Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.)
WANG Shun-li, Seong Sub Ku, YE Xing-guo, HE Cong-fen, Suk Yoon Kwon, Pil Son Choi
1、Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and
Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
2、Department of Oriental Pharmaceutical Development, Nambu University, Gwangju 506–824, Korea
3、Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic
Improvement, Beijing 100081, P.R.China
4、School of Sciences, Beijing Technology and Business University, Beijing 100048, P.R.China
5、Plant Systems Engineering Research Center, KRIBB, Daejeon 305–806, Korea
摘要 Genetic transformation is an important technique for functional genomics study and genetic improvement of plants. Until now, Agrobacterium-mediated transformation methods using cotyledon as explants has been the major approach for cucumber, and its frequency has been up to 23%. For example, significantly enhancement of the transformation efficiency of this plant species was achieved from the cotyledon explants of the cultivar Poinsett 76 infected by Agrobacterium strains EHA105 with efficient positive selection system in lots of experiments. This review is to summarize some key factors influencing cucumber regeneration and genetic transformation, including target genes, selection systems and the ways of transgene introduction, and then to put forward some strategies for the increasing of cucumber transformation efficiency. In the future, it is high possible for cucumber to be potential bioreactor to produce vaccine and biomaterials for human beings.
Abstract Genetic transformation is an important technique for functional genomics study and genetic improvement of plants. Until now, Agrobacterium-mediated transformation methods using cotyledon as explants has been the major approach for cucumber, and its frequency has been up to 23%. For example, significantly enhancement of the transformation efficiency of this plant species was achieved from the cotyledon explants of the cultivar Poinsett 76 infected by Agrobacterium strains EHA105 with efficient positive selection system in lots of experiments. This review is to summarize some key factors influencing cucumber regeneration and genetic transformation, including target genes, selection systems and the ways of transgene introduction, and then to put forward some strategies for the increasing of cucumber transformation efficiency. In the future, it is high possible for cucumber to be potential bioreactor to produce vaccine and biomaterials for human beings.
This research was financially supported by grants from the Biogreen 21 Program, RDA, Korea (PJ00810304), the Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences (2014–2015) and the Beijing Municipal Education Commission, China (KM200910011001).
Corresponding Authors:
YE Xing-guo, Tel: +86-10-82109765,Fax: +86-10-82105819, E-mail: yexingguo@caas.cn;Pil Son Choi, E-mail: cps6546@hanmail.net
E-mail: yexingguo@caas.cn; cps6546@hanmail.net
WANG Shun-li, Seong Sub Ku, YE Xing-guo, HE Cong-fen, Suk Yoon Kwon, Pil Son Choi.
2015.
Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.). Journal of Integrative Agriculture, 14(3): 469-482.
Bai J G, Wang X J, Yin Q X, Tian M. 2004. Regenerationand transformation of Cucumis sativus cv. Jinyanshihao.Scientia Agriculture Sinica, 37, 263-267 (in Chinese)
de Block M, Debrouwer D 1991. Two T-DNAs co-transformedinto Brassica napus by a double Agrobacterium infectionare mainly integrated at the same locus. Theoretical andApplied Genetics, 82, 257-263
Carter J E, Langridge W H R. 2002. Plant-based vaccines forprotection against infectious and autoimmune diseases.Critical Reviews in Plant Sciences, 21, 93-109
Chee P P. 1990. Transformation of Cucumis sativus tissueby Agrobacterium tumefaciens and the regeneration oftransformed plants. Plant Cell Reports, 9, 245-248
Chee P P, Slightom J L. 1991. Transfer and expression ofcucumber mosaic virus coat protein gene in the genomeof Cucumis sativus. Journal of the American Society forHorticultural Science, 116, 1098-1102
