abdulai S, Nkegbe P K, Donkoh S A. 2013. Technical efficiency of maize production in northern Ghana. African Journal of Agricultural Research, 8, 5251–5259. Addai K N, Owusu V. 2014. Technical efficiency of maize farmers across various agroecological zones of Ghana. Journal of Agriculture & Rural Development, 3, 149–172. Cao H Z, Li Y N, Chen G F, Chen D D, Qu H R, Ma W Q. 2019. Identifying the limiting factors driving the winter wheat yield gap on smallholder farms by agronomic diagnosis in North China Plain. Journal of Integrative Agriculture, 18, 2–14. Cassman K G. 1999. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences of the United States of America, 96, 5952–5959. Chen X P, Cui Z, Gao Q, Zhang Q, Guo S, Ren J, Ye Y, Zhu Y, Wang Z, Xue J, Huang J, Tang Q, Sun Y, Peng X, Fan M, Wang G, Wu L, An N, Wu L, Ma L. 2014. Producing more grain with lower environmental costs. Nature, 514, 486–489. Chen X P, Cui Z L, Vitousek P M, Cassman K G, Matson P A, Bai J, Meng Q, Hou P, Yue S, Römheld V, Zhang F. 2011. Integrated soil–crop system management for food security. Proceedings of the National Academy of Sciences of the United States of America, 108, 6399–6404. Cui Z, Zhang H, Chen X, Zhang C, Ma W, Huang C, Zhang W, Mi G, Miao Y, Li X, Gao Q, Yang J, Wang Z, Ye Y, Guo S, Lu J, Huang J, Lv S, Sun Y, Liu Y. 2018. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 555, 363–366. Dinnes D L, Karlen D L, Jaynes D B, Kaspar T C, Hatfield J L, Colvin T S, Cambardella C A. 2002. Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils. Agronomy Journal, 94, 153–171. Duvick D N. 1997. What is yield? In: Edmeades G O, Bänziger M, Mickelson H R, Peña-Valdivia C B, eds., Developing Drought- and Low N-Tolerant Maize. Proceedings of a Symposium, El Batan, Mexico. 25–29 Mar, 1996. CIMMYT, Mexico. pp. 332–335. Evans L T. 1993. Crop Evolution, Adaptation, and Yield. Cambridge University Press, Cambridge, U.K. Hammer G L, Dong Z, McLean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M. 2009. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. Corn Belt? Crop Science, 49, 299–312. Hou P, Cui Z L, Bu L D, Yang H S, Zhang F S, Li S K. 2014. Evaluation of a modifed Hybrid-Maize model incorporating a newly developed module of plastic film mulching. Crop Science, 54, 2796–2804. van Ittersum M K, Cassman K G, Grassini P, Wolf J, Tittonell P, Hochman Z. 2013. Yield gap analysis with local to global relevance - A review. Field Crops Research, 143, 4–17. Li S K, Wang C T. 2010. Potential and Ways to High Yield in Maize. Science Press, Beijing. (in Chinese) Liu B H, Chen X P, Cui Z L, Meng Q F, Zhao M. 2015. Research advance in yield potential and yield gap of three major cereal crops. Chinese Journal of Eco-agriculture, 23, 525–534. Liu B H, Chen X P, Meng Q F, Yang H S, Wart J V. 2017. Estimating maize yield potential and yield gap with agro-climatic zones in China - Distinguish irrigated and rainfed conditions. Agricultural and Forest Meteorology, 239, 108–117. Liu B H, Wu L, Chen X P, Meng Q F. 2016. Quantifying the potential yield and yield gap of Chinese wheat production. Agronomy Journal, 108, 1890. Liu G, Hou P, Xie R, Ming B, Wang K, Xu W, Liu W, Yang Y, Li S. 2017. Canopy characteristics of high-yield maize with yield potential of 22.5 Mg ha−1. Field Crops Research, 213, 221–230. Liu Z, Yang X, Hubbard K G, Lin X. 2012. Maize potential yields and yield gaps in the changing climate of Northeast China. Global Change Biology, 18, 3441–3454. Liu Z J, Yang X G, Lin X M, Hubbard K G, Lv S, Wang J. 2016a. Maize yield gaps caused by non-controllable, agronomic, and socioeconomic factors in a changing climate of Northeast China. Science of the Total Environment, 541, 756–764. Liu Z J, Yang X G, Lin X M, Hubbard K G, Lv S, Wang J. 2016b. Narrowing the agronomic yield gaps of maize by improved soil, cultivar, and agricultural management practices in different climate zones of Northeast China. Earth Interactions, 20, 1–18. Lobell D B, Cassman K G, Field C B. 2009. Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environment and Resources, 34, 179–204. van Loon M P, Adjei-Nsiah S, Descheemaeker K, Akotsen-Mensah C, van Dijk M, Morley T, van Ittersum M K, Reidsma P. 2019. Can yield variability be explained? Integrated assessment of maize yield gaps across smallholders in Ghana. Field Crops Research, 236, 132–144. Meng Q, Hou P, Wu L, Chen X, Cui Z, Zhang F. 2013. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Research, 143, 91–97. Mueller N D, Gerber J S, Johnston M, Ray D K, Ramankutty N, Foley J A. 2012. Closing yield gaps through nutrient and water management. Nature, 490, 254–257. Ruffo M L, Gentry L F, Henninger A S, Seebauer J R, Below F K. 2015. Evaluating management factor contributions to reduce corn yield gaps. Agronomy Journal, 107, 495–505. Schils R, Olesen J E, Kersebaum K C, Rijk B. 2018. Cereal yield gaps across Europe. European Journal of Agronomy, 101, 109–120. Shi Y S, Li Y, Wang T Y, Song Y C. 2006. Descriptors and Data Standard for Maize (Zea mays L.). China Agriculture Press, Beijing. pp. 3–51. (in Chinese) Sileshi G, Akinnifesi F K, Debusho L K, Beedy T, Ajayi O C, Mong’omba S. 2010. Variation in maize yield gaps with plant nutrient inputs, soil type and climate across sub-Saharan Africa. Field Crops Research, 116, 1–13. Silva J V, Laborte A G, van Ittersum M K. 2016. Explaining rice yields and yield gaps in Central Luzon, Philippines: An application of stochastic frontier analysis and crop modelling. European Journal of Agronomy, 82, 223–241. Silva J V, Reidsma P, Lourdes Velasco M, Laborte A G, van Ittersum M K. 2018. Intensification of rice-based farming systems in Central Luzon, Philippines: Constraints at field, farm and regional levels. Agricultural System, 165, 55–70. Tollenaar M, Lee E A. 2002. Yield potential, yield stability, and stress tolerance in maize. Field Crops Research, 75, 161–169. VanWart J, Kersebaum K C, Peng S, Milner M, Cassman K G. 2013. Estimating crop yield potential at regional to national scales. Field Crops Research, 143, 34–43. Wang M, Wang L C, Cui Z L, Chen X P, Xie J G, Hou Y P. 2017. Closing the yield gap and achieving high N use efficiency and low apparent N losses. Field Crops Research, 209, 39–46. Xu W, Liu C, Wang K, Xie R, Ming B, Wang Y, Zhang G, Liu G, Zhao R, Fan P, Li S, Hou P. 2017. Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Field Crops Research, 212, 126–134. Xue J, Gou L, Shi Z G, Zhao Y S, Zhang W F. 2017a. Effect of leaf removal on photosynthetically active radiation distribution in maize canopy and stalk strength. Journal of Integrative Agriculture, 16, 85–96. Xue J, Ling G, Zhao Y, Yao M, Yao H, Tian J, Zhang W. 2016. Effects of light intensity within the canopy on maize lodging. Field Crops Research, 188, 133–141. Xue J, Xie R Z, Zhang W F, Wang K R, Hou P, Ming B, Gou L, Li S K. 2017b. Research progress on reduced lodging of high-yield and -density maize. Journal of Integrative Agriculture, 12, 2717–2725. Yang H S, Dobermann A, Cassman K G, Walters D T. 2006. Features, applications, and limitations of the Hybrid-Maize simulation model. Agronomy Journal, 98, 737–748. Zhang F S, Cui Z L, Fan M S, Zhang W F, Chen X P, Jiang R F. 2011. Integrated soil-crop system management: Reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China. Journal of Environmental Quality, 40, 1051–1057. Zhang J, Jiang X, Xue Y, Li Z, Yu B, Xu L, Lu X, Miao Q, Liu Z, Cui Z. 2019. Closing yield gaps through soil improvement for maize production in coastal saline soil. Agronomy, 9, 573.
[1] GAO Xing, LI Yong-xiang, YANG Ming-tao, LI Chun-hui, SONG Yan-chun, WANG Tian-yu, LI Yu, SHI Yun-su. Changes in grain-filling characteristics of single-cross maize hybrids released in China from 1964 to 2014[J]. >Journal of Integrative Agriculture, 2023, 22(3): 691-700.
[2] ZHANG Yu-hong, LI Zhi-xin, DU Ya-jie, LI Shi-fang, ZHANG Zhi-xiang. A universal probe for simultaneous detection of six pospiviroids and natural infection of potato spindle tuber viroid (PSTVd) in tomato in China[J]. >Journal of Integrative Agriculture, 2023, 22(3): 790-798.
