Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (2): 450-459    DOI: 10.1016/S2095-3119(20)63294-4
Section 2: The main factors determining yield and efficiency gaps at different levels Advanced Online Publication | Current Issue | Archive | Adv Search |
The priority of management factors for reducing the yield gap of summer maize in the north of Huang-Huai-Hai region, China
LIU Yue-e, LI Yu-xin, LÜ Tian-fang, XING Jin-feng, XU Tian-jun, CAI Wan-tao, ZHANG Yong, ZHAO Jiu-ran, WANG Rong-huan
Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Understanding yield potential, yield gap and the priority of management factors for reducing the yield gap in current intensive maize production is essential for meeting future food demand with the limited resources. In this study, we conducted field experiments using different planting modes, which were basic productivity (CK), farmer practice (FP), high yield and high efficiency (HH), and super high yield (SH), to estimate the yield gap. Different factorial experiments (fertilizer, planting density, hybrids, and irrigation) were also conducted to evaluate the priority of individual management factors for reducing the yield gap between the different planting modes. We found significant differences between the maize yields of different planting modes. The treatments of CK, FP, HH, and SH achieved 54.26, 58.76, 65.77, and 71.99% of the yield potential, respectively. The yield gaps between three pairs: CK and FP, FP and HH, and HH and SH, were 0.76, 1.23 and 0.85 t ha–1, respectively. By further analyzing the priority of management factors for reducing the yield gap between FP and HH, as well as HH and SH, we found that the priorities of the management factors (contribution rates) were plant density (13.29%)>fertilizer (11.95%)>hybrids (8.19%)>irrigation (4%) for FP to HH, and hybrids (8.94%)>plant density (4.84%)>fertilizer (1.91%) for HH to SH. Therefore, increasing the planting density of FP was the key factor for decreasing the yield gap between FP and HH, while choosing hybrids with density and lodging tolerance was the key factor for decreasing the yield gap between HH and SH.
Keywords:  maize       yield gap       management factors priority       hybrid       plant density       fertilizer       irrigation  
Received: 02 April 2020   Accepted:
Fund: We thank the National Key Research and Development Program of China (2016YFD0300106) and the National Natural Science Foundation of China (31601247) for their financial support.
Corresponding Authors:  ZHAO Jiu-ran, Tel/Fax: +86-10-51503936, E-mail:; WANG Rong-huan, Tel/Fax: +86-10-51503703, E-mail:    
About author:  LIU Yue-e, E-mail:

Cite this article: 

LIU Yue-e, LI Yu-xin, LÜ Tian-fang, XING Jin-feng, XU Tian-jun, CAI Wan-tao, ZHANG Yong, ZHAO Jiu-ran, WANG Rong-huan . 2021. The priority of management factors for reducing the yield gap of summer maize in the north of Huang-Huai-Hai region, China. Journal of Integrative Agriculture, 20(2): 450-459.