Chee P P, Slightom J L. 1992. Transformation of cucumbertissues by microprojectile bombardment: Identification ofplants containing functional and non-functional transferredgenes. Gene, 188, 255-260
Cho M A, Song Y M, Park Y O, Ko S M, Min S R, Liu J R, Choi PS. 2005. The use of glufosinate as a selective marker for thetransformation of cucumber (Cucumis sativus L.). KoreanJournal of Plant Biotechnology, 32, 161-165
Cramer C L, Weissenborn D L, Oishi K K, Grabau E A, BennettS, Ponce E, Grabowski G A, Radin D N. 1996. Bioproductionof human enzymes in transgenic tobacco. Annals of theNew York Academy of Sciences, 792, 62-71
Curtiss R I, Cardineau C A. 1990. Oral Immunisation byTransgenic Plants. World Patent Application, WO 90/02484.Daniell H, Muthukumar B, Lee S B. 2001. Marker free transgenicplants: engineering the chloroplast genome without theuse of antibiotic resistance genes. Current Genetics, 39,109-116
Deng X Y, Zhang X G, Jing X, Shao C W, Su C G. 2004.Transformation of cold-induced transcription activator CBF3into cucumber (Cucumis satives L.). Journal of SouthwestAgricultural University (Natural Science), 26, 603-605 (inChinese)
Dong W, Chen L, Wu Y. 1993. A technique for introducingexogenous DNA into cucumber after self-pollination. ActaHorticulturae Sinica, 20, 155-160(in Chinese)
Fan A L, Sun Y, Xu L F, Liang D, Zou Z R. 2006. Optimumstudy of in vitro culture and plantlet regeneration systemfrom cotyledonary nodes of cucumber (Cucumis sativus L.).Journal of Northwest A&F University (Natural Science), 34,69-73 (in Chinese)
Flavell R B, Dart E, Fuchs R L, Fraley R T. 1992. Selectablemarker genes: Safe for plants? Nature Biotechnology, 10,141-144
Gaba V, Feldmesser E, Amit Gal-On H, Antigus Y. 1995. Genetictransformation of a recalcitrant melon (Cucumis melo L.)variety. In: Lester G E, Dunlap J R., eds., Proceedingsof Cucurbitaceae ’94: Evaluation and Enhancement ofCucurbit Germplasm. Gateway Printing, Edinburg, TX,USA. pp. 188-190
Gal-On A, Wolf D, Antignus Y, Patlis L, Ryu K H, Min B E,Pearlsman M, Lachman O, Gaba V, Wang Y Z, Shiboleth YM, Yang J, Zelcer A. 2005. Transgenic cucumbers harboringthe 54-kDa putative gene of Cucumber fruit mottle mosaictobamovirus are highly resistant to viral infection and protect non-transgenic scions from soil infection. TransgenicResearch, 14, 81-93
Gelvin S B. 2003. Agrobacterium-mediated plant transformation:The biology behind the ‘gene-jockeying tool’. Microbiologyand Molecular Biology Reviews, 67, 16-37
Gradam I A, Baker C J, Leaver C J. 1994. Analysis of thecucumber malate synthase gene promoter by transientexpression and gel retardation assays. The Plant Journal,6, 893-902
Haldrup A, Petersen S G, Okkels F T. 1998. The xylose isomerasegene from Thermoanaerobacterium thermosulfurogenesallows effective selection of transgenic plant cells usingD-xylose as the selection agent. Plant Molecular Biology,37, 287-296
Hansen G, Wright M S. 1999. Recent advances in transformationof agricultural plants. Trends in Plant Science, 4, 226-231
He Z Q, Duan Z Z, Liang W, Chen F J, Yao W, Liang H W, YueC Y, Sun Z X, Chen F, Dai J W. 2006. Mannose selectionsystem used for cucumber transformation. Plant CellReports, 25, 953-958
Huang H Y, Wang Z Y, Cheng J T, Zhao W C, Li X, Wang H Y,Zhang Z X, Sui X L. 2013. An efficient cucumber (Cucumissativus L.) protoplast isolation and transient expressionsystem. Scientia Horticulturae (Amsterdam), 150, 206-212
Huang S W, Li R Q, Zhang Z H, Li L, Gu X F, Fan W, LucasW J, Wang X W, Xie B Y, Ni P X, Ren Y Y, Zhu H M, Li J,Lin K, Jin W W, Fei Z J, Li G C, Staub J, Kilian A, van derVossen E A G, et al. 2009. The genome of the cucumber,Cucumis sativus L. Nature Genetics, 41, 1275-1283
James C. 2013. Global Status of Commercialized Biotech/GM Crops: 2013. ISAAA Brief No. 46. ISAAA, Ithaca, NewYork, USA.
James C, Krattiger A F. 1996. Global Review of the Field Testingand Commercialization of Transgenic Plants, 1986 to 1995:The First Decade of Crop Biotechnology. ISAAA Brief No.1. ISAAA, Ithaca, New York, USA.
