Please wait a minute...
Journal of Integrative Agriculture  2015, Vol. 14 Issue (3): 483-493    DOI: 10.1016/S2095-3119(14)60921-7
Special Focus: Development and Application of Plant Transformation Techniques Advanced Online Publication | Current Issue | Archive | Adv Search |
Plant regeneration and genetic transformation in switchgrass-A review
 Paul Merrick, Shuizhang Fei
1、Interdepartmental Graduate Major in Genetics and Genomics, Iowa State University, Ames IA 50011, USA
2、Department of Horticulture, Iowa State University, Ames IA 50011, USA
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Switchgrass is native to the tallgrass prairie of North America. It is self-incompatible and has varied ploidy levels from diploid (2x) to dodecaploid (12x) with tetraploid and octoploid being the most common. The high yielding potential and the ability to grow well in marginal lands make switchgrass an ideal species as a dedicated biomass producer for lignocellulosic ethanol production. Genetic transformation is an important tool for studying gene function and for germplasm improvement in switchgrass, the genome of which has been sequenced recently. This paper intends to provide a comprehensive review on plant regeneration and genetic transformation in switchgrass. We first reviewed the effect of explants, basal medium and plant growth regulators on plant regeneration in switchgrass, which is a prerequisite for genetic transformation. We then reviewed the progresses on genetic transformation with either the biolistic or Agrobacterium-mediated method in switchgrass, and discussed various techniques employed to improve the transformation efficiency. Finally we reviewed the recent progresses on the use of genetic transformation in improving biomass quality such as the reduction of lignin, and in increasing biomass yield in switchgrass. We also provided a future perspective on the use of new genome editing technologies in switchgrass and its potential impact on regulatory processes.

Abstract  Switchgrass is native to the tallgrass prairie of North America. It is self-incompatible and has varied ploidy levels from diploid (2x) to dodecaploid (12x) with tetraploid and octoploid being the most common. The high yielding potential and the ability to grow well in marginal lands make switchgrass an ideal species as a dedicated biomass producer for lignocellulosic ethanol production. Genetic transformation is an important tool for studying gene function and for germplasm improvement in switchgrass, the genome of which has been sequenced recently. This paper intends to provide a comprehensive review on plant regeneration and genetic transformation in switchgrass. We first reviewed the effect of explants, basal medium and plant growth regulators on plant regeneration in switchgrass, which is a prerequisite for genetic transformation. We then reviewed the progresses on genetic transformation with either the biolistic or Agrobacterium-mediated method in switchgrass, and discussed various techniques employed to improve the transformation efficiency. Finally we reviewed the recent progresses on the use of genetic transformation in improving biomass quality such as the reduction of lignin, and in increasing biomass yield in switchgrass. We also provided a future perspective on the use of new genome editing technologies in switchgrass and its potential impact on regulatory processes.
Keywords:  switchgrass       Panicum virgatum L.       plant regeneration       genetic transformation       biofuel       lignocellulosic ethanol  
Received: 17 September 2014   Accepted:
Fund: 

The senior author is supported by a grant from the Bill Melinda Gates Foundation. The corresponding author thanks the National Institute of Food and Agriculture of the United States Department of Agriculture for support (Award number 2013-33522-21091).

Corresponding Authors:  Shuizhang Fei, E-mail: sfei@iastate.edu     E-mail:  sfei@iastate.edu

Cite this article: 

Paul Merrick, Shuizhang Fei. 2015. Plant regeneration and genetic transformation in switchgrass-A review. Journal of Integrative Agriculture, 14(3): 483-493.

Albright III V C, Murphy I J, Anderson J A, Coats J R. 2013.Fate of atrazine in switchgrass-soil column system.Chemosphere, 90, 1847-1853

Alexandrova K, Denchev P, Conger B. 1996a. In vitrodevelopment of inflorescences from switchgrass nodalsegments. Crop Science, 36, 175-178

Alexandrova K, Denchev P, Conger B. 1996b. Micropropagationof switchgrass by node culture. Crop Science, 36, 1709-1711

Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, ChristouP, Daniell H, Datta K, Datta S, Dix P, Fauquet C, Huang N,Kohli A, Mooibroek H, Nicholson L, Nguyen T, Nugent G,Raemakers K, Romano A, Somers D, et al. 2005. Particlebombardment and the genetic enhancement of crops: Mythsand realities. Molecular Breeding, 15, 305-327