Abdulai S, Nkegbe P K, Donkoh S A. 2013. Technical efficiency of maize production in northern Ghana. African Journal of Agricultural Research, 8, 5251–5259. Addai K N, Owusu V. 2014. Technical efficiency of maize farmers across various agroecological zones of Ghana. Journal of Agriculture & Rural Development, 3, 149–172. Cao H Z, Li Y N, Chen G F, Chen D D, Qu H R, Ma W Q. 2019. Identifying the limiting factors driving the winter wheat yield gap on smallholder farms by agronomic diagnosis in North China Plain. Journal of Integrative Agriculture, 18, 2–14. Cassman K G. 1999. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences of the United States of America, 96, 5952–5959. Chen X P, Cui Z, Gao Q, Zhang Q, Guo S, Ren J, Ye Y, Zhu Y, Wang Z, Xue J, Huang J, Tang Q, Sun Y, Peng X, Fan M, Wang G, Wu L, An N, Wu L, Ma L. 2014. Producing more grain with lower environmental costs. Nature, 514, 486–489. Chen X P, Cui Z L, Vitousek P M, Cassman K G, Matson P A, Bai J, Meng Q, Hou P, Yue S, Römheld V, Zhang F. 2011. Integrated soil–crop system management for food security. Proceedings of the National Academy of Sciences of the United States of America, 108, 6399–6404. Cui Z, Zhang H, Chen X, Zhang C, Ma W, Huang C, Zhang W, Mi G, Miao Y, Li X, Gao Q, Yang J, Wang Z, Ye Y, Guo S, Lu J, Huang J, Lv S, Sun Y, Liu Y. 2018. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 555, 363–366. Dinnes D L, Karlen D L, Jaynes D B, Kaspar T C, Hatfield J L, Colvin T S, Cambardella C A. 2002. Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils. Agronomy Journal, 94, 153–171. Duvick D N. 1997. What is yield? In: Edmeades G O, Bänziger M, Mickelson H R, Peña-Valdivia C B, eds., Developing Drought- and Low N-Tolerant Maize. Proceedings of a Symposium, El Batan, Mexico. 25–29 Mar, 1996. CIMMYT, Mexico. pp. 332–335. Evans L T. 1993. Crop Evolution, Adaptation, and Yield. Cambridge University Press, Cambridge, U.K. Hammer G L, Dong Z, McLean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M. 2009. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. Corn Belt? Crop Science, 49, 299–312. Hou P, Cui Z L, Bu L D, Yang H S, Zhang F S, Li S K. 2014. Evaluation of a modifed Hybrid-Maize model incorporating a newly developed module of plastic film mulching. Crop Science, 54, 2796–2804. van Ittersum M K, Cassman K G, Grassini P, Wolf J, Tittonell P, Hochman Z. 2013. Yield gap analysis with local to global relevance - A review. Field Crops Research, 143, 4–17. Li S K, Wang C T. 2010. Potential and Ways to High Yield in Maize. Science Press, Beijing. (in Chinese) Liu B H, Chen X P, Cui Z L, Meng Q F, Zhao M. 2015. Research advance in yield potential and yield gap of three major cereal crops. Chinese Journal of Eco-agriculture, 23, 525–534. Liu B H, Chen X P, Meng Q F, Yang H S, Wart J V. 2017. Estimating maize yield potential and yield gap with agro-climatic zones in China - Distinguish irrigated and rainfed conditions. Agricultural and Forest Meteorology, 239, 108–117. Liu B H, Wu L, Chen X P, Meng Q F. 2016. Quantifying the potential yield and yield gap of Chinese wheat production. Agronomy Journal, 108, 1890. Liu G, Hou P, Xie R, Ming B, Wang K, Xu W, Liu W, Yang Y, Li S. 2017. Canopy characteristics of high-yield maize with yield potential of 22.5 Mg ha−1. Field Crops Research, 213, 221–230. Liu Z, Yang X, Hubbard K G, Lin X. 2012. Maize potential yields and yield gaps in the changing climate of Northeast China. Global Change Biology, 18, 3441–3454. Liu Z J, Yang X G, Lin X M, Hubbard K G, Lv S, Wang J. 2016a. Maize yield gaps caused by non-controllable, agronomic, and socioeconomic factors in a changing climate of Northeast China. Science of the Total Environment, 541, 756–764. Liu Z J, Yang X G, Lin X M, Hubbard K G, Lv S, Wang J. 2016b. Narrowing the agronomic yield gaps of maize by improved soil, cultivar, and agricultural management practices in different climate zones of Northeast China. Earth Interactions, 20, 1–18. Lobell D B, Cassman K G, Field C B. 2009. Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environment and Resources, 34, 179–204. van Loon M P, Adjei-Nsiah S, Descheemaeker K, Akotsen-Mensah C, van Dijk M, Morley T, van Ittersum M K, Reidsma P. 2019. Can yield variability be explained? Integrated assessment of maize yield gaps across smallholders in Ghana. Field Crops Research, 236, 132–144. Meng Q, Hou P, Wu L, Chen X, Cui Z, Zhang F. 2013. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Research, 143, 91–97. Mueller N D, Gerber J S, Johnston M, Ray D K, Ramankutty N, Foley J A. 2012. Closing yield gaps through nutrient and water management. Nature, 490, 254–257. Ruffo M L, Gentry L F, Henninger A S, Seebauer J R, Below F K. 2015. Evaluating management factor contributions to reduce corn yield gaps. Agronomy Journal, 107, 495–505. Schils R, Olesen J E, Kersebaum K C, Rijk B. 2018. Cereal yield gaps across Europe. European Journal of Agronomy, 101, 109–120. Shi Y S, Li Y, Wang T Y, Song Y C. 2006. Descriptors and Data Standard for Maize (Zea mays L.). China Agriculture Press, Beijing. pp. 3–51. (in Chinese) Sileshi G, Akinnifesi F K, Debusho L K, Beedy T, Ajayi O C, Mong’omba S. 2010. Variation in maize yield gaps with plant nutrient inputs, soil type and climate across sub-Saharan Africa. Field Crops Research, 116, 1–13. Silva J V, Laborte A G, van Ittersum M K. 2016. Explaining rice yields and yield gaps in Central Luzon, Philippines: An application of stochastic frontier analysis and crop modelling. European Journal of Agronomy, 82, 223–241. Silva J V, Reidsma P, Lourdes Velasco M, Laborte A G, van Ittersum M K. 2018. Intensification of rice-based farming systems in Central Luzon, Philippines: Constraints at field, farm and regional levels. Agricultural System, 165, 55–70. Tollenaar M, Lee E A. 2002. Yield potential, yield stability, and stress tolerance in maize. Field Crops Research, 75, 161–169. VanWart J, Kersebaum K C, Peng S, Milner M, Cassman K G. 2013. Estimating crop yield potential at regional to national scales. Field Crops Research, 143, 34–43. Wang M, Wang L C, Cui Z L, Chen X P, Xie J G, Hou Y P. 2017. Closing the yield gap and achieving high N use efficiency and low apparent N losses. Field Crops Research, 209, 39–46. Xu W, Liu C, Wang K, Xie R, Ming B, Wang Y, Zhang G, Liu G, Zhao R, Fan P, Li S, Hou P. 2017. Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Field Crops Research, 212, 126–134. Xue J, Gou L, Shi Z G, Zhao Y S, Zhang W F. 2017a. Effect of leaf removal on photosynthetically active radiation distribution in maize canopy and stalk strength. Journal of Integrative Agriculture, 16, 85–96. Xue J, Ling G, Zhao Y, Yao M, Yao H, Tian J, Zhang W. 2016. Effects of light intensity within the canopy on maize lodging. Field Crops Research, 188, 133–141. Xue J, Xie R Z, Zhang W F, Wang K R, Hou P, Ming B, Gou L, Li S K. 2017b. Research progress on reduced lodging of high-yield and -density maize. Journal of Integrative Agriculture, 12, 2717–2725. Yang H S, Dobermann A, Cassman K G, Walters D T. 2006. Features, applications, and limitations of the Hybrid-Maize simulation model. Agronomy Journal, 98, 737–748. Zhang F S, Cui Z L, Fan M S, Zhang W F, Chen X P, Jiang R F. 2011. Integrated soil-crop system management: Reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China. Journal of Environmental Quality, 40, 1051–1057. Zhang J, Jiang X, Xue Y, Li Z, Yu B, Xu L, Lu X, Miao Q, Liu Z, Cui Z. 2019. Closing yield gaps through soil improvement for maize production in coastal saline soil. Agronomy, 9, 573.
[1] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
[2] FAN Ting-lu, LI Shang-zhong, ZHAO Gang, WANG Shu-ying, ZHANG Jian-jun, WANG Lei, DANG Yi, CHENG Wan-li. Response of dryland crops to climate change and drought-resistant and water-suitable planting technology: A case of spring maize[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2067-2079.