Jang H A, Kim H A, Kwon S Y, Choi D W, Choi P S. 2011.The use of cotyledonary-node explants in Agrobacteriumtumefaciens mediated transformation of cucumber(Cucumis sativus L.). Journal of Plant Biotechnology, 38,198-202
Jang H A, Lim K M, Kim H A, Park Y I, Kwon S Y, Choi P S.2013. Development of transgenic cucumbers expressingArabidopsis Nit gene. Journal of Plant Biotechnology, 40,198-202
Joersbo M, Danaldson I, Kreiberg J, Petersen S G, BrunstedtJ, Okkels F T. 1998. Analysis of mannose selection usedfor transformation of sugar beet. Molecular Breeding, 4,111-117
Joersbo M, Okkels F T. 1996. A novel principle for selection oftransgenic plant cells: Positive selection. Plant Cell Reports,16, 219-221
Kho Y O, Den Nijs A P M, Franken J. 1980. Intersepecifichybridization in Cucumis L. II. The crossability of speciesan investigation of in vivo pollen tube growth and seed set.Euphytica, 29, 66-672
Kim H A, Lee B Y, Jeon J J, Choi D W, Choi P S, Utomo S D, LeeJ H, Kang T H, Lee Y J. 2008. GUS gene expression andplant regeneration via somatic embryogenesis in cucumber(Cucumis sativus L.). Journal of Plant Biotechnology, 35,275-280
Kim H A, Min S R, Choi D W, Choi P S, Hong S G. 2010.Development of transgenic cucumber expressing TPSPgene and morphological alterations. Journal of PlantBiotechnology, 37, 72-76
Kim S G, Chang J R, Cha H C, Lee K W. 1988. Callus growthand plant regeneration in diverse cultivars of cucumber(Cucumis sativus L.). Plant Cell, Tissue and Organ Culture.12, 67-74
Kishimoto K, Nakajima M, Nishizawa Y, Tabei Y, Hibi T, AkutsuK. 2003. Response of transgenic cucumber expressing arice class I chitinase gene to two fungal pathogens withdifferent infectivities. Journal of General Plant Pathology,69, 358-363
Kishimoto K, Nishizawa Y, Tabei Y, Hibi T, Nakajima M, AkutsuK. 2002. Detailed analysis of rice chitinase gene expressionin transgenic cucumber plants showing different levels ofdisease resistance to gray mold (Botrytis cinerea). PlantScience, 162, 655-662
Kishimoto K, Nishizawa Y, Tabei Y, Nakajima M, Hibi T, AkutsuK. 2004. Transgenic cucumber expressing an endogenousclass III chitinase gene has reduced symptoms from Botrytiscinerea. Journal of General Plant Pathology, 70, 314-320
Kodama H, Irifune K, Kamada H, Morikawa H. 1993. Transgenicroots produced by introducing Ri-rol genes into cucumbercotyledons by particle bombardment. TransgeneticResearch, 2, 147-152
Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T. 1996. Vectorscarrying two separate T-DNAs for co-transformation ofhigher plants mediated by Agrobacterium tumefaciens andsegregation of transformants free from selection markers.The Plant Journal, 10, 165-174
Kose E, Koç N K. 2003. Agrobacterium-mediated transformationof cucumber (Cucumis sativus L.) and plant regeneration.Biotechnology & Biotechnological Equipment, 17, 51-62
Lai L, Pan J S, He H L, Cai R. 2007. Agrobacterium-mediatedgenetic transformation of cucumber (Cucumis sativus L.)with MADS-box like gene. Journal of Shanghai JiaotongUniversity (Agricultural Science), 25, 374-382 (in Chinese)
Lee H S, Kwon E J, Kwon S Y, Jeong Y J, Lee E M, Jo M H,Kim H S, Woo I S, Shinmyo A, Yoshida K, Kwak S S. 2003.Transgenic cucumber fruits that produce elevated level ofan anti-aging superoxide dismutase. Molecular Breeding,11, 213-220
Li J R, Ye X G, An B Y, Du L P, Xu H J. 2012. Genetictransformation of wheat: Current status and futureprospects. Plant Biotechnology Reports, 6, 183-193
Lin Y T, Lin C W, Chung C H, Su M H, Ho H Y, Yeh S D,Jan F J, Ku H M. 2011. In vitro regeneration and genetictransformation of Cucumis metuliferus through cotyledonorganogenesis. HortScience, 46, 616-621