Becker T, Templeman T, Viret J F, Bogorad L. 1992. Thecab-m7 gene: A light-inducible, mesophyll-specific gene ofmaize. Plant Molecular Biology, 20, 49-60

Bilang R, Zhang S, Leduc N, Iglesias V A, Gisel A, SimmondsJ, Potrykus I, Sautter C. 1993. Transient gene expressionin vegetative shoot apical meristems of wheat after ballisticmicrotargeting. The Plant Journal, 4, 735-744

Brunken J N, Estes J R. 1975. Cytological and morphologicalvariation in Panicum virgatum L. The SouthwesternNaturalist, 19, 379-385

Burris J N, Mann D G, Joyce B L, Stewart Jr C. 2009. Animproved tissue culture system for embryogenic callusproduction and plant regeneration in switchgrass. BioEnergyResearch, 2, 267-274

Caplan A, Herrera-Estrella L, Inze D, van Haute E, van MontaguM, Schell J, Zambryski P. 1983. Introduction of geneticmaterial into plant cells. Science, 222, 815-821

Chen Q J, Zhou H M, Chen J, Wang X C. 2006. A Gatewaybasedplatform for multigene plant transformation. PlantMolecular Biology, 62, 927-936

Cheng M, Hu T, Layton J, Liu C, Fry J. 2003. Desiccation ofplant tissue post-agrobacterium infection enhances T-DNAdelivery and increase stable transformation efficiency inwheat. In Vitro Cellular & Developmental Biology-Plant,39, 595-604

Conger B, Gray D. 1984. In vitro culture in forage grassimprovement. In: Proceedings of the 28th Grass BreedersWork Planning Conference. College Station, TX, USDA,Mandan, ND, USA. pp. 50-64

Conger B, Hanning G, Gray D, McDaniel J. 1983. Directembryogenesis from mesophyll cells of orchardgrass.Science, 221, 850-851

Conger B, Trigiano R, Gray D. 1988. Cell culture of the Poaceae(Gramineae). Plant Cell Biotechnology, 18, 49-61

Costich D E , Friebe B, Sheehan M J, Casler M D, Buckler ES. 2010. Genome-size variation in switchgrass (Panicumvirgatum): Flow cytometry and cytology reveal rampantaneuploidy. The Plant Genome Journal, 3, 130-141

Dabney S M, Wilson G V, McGregor K C, Vieira D A. 2012.Runoff through and upslope of contour switchgrass hedges.Soil Science Society of America Journal, 76, 210-219

van Dam J, Faaij A P C, Hilbert J, Petruzzi H, Turkenburg W C.2009. Large-scale bioenergy production from soybeans andswitchgrass in Argentina: Part A: potential and economicfeasibility for national and international markets. Part B:environmental and socio-economic impacts on a regional level. Renewable and Sustainable Energy Reviews, 13,1679-1733

Denchev P, Conger B. 1994. Plant regeneration from calluscultures of switchgrass. Crop Science, 34, 1623-1627

Denchev P, Conger B. 1995. In vitro culture of switchgrass:Influence of 2,4-D and picloram in combination withbenzyladenine on callus initiation and regeneration. PlantCell, Tissue and Organ Culture, 40, 43-48

Edgerton M D. 2009. Increasing crop productivity to meet globalneeds for feed, food, and fuel. Plant Physiology, 149, 7-13

Ekman A, Wallberg O, Joelsson E, Borjesson P. 2013.Possibilities for sustainable biorefineries based onagricultural residues-A case study of potential strawbasedethanol production in Sweden. Applied Energy,102, 299-308

Fischer T. 1996. Switch grass (Panicum virgatum). Horticulture,The Magazine of American Gardening, 74, 82.Fraley R T, Rogers S G, Horsch R B, Eichholtz D A, Flick JS, Fink C L, Hoffmann N L, Sanders P R. 1985. The SEVsystem: A new disarmed Ti plasmid vector system for planttransformation. Biotechnology, 3, 629-635

de Framond A J, Barton K A, Chilton M D. 1983. Mini-Ti: A newvector strategy for plant genetic engineering. Biotechnology,1, 262-269

Fu C, Mielenz J R, Xiao X, Ge Y, Hamilton C Y, RodriguezM J, Chen F, Foston, M, Ragauskas A, Bouton J, DixonR A, Wang Z Y. 2011a. Genetic manipulation of ligninreduces recalcitrance and improves ethanol productionfrom switchgrass. Proceedings of the National Academy ofSciences of the United States of America, 108, 3803-3808