[3] Tiago SILVA, Ying NIU, Tyler TOWLES, Sebe BROWN, Graham P. HEAD, Wade WALKER, Fangneng HUANG. Selection, effective dominance, and completeness of Cry1A.105/Cry2Ab2 dual-protein resistance in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2151-2161.
[4] ZHANG Miao-miao, DANG Peng-fei, LI Yü-ze, QIN Xiao-liang, Kadambot-H. M. SIDDIQUE. Better tillage selection before ridge–furrow film mulching can facilitate root proliferation, increase nitrogen accumulation, translocation, grain yield of maize in a semiarid area[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1658-1670.
[5] WANG Peng, WANG Cheng-dong, WANG Xiao-lin, WU Yuan-hua, ZHANG Yan, SUN Yan-guo, SHI Yi, MI Guo-hua. Increasing nitrogen absorption and assimilation ability under mixed NO3 and NH4+ supply is a driver to promote growth of maize seedlings[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1896-1908.
[6] SONG Chao-yu, ZHANG Fan, LI Jian-sheng, XIE Jin-yi, YANG Chen, ZHOU Hang, ZHANG Jun-xiong. Detection of maize tassels for UAV remote sensing image with an improved YOLOX Model[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1671-1683.
[7] ZHANG Chong, WANG Dan-dan, ZHAO Yong-jian, XIAO Yu-lin, CHEN Huan-xuan, LIU He-pu, FENG Li-yuan, YU Chang-hao, JU Xiao-tang. Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1883-1895.
[8] WANG Jin-bin, XIE Jun-hong, LI Ling-ling, ADINGO Samuel. Review on the fully mulched ridge–furrow system for sustainable maize production on the semi-arid Loess Plateau[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1277-1290.
[9] LI Min, ZHU Da-wei, JIANG Ming-jin, LUO De-qiang, JIANG Xue-hai, JI Guang-mei, LI Li-jiang, ZHOU Wei-jia. Dry matter production and panicle characteristics of high yield and good taste indica hybrid rice varieties[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1338-1350.
[10] ZHAO Hai-liang, QIN Yao, XIAO Zi-yi, SUN Qin, GONG Dian-ming, QIU Fa-zhan. Revealing the process of storage protein rebalancing in high quality protein maize by proteomic and transcriptomic[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1308-1323.
[11] ZHANG Bing-chao, HU Han, GUO Zheng-yu, GONG Shuai, SHEN Si, LIAO Shu-hua, WANG Xin, ZHOU Shun-li, ZHANG Zhong-dong. Plastic-film-side seeding, as an alternative to traditional film mulching, improves yield stability and income in maize production in semi-arid regions[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1021-1034.
[12] SHI Wen-xuan, ZHANG Qian, LI Lan-tao, TAN Jin-fang, XIE Ruo-han, WANG Yi-lun. Hole fertilization in the root zone facilitates maize yield and nitrogen utilization by mitigating potential N loss and improving mineral N accumulation[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1184-1198.
[13] ZHAO Shu-ping, DENG Kang-ming, ZHU Ya-mei, JIANG Tao, WU Peng, FENG Kai, LI Liang-jun.

Optimization of slow-release fertilizer application improves lotus rhizome quality by affecting the physicochemical properties of starch [J]. >Journal of Integrative Agriculture, 2023, 22(4): 1045-1057.

[14] FENG Xu-yu, PU Jing-xuan, LIU Hai-jun, WANG Dan, LIU Yu-hang, QIAO Shu-ting, LEI Tao, LIU Rong-hao. Effect of fertigation frequency on soil nitrogen distribution and tomato yield under alternate partial root-zone drip irrigation[J]. >Journal of Integrative Agriculture, 2023, 22(3): 897-907.
[15] ZHANG Yu-hong, LI Zhi-xin, DU Ya-jie, LI Shi-fang, ZHANG Zhi-xiang. A universal probe for simultaneous detection of six pospiviroids and natural infection of potato spindle tuber viroid (PSTVd) in tomato in China[J]. >Journal of Integrative Agriculture, 2023, 22(3): 790-798.
No Suggested Reading articles found!