Lou H, Kako S. 1994. Somatic embryogenesis and plant regeneration in cucumber. HortScience, 29, 906-909
Mohiuddin A K M, Abdullah Z C, Chowdhury M K U, Napis S.2005. Enhancement of adventitious shoot regeneration inCucumis sativus L. using AgNO3. Plant Tissue Culture,15, 15-23
Nanasato Y, Konagaya K I, Okuzaki A, Tsuda M, Tabei Y. 2013.Improvement of Agrobacterium-mediated transformation ofcucumber (Cucumis sativus L.) by combination of vacuuminfiltration and co-cultivation on filter paper wicks. PlantBiotechnology Reports, 7, 267-276
Nap J P, Metz P L, Escaler M, Conner A. 2003. The release ofgenetically modified crops into the environment. The PlantJournal, 33, 1-18
Negrotto D, Jolley M, Beer S, Wenck A R, Hansen G. 2000.The use of phosphomannose-isomerase as a selectablemarker to recover transgenic maize plants (Zea mays L.)via Agrobacterium transformation. Plant Cell Reports, 19,798-803
Nishibayashi S, Hayakawa T, Nakajima T, Suzuki M, Kaneko H.1996b. CMV protecton in transgenic cucumber plants withan introduced CMV-O cp gene. Theoretical and AppliedGenetics, 93, 672-678
Nishibayashi S, Kaneko H, Hayakawa T. 1996a. Transformationof cucumber (Cucumis sativus L.) plants using Agrobacteriumtumefaciens and regeneration from hypocotyl explants.Plant Cell Reports, 15, 809-814
Okkels F T, Ward J L, Joersbo M. 1997. Synthesis of cytokininglucuronides for the selection of transgenic plants.Phytochemistry, 46, 801-804
Oridate T, Atsumi H, Ito S, Araki H. 1992. Genetic differencein somatic embryogenesis from seeds in melon (Cucumismelo L.). Plant Cell, Tissue and Organ Culture, 29, 27-30
Punja Z K, Abbas N, Sarmento G G, Tang F A. 1990.Regeneration of Cucumis sativus var. sativus and C. sativusvar. hardwickii, C. melo, and C. metuliferus from explantsthrough somatic embryogenesis and organogenesis. PlantCell, Tissue and Organ Culture, 21, 93-102
Raharjo S H T, Hernandez M O, Zhang Y Y, Punja Z K.1996. Transformation of pickling cucumber with chitinaseencodinggenes using Agrobacterium tumefaciens. PlantCell Reports, 15, 591-596
Rajagopalan P A, Perl-Treves R. 2005. Improved cucumbertransformation by a modified explant dissection andselection protocol. HortScience, 40, 431-435
Sala F, Rigano M M, Barbante A, Basso B, Walmsley AM, Castiglione S. 2003. Vaccine antigen productionin transgenic plants: Strategies, gene constructs andperspectives. Vaccine, 21, 803-808
Sapountzakis G, Tsaftaris A S. 1996. Transfer and expressionof the firefly luciferase gene in cucumber. Cucurbit GeneticsCooperative Report, 19, 38-41
Sarmento G G, Alpert K, Tang F A, Punja Z K. 1992.Factors influencing Agrobacterium tumefaciens mediatedtransformation and expression of kanamycin resistance inpickling cucumber. Plant Cell, Tissue and Organ Culture,31, 185-193
Schulze J, Balkob C, Zellnera B, Kopreka T, Hinsch R, NerlichaA, Mendel R R. 1995. Biolistic transformation of cucumberusing embryogenic suspension cultures: Long-termexpression of reporter genes. Plant Science, 112, 197-206
Selvaraj N, Vasudevan A, Manickavasagam M, GanapathA. 2006. In vitro organogenesis and plant formation incucumber. Biologia Plantarum, 50, 123-126
Selvaraj N, Kasthurirengan S, Vasudevan A, ManickavasagamM, Choi C W, Ganapathi A. 2010. Evaluation of greenfluorescent protein as a reporter gene and phosphinothricinas the selective agent for achieving a higher recoveryof transformants in cucumber (Cucumis sativus L. cv.Poinsett76) via Agrobacterium tumefaciens. In Vitro Cellular& Developmental Biology-Plant, 46, 329-337
Sharma A K, Mohanty A, Singh Y, Tyagi A K. 1999. Transgenicplants for the production of edible vaccines and antibodiesfor immunotherapy. Current Science, 77, 524-529