Fu C, Sunkar R, Zhou C, Shen H, Zhang J Y, Matts J, WolfJ, Mann D G J, Stewart C N, Tang Y, Wang Z Y. 2012.Overexpression of miR156 in switchgrass (Panicumvirgatum L.) results in various morphological alterations andleads to improved biomass production. Plant BiotechnologyJournal, 10, 443-452

Fu C, Xiao X, Xi Y, Ge Y, Chen F, Bouton J, Dixon R, Wang Z Y.2011b. Downregulation of cinnamyl alcohol dehydrogenase(CAD) leads to improved saccharification efficiency inswitchgrass. BioEnergy Research, 4, 153-164

Fulton L, Howes T, Hardy J. 2005. Biofuels for transport:An international perspective. GEFSTAP Liquid BiofuelsWorkshop.Gambley R L, Fond R, Smith G R. 1993. Microprojectiletransformation of sugarcane meristems and regeneration ofshoots expressing β-glucuronidase. Plant Cell Reports,12,343-346

Gandhi V P, Zhou Z. 2014. Food demand and the food securitychallenge with rapid economic growth in the emergingeconomies of India and China. Food Research International,63, 108-124

Ge Y, Cheng X, Hopkins A, Wang Z. 2007. Generation oftransgenic Lolium temulentum plants by agrobacteriumtumefaciens-mediated transformation. Plant Cell Reports,26, 783-789

Gray D, Conger B, Hanning G. 1984. Somatic embryogenesisin suspension and suspension-derived callus cultures ofDactylis glomerata. Protoplasma, 122, 196-202

Gupta S, Conger B. 1998. In vitro differentiation of multipleshoot clumps from intact seedlings. In Vitro Cellular &Developmental Biology-Plant, 34, 196-202

Gupta S, Conger B. 1999. Somatic embryogenesis and plantregeneration from suspension cultures. Crop Science, 39,243-247

Hoekema A, Hirsh P R, Hooykaas P J J, Schilperoort R A. 1983.A binary plant vector strategy based on separation of virandT-region of the Agrobacterium tumefaciens Ti-plasmid.Nature, 303, 179-180

Hopkins A A, Taliaferro C M, Murphy C D, Christian D. 1996.Chromosome number and nuclear DNA content of severalswitchgrass populations. Crop Science, 36, 1192-1195

Hultquist S J, Vogel K P, Arumuganathan K, Kaeppler S.1996. Chloroplast DNA and nuclear DNA variations amongcultivars of switchgrass, Panicum virgatum L. Crop Science,36, 1049-1052

Hultquist S J, Vogel K P, Lee D J, Arumuganathan K, KaepplerS. 1997. DNA content and chloroplast DNA polymorphismsamong switchgrasses from remnant Midwestern prairies.Crop Science, 37, 595-598

Iglesias V, Gisel A, Bilang R, Leduc N, Potrykus I, SautterC. 1994. Transient expression of visible marker genesin meristem cells of wheat embryos after ballistic microtargeting.Planta, 192, 84-91

Jiang W, Zhou H, Honghao B, Fromm M, Yang B, Weeks D P.2013. Demonstration of CRISPR/CAS9/sgRNA-mediatedtargeted gene modification in Arabidopsis, tobacco,sorghum and rice. Nucleic Acids Research, 41,12.Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A,Charpentier E. 2012. A programmable dual-RNA-guidedDNA endonuclease in adaptive bacterial immunity. Science,337, 816-821

King Z, Bray A, LaFayette P, Parrott W. 2014. Biolistictransformation of elite genotypes of switchgrass (Panicumvirgatum L.). Plant Cell Reports, 33, 313-322

Krautwig B, Lorz H. 1995. Cereal protoplasts. Plant Science,111, 1-10

Leal M R, Nogueira L A, Cortez L A. 2013. Land demand forethanol production. Applied Energy, 102, 266-271

Lewandowski I, Scurlock J M, Lindvall E, Christou M. 2003. Thedevelopment and current status of perennial rhizomatousgrasses as energy crops in the US and Europe. Biomassand Bioenergy, 25, 335-361