[3] FENG Xu-yu, PU Jing-xuan, LIU Hai-jun, WANG Dan, LIU Yu-hang, QIAO Shu-ting, LEI Tao, LIU Rong-hao. Effect of fertigation frequency on soil nitrogen distribution and tomato yield under alternate partial root-zone drip irrigation[J]. >Journal of Integrative Agriculture, 2023, 22(3): 897-907.
[4] Irshad AHMAD, Maksat BATYRBEK, Khushnuma IKRAM, Shakeel AHMAD, Muhammad KAMRAN, Misbah, Raham Sher KHAN, HOU Fu-jiang, HAN Qing-fang.

Nitrogen management improves lodging resistance and production in maize (Zea mays L.) at a high plant density [J]. >Journal of Integrative Agriculture, 2023, 22(2): 417-433.

[5] XU Xiao-hui, LI Wen-lan, YANG Shu-ke, ZHU Xiang-zhen, SUN Hong-wei, LI Fan, LU Xing-bo, CUI Jin-jie. Identification, evolution, expression and protein interaction analysis of genes encoding B-box zinc-finger proteins in maize[J]. >Journal of Integrative Agriculture, 2023, 22(2): 371-388.
[6] WANG Cui, SUN Jin-jing, YANG Xue-yong, WAN Li, ZHANG Zhong-hua, ZHANG Hui-min. An optimized protocol using Steedman’s wax for high-sensitivity RNA in situ hybridization in shoot apical meristems and flower buds of cucumber[J]. >Journal of Integrative Agriculture, 2023, 22(2): 464-470.
[7] CHEN Zhe, REN Wei, YI Xia, LI Qiang, CAI Hong-guang, Farhan ALI, YUAN Li-xing, MI Guo-hua, PAN Qing-chun, CHEN Fan-jun. Local nitrogen application increases maize post-silking nitrogen uptake of responsive genotypes via enhanced deep root growth[J]. >Journal of Integrative Agriculture, 2023, 22(1): 235-250.
[8] ZHOU Qun, YUAN Rui, ZHANG Wei-yang, GU Jun-fei, LIU Li-jun, ZHANG Hao, WANG Zhi-qin, YANG Jian-chang. Grain yield, nitrogen use efficiency and physiological performance of indica/japonica hybrid rice in response to various nitrogen rates[J]. >Journal of Integrative Agriculture, 2023, 22(1): 63-79.
[9] LI Teng, ZHANG Xue-peng, LIU Qing, LIU Jin, CHEN Yuan-quan, SUI Peng. Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2465-2476.
[10] GAO Ri-xin, HU Ming-jian, ZHAO Hai-ming, LAI Jin-sheng, SONG Wei-bin.

Genetic dissection of ear-related traits using immortalized F2 population in maize [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2492-2507.

[11] SANG Zhi-qin, ZHANG Zhan-qin, YANG Yu-xin, LI Zhi-wei, LIU Xiao-gang, XU Yunbi, LI Wei-hua. Heterosis and heterotic patterns of maize germplasm revealed by a multiple-hybrid population under well-watered and drought-stressed conditions[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2477-2491.
[12] HAN Yu-ling, GUO Dong, MA Wei, GE Jun-zhu, LI Xiang-ling, Ali Noor MEHMOOD, ZHAO Ming, ZHOU Bao-yuan. Strip deep rotary tillage combined with controlled-release urea improves the grain yield and nitrogen use efficiency of maize in the North China Plain[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2559-2576.
[13] MA Da-ling, XIE Rui-zhi, YU Xiao-fang, LI Shao-kun, GAO Ju-lin. Historical trends in maize morphology from the 1950s to the 2010s in China[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2159-2167.
[14] HUI Jing, LIU Zhi, DUAN Feng-ying, ZHAO Yang, LI Xue-lian, AN Xia, WU Xiang-yu, YUAN Li-xing. Ammonium-dependent regulation of ammonium transporter ZmAMT1s expression conferred by glutamine levels in roots of maize[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2413-2421.
[15] TIAN Xue-liang, LIU Jia-jia, LIU Quan-cheng, XIA Xin-yao, PENG Yong, Alejandra I. HUERTA, YAN Jian-bing, LI Hui, LIU Wen-de. The effects of soil properties, cropping systems and geographic location on soil prokaryotic communities in four maize production regions across China [J]. >Journal of Integrative Agriculture, 2022, 21(7): 2145-2157.
No Suggested Reading articles found!