Li J F, Park E, von Arnim A, Nebenfuhr A. 2009. The FASTtechnique: A simplified Agrobacterium-based transformationmethod for transient gene expresion analysis in seedlings ofArabidopsis and other plant species. Plant Methods, 5, 15.Li L, Qu R, Kochko A, Fauquet C, Beachy R. 1993. An improvedrice transformation system using the biolistic method. PlantCell Reports, 12, 250-255

Li R, Qu R. 2011. High throughput Agrobacterium-mediatedswitchgrass transformation. Biomass & Bioenergy, 35,1046-1054

Li T, Huang S, Zhao X, Wright D A, Carpenter S, Spalding M H,Weeks D P, Yang B. 2011. Modularly assembled designerTAL effector nucleases for targeted gene knockout andgene replacement in eukaryotes. Nucleic Acids Research,39, 6315-6325

Littlewood J, Guo M, Boerjan W, Murphy R J. 2014. Bioethanolfrom poplar: A commercially viable alternative to fossil fuelin the European Union. Biotechnology for Biofuels, 7, 12.Lu J, Sivamani E, Li X, Qu R. 2008. Activity of the 5’ regulatoryregions of the rice polyubiquitin rubi3 gene in transgenic riceplants as analyzed by both GUS and GFP reporter genes.Plant Cell Reports, 27, 1587-1600

Ma Y, An Y, Shui J, Sun Z. 2011. Adaptability evaluation ofswitchgrass (Panicum virgatum L.) cultivars on the LoessPlateau of China. Plant Science, 181, 638-643

Mann D G, King Z R, Liu W, Joyce B L, Percifield R J,Hawkins J S, Lafayette P, Artelt B, Burris J, Mazarei M,Bennetzen J, Parrott W, Stewart Jr C. 2011. Switchgrass(Panicum virgatum L.) polyubiquitin gene (PvUbi1 andPvUbi2) promoters for use in plant transformation. BMCBiotechnology, 11, 74-87

Martinez-Reyna J M, Vogel K P, Caha C, Lee D J. 2001.Meiotic stability, chloroplast DNA polymorphisms, andmorphological traits of upland×lowland switchgrassreciprocal hybrids. Crop Science, 41, 1579-1583

Martinez-Reyna J M, Vogel K P. 2002. Incompatibility systemsin switchgrass. Crop Science, 42, 1800-1805

Mazarei M, Al-Ahmad H, Rudis M R, Joyce B L, Stewart Jr C.2011. Switchgrass (Panicum virgatum L.) cell suspensioncultures: Establishment, characterization, and application.Plant Science, 181, 712-715

Mazarei M, Al-Ahmed H, Rudis M, Stewart C. 2008. Protoplastisolation and transient gene expression in switchgrass,Panicum virgatum L. Biotechnology Journal, 3, 354-359

Minick K J, Strahm B D, Fox T R, Sucre E B, Leggett Z H,Zerpa J L. 2014. Switchgrass intercropping reduces soilinorganic nitrogen in a young loblolly pine plantation locatedin coastal North Carolina. Forest Ecology and Management,319, 161-168

Moore K J, Moser L E, Vogel K P, Waller S S, Johnson B E,Pedersen J F. 1991. Describing and quantifying growthstages of perennial forage grasses. Agronomy Journal,83, 1073-1077

Morrish F, Vasil V, Vasil I. 1987. Developmental morphogenesisand genetic manipulation in tissue and cell cultures ofGramineae. Advances in Genetics, 24, 431-499

Nageswara-Rao M, Soneji J R, Kwit C, Stewart C N. 2013.Advances in biotechnology and genomics of switchgrass.Biotechnology for Biofuels, 6, 15.Odjakova M, Conger B. 1999. The influence of osmoticpretreatment and inoculum age on the initiation andregenerability of switchgrass suspension cultures. In VitroCellular & Developmental Biology-Plant, 35, 442-444

Ogawa Y, Shirakawa M, Koumoto Y, Honda M, Asami Y, KondoY, Hara-Nishimura I. 2014. A simple and reliable multi-genetransformation method for switchgrass. Plant Cell Reports,33, 1161-1172

Pedersen J, Vogel K, Funnell D. 2005. Impact of reduced ligninon plant fitness. Crop Science, 45, 812-819

Ramamoorthy R, Kumar P P. 2012. A simplified protocol forgenetic transformation of switchgrass. Plant Cell Reports,31, 1923-1931

Richards H, Rudas V, Sun H, McDaniel J, Tomaszewski Z,Conger B. 2001. Construction of a GFP-BAR plasmid andits use. Plant Cell Reports, 20, 48-54

Saathoff A J, Sarath G, Chow E K, Dien B S, Tobias C M. 2011.Downregulation of cinnamyl-alcohol dehydrogenase inswitchgrass by RNA silencing results in enhanced glucoserelease after cellulase treatment. PLoS ONE, 6, e16416.

Searchinger T, Heimlich R, Houghton R A, Dong F, Elobeid A,Fabiosa J, Tokgoz S, Hayes D, Yu T H. 2008. Use of U.S.croplands for biofuels increases greenhouse gases throughemissions from land-use change. Science, 319, 1238-1240

Seo M S, Takahara M, Ebina M, Takamizo T. 2008. Evaluationof tissue culture response from mature seeds of Panicumspp. Grassland Science, 54, 125-130

Shen H, He X, Poovaiah C R, Wuddineh W A, Ma J, Mann DG, Wang H, Jackson L, Tang Y, Neal S C, Chen F, DixonR A. 2012. Functional characterization of the switchgrass(Panicum virgatum) R2R3-MYB transcription factorPvMYB4 for improvement of lignocellulosic feedstocks.New Phytologist, 193, 121-136

Shen H, Poovaiah C R, Ziebell A, Tschaplinski T J, Pattathil S,Gjersing E, Engle N L, Katahira R, Pu Y, Sykes R, Chen F,Ragauskas A J, Mielenz J R, Hahn M G, Davis M, Stewart CN, Dixon R A. 2013. Enhanced characteristics of geneticallymodified switchgrass (Panicum virgatum L.) for high biofuelproduction. Biotechnology for Biofuels, 6, 71-85

Sladen S E, Bransby D I, Aiken G E. 1991. Biomass, yields,composition, and production costs for eight switchgrassvarieties in Alabama. Biomass and Bioenergy, 1, 119-122

Somleva M, Snell K, Beaulieu J, Peoples O, Garrison B,Patterson N. 2008. Production of polyhydroxybutyratein switchgrass, a value-added coproduct in an importantlignocellulosic biomass crop. Plant Biotechnology Journal,6, 663-678

Somleva M, Tomaszewski Z, Conger B. 2002. Agrobacteriummediatedgenetic transformation of switchgrass. CropScience, 42, 2080-2087

Song G Q, Walworth A, Hancock J F. 2012. Factors influencingAgrobacterium-mediated transformation of switchgrasscultivars. Plant Cell, Tissue and Organ Culture (PCTOC),108, 445-453

Sullivan T, Christensen A, Quail P. 1989. Isolation andcharacterization of a maize chlorophyll a/b binding proteingene that produces high levels of mRNA in the dark.Molecular and General Genetics, 215, 431-440

Tomes D. 1990. Transformation in corn: Non-sexual genetransfer. In: Twenty-Sixth Annual Illinois Corn BreedersSchool Symposium at the University of Illinois. Urbana-Champaign, USA. pp. 1-13

Tschaplinski T J, Standaert R F, Engle N L, Martin M Z, Sangha A K, Parks J M, Smith J C, Samuel R, Jiang N, Pu Y,Ragauskas A J, Hamilton C Y, Fu C, Wang Z Y, DavisonB H, Dixon R A, Mielenz J R. 2012. Down-regulation ofthe caffeic acid O-methyltransferase gene in switchgrassreveals a novel monolignol analog. Biotechnology forBiofuels, 5, 71.

Valentina P, Stefanovska T, Lewis E E, Erickson L E, DavisL C. 2014. Miscanthus as a productive biofuel crop forphytoremediation. Critical Reviews in Plant Sciences, 33,1-19

VanderGheynst J, Guo H, Simmons C. 2008. Response surfacestudies that elucidate the role of infiltration conditions onAgrobacterium tumefaciens-mediated transient transgeneexpression in harvested switchgrass (Panicum virgatum).Biomass and Bioenergy, 32, 372-379

Vasil I. 1987. Developing cell and tissue culture systems for theimprovement of cereal and grass crops. Journal of PlantPhysiology, 128, 193-218

Vasil I, Vasil V. 1992. Advances in cereal protoplast research.Physiologia Plantarum, 85, 279-283

Vincent M, Pometto A L, van Leeuwen J H. 2011. Simultaneoussaccharification and fermentation of ground cornstoverfor the production of fuel ethanol using Phanerochaetechrysosporium, Gloeophyllum trabeum, Saccharomycescerevisiae, and Escherichia coli K011. Journal ofMicrobiology and Biotechnology, 21, 703-710

Vogel J, Hill T. 2008. High-efficiency Agrobacterium-mediatedtransformation of Brachypodium distachyon inbred lineBd21-3. Plant Cell Reports, 27, 471-478

Vogel K P. 2004. Switchgrass. In: Moser L E, Burson B L,Sollenberger L E, eds., Warm-Season (C4) Grasses.Agronomy Monograph 45. American Society of Agronomy,Inc., Crop Science Society of America, Inc., Soil ScienceSociety of America, Inc., Madison, Wisconsin, USA. pp.561-588

Wang Z, Ge Y. 2005. Agrobacterium-mediated high efficiencytransformation of tall fescue (Festuca arundinacea). Journalof Plant Physiology, 162, 103-113

Wedin D A. 2004. C4 Grasses: resource use, ecology, andglobal change. In: Moser L E, Burson B L, Sollenberger LE, eds., Warm-Season (C4) Grasses. Agronomy Monograph45. American Society of Agronomy, Inc., Crop ScienceSociety of America, Inc., Soil Science Society of America,Inc., Madison, Wisconsin, USA. pp. 15-50

Wright L, Turhollow A. 2010. Switchgrass selection as a “model”bioenergy crop: A history of the process. Biomass andBioenergy, 34, 851-868

Wright L L, Cushman J H, Ehrenshaft A R, McLaughlin SB, Martin S A, McNabb W A, Ranney J W, Tuskan G A,Turhollow A F. 1993. Biofuels Feedstock DevelopmentProgram Annual Progress Report for 1992. ORNL-6781.Oak Ridge National Laboratory, Oak Ridge, TN 37831.

Xi Y, Fu C, Nandakumar R, Hisano H, Bouton J, Wang ZY. 2009. Agrobacterium-mediated transformation ofswitchgrass and inheritance of the transgenes. BioEnergyResearch, 2, 275-283

Xu B, Escamilla-Trevino L L, Sathitsuksanoh N, Shen Z, ShenH, Zhang Y H P, Dixon R A, Zhao B. 2011a. Silencing of4-coumarate: Coenzyme A ligase in switchgrass leadsto reduced lignin content and improved fermentablesugar yields for biofuel production. New Phytologist, 192,611-625

Xu B, Huang L, Shen Z, Welbaum G E, Zhang X, Zhao B.2011b. Selection and characterization of a new switchgrass(Panicum virgatum L.) line. Scientia Horticulturae, 129,854-861

Yin Z, Wang G L. 2000. Evidence of multiple complex patternsof T-DNA integration into the rice genome. Theoretical andApplied Genetics, 100, 461-470

Zhang S, Zhong H, Stricklen M. 1996. Production of multipleshoots from apical meristems of oat (Avena sativa L.).Journal of Plant Physiology, 148, 667-671

Zhao Q, Dixon R A. 2014. Altering the cell wall and its impacton plant disease: From forage to bioenergy. Annual Reviewof Phytopathology, 52, 69-91

Zhao Z Y, Gu W, Cai T, Tagliani L, Hondred D, Bond D,Schroeder S, Rudert M, Pierce D. 2002. High throughputgenetic transformation mediated by Agrobacteriumtumefaciens in maize. Molecular Breeding, 8, 323-333

Zhong H, Srinivasan C, Sticklen M. 1992. In-vitro morphogenesisof corn (Zea mays L.). Planta, 187, 483-489

Zhong H, Sun B, Warkentin D, Zhang S,Wu R, Wu T, SticklenM B. 1996. The competence of maize shoot meristems forintegrative transformation and inherited expression of thetransgenes. Plant Physiology, 110, 1097-1107
[1] ZHANG Xiu-ming, WU Yi-fei, LI Zhi, SONG Chang-bing, WANG Xi-ping. Advancements in plant regeneration and genetic transformation of grapevine (Vitis spp.)[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1407-1434.
[2] Srinivasan Balamurugan, Jayan Susan Ann, Inchakalody P Varghese, Shanmugaraj Bala Murugan, Mani Chandra Harish, Sarma Rajeev Kumar, Ramalingam Sathishkumar. Heterologous expression of Lolium perenne antifreeze protein confers chilling tolerance in tomato[J]. >Journal of Integrative Agriculture, 2018, 17(05): 1128-1136.
[3] Danielle Cooney, Hyemi Kim, Lauren Quinn, Moon-Sub Lee, Jia Guo, CHEN Shao-lin, XU Bing-cheng, D. K. Lee. Switchgrass as a bioenergy crop in the Loess Plateau, China: Potential lignocellulosic feedstock production and environmental conservation[J]. >Journal of Integrative Agriculture, 2017, 16(06): 1211-1226.
[4] GAO Zhi-juan, LIU Jin-biao, AN Qin-qin, WANG Zhi, CHEN Shao-lin, XU Bing-cheng . Photosynthetic performance of switchgrass and its relation to field productivity: A three-year experimental appraisal in semiarid Loess Plateau[J]. >Journal of Integrative Agriculture, 2017, 16(06): 1227-1235.
[5] HU Shi-wei, WU Lei-ming, Staffan Persson, PENG Liang-cai, FENG Sheng-qiu. Sweet sorghum and Miscanthus: Two potential dedicated bioenergy crops in China[J]. >Journal of Integrative Agriculture, 2017, 16(06): 1236-1243.
[6] ZHANG Xiao-bing, TANG Qiao-ling, WANG Xu-jing, WANG Zhi-xing. Development of glyphosate-tolerant transgenic cotton plants harboring the G2-aroA gene[J]. >Journal of Integrative Agriculture, 2017, 16(03): 551-558.
[7] LIU Si-jia, HUANG Yan-hua, HE Chang-jiu, FANG Cheng, ZHANG Yun-wei. Cloning, bioinformatics and transcriptional analysis of caffeoylcoenzyme A 3-O-methyltransferase in switchgrass under abiotic stress[J]. >Journal of Integrative Agriculture, 2016, 15(3): 636-649.
[8] GUO Bing-fu, GUO Yong, WANG Jun, ZHANG Li-juan, JIN Long-guo, HONG Hui-long, CHANG , Ru-zheng , QIU Li-juan. Co-treatment with surfactant and sonication significantly improves Agrobacterium-mediated resistant bud formation and transient expression efficiency in soybean[J]. >Journal of Integrative Agriculture, 2015, 14(7): 1242-1250.
[9] YU Ya, ZHANG Lei, LIAN Wei-ran, XU Feng-feng, LI Shuang-tao, XIANG Juan, ZHANG Guo-zhen, HU Zan-min, ZHAO Bing, REN Shu-xin, GUO Yang-dong. Enhanced resistance to Botrytis cinerea and Rhizoctonia solani in transgenic broccoli with a Trichoderma viride endochitinase gene[J]. >Journal of Integrative Agriculture, 2015, 14(3): 430-437.
[10] WANG Shun-li, Seong Sub Ku, YE Xing-guo, HE Cong-fen, Suk Yoon Kwon, Pil Son Choi. Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.)[J]. >Journal of Integrative Agriculture, 2015, 14(3): 469-482.
[11] ZHANG Wei, WANG Xin-min, FAN Rong, YIN Gui-xiang, WANG Ke, DU Li-pu, XIAO Le-le, YE Xing-guo . Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos[J]. >Journal of Integrative Agriculture, 2015, 14(1): 11-19.
[12] WANG Xin-min; REN Xian; YIN Gui-xiang; WANG Ke; LI Jia-rui; DU Li-pu; XU Hui-jun ;. Effects of Environmental Temperature on the Regeneration Frequency of the Immature Embryos of Wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2014, 13(4): 722-732.
[13] Yasemin Coskun, Ragbet Ezgi Duran, Cigdem Savaskan, Tunhan Demirci , Mehmet Tolgahan Hakan. Efficient Plant Regeneration with Arabinogalactan-Proteins on Various Ploidy Levels of Cereals[J]. >Journal of Integrative Agriculture, 2013, 12(3): 420-425.
[14] JIN Shuang-xia, LIU Guan-ze, ZHU Hua-guo, YANG Xi-yan, ZHANG Xian-long. Transformation of Upland Cotton (Gossypium hirsutum L.) with gfp Gene as a Visual Marker[J]. >Journal of Integrative Agriculture, 2012, 12(6): 910-919.
No Suggested Reading articles found!