Shirley S, Xing A, Ye X, Schweiger B, Kinney A, Graef G,Clemente T. 2004. Production of c-linolenic acid andstearidonic acid in seeds of marker-free transgenic soybean.Crop Science, 44, 646-652
Sureshkumar P, Selvaraj N, Ganapathi A, Kasthuriengan S,Vasudevan A, Anbazhagan V R. 2005. Assessment offactors influencing Agrobacterium mediated transformationin cucumber (Cucumis Sativus L.). Journal of PlantBiotechnology, 74, 225-231
Szwacka M, Krzymowska M, Osuch A, Kowalczyk M E,Malepszy S. 2002. Variable properties of transgeniccucumber plants containing the thaumatin II gene fromThaumatococcus daniellii. Acta Physiologiae Plantarum,24, 173-185
Trulson A J, Shahin E A. 1986. In vitro plant regeneration in thegenus Cucumis. Plant Science, 47, 35-43
Trulson A J, Simpson R B, Shahin E A. 1986. Transformation ofcucumber (Cucumis sativus L.) plants with Agrobacteriumrhizogenes. Theoretical and Applied Genetics, 73, 11-15
Ugandhar T, Venkateshwarrlu M, Begum G, Srilatha T,Jaganmohanreddy K. 2011. In vitro plant regenerationof cucumber (Cucumis sativum L.) from cotyledon andhypocotyl explants. Science Research Reporter, 1,164-169
Vasudevan A, Ganapathi A, Selvaraj N, MurugananthamM, Vengadesan G. 2002. Agrobacterium-mediatedtransformation in cucumber (Cucumis sativus L.). CucurbitGenetics Cooperative Report, 25,14-16
Vasudevan A, Selvaraj N, Ganapathi A. 2001. Multiple shootinduction from the shoot tip explants of cucumber (Cucumissativus L.). Cucurbit Genetics Cooperative Report, 24, 8-12
Vasudevan A, Selvaraj N, Ganapathi A, Choi C W. 2007.Agrobacterium-mediated genetic transformation incucumber (Cucumis sativus L.). American Journal ofBiochemistry and Biotechnology, 3, 24-32
Vengadesan G, Anand R P, Selvaraj N, Perl-Treves R,Ganapathi A. 2005. Transfer and expression of nptIIand bar genes in cucumber (Cucumis Sativus L.). InVitro Cellular & Developmental Biology-Plant, 41, 17-21
Wang C Y, Ding D F, Yu X J, Wei S, Wei A M, Du S L, Li M G.2008. Preliminary study on cucumber transformation byfloral dip method. Bulletin of Biology, 43, 9-12
Wang H Z, Zhao P J, Zhou X Y. 2000. Regeneration oftransgenic cucumber plants with a WMV-2 CP gene. ActaPhytophysiologica Sinica, 26, 267-272
Wang J, Zhang S J, Wang X, Wang L N, Xu H N, Wang X F,Shi Q H, Wei M, Yang F J. 2013. Agrobacterium-mediatedtransformation of cucumber (Cucumis sativus L.) using asense mitogen-activated protein kinase gene (CsNMAPK).Plant Cell, Tissue and Organ Culture, 113, 269-277
Wang Y, Gu X F, Zhang S P, Miao H, Chen G H, Xie B Y.2014. Transformation of RNAi vector in cucumber (Cucumissativus) in vitro by Agrobacterium tumefaciens-mediatedtransfection. Chinese Bulletin of Botany, 49, 183-189 (inChinese)
Walmsley A M, Arntzen C J. 2000. Plants for delivery of ediblevaccines. Current Opinion in Biotechnology, 11, 126-129
Wehner T C, Locy R D. 1981. In vitro adventitious shoot androot formation of cultivars and lines of Cucumis sativus. L.HortScience, 16, 759-760
Wieczorek A, Sanfaçon H. 1995. An improved method for thegeneration and transfection of protoplasts from Cucumissativus Cotyledons. Plant Cell Reports, 14, 603-610
Wright M, Dawson J, Dunder E, Suttie J, Reed J, KramerC, Chang Y, Novitzky R, Wang H, Artim-Moore L. 2001.Efficient biolistic transformation of maize (Zea mays L.) andwheat (Triticum aestivum L.) using the phosphomannoseisomerase gene, pmi, as the selectable marker. Plant CellReports, 20, 429-436
Xing A, Zhang Z, Shirley S, Paul S, Tom C. 2000. The use of thetwo T-DNA binary system to drive marker-free transgenicsoybeans. In Vitro Cellular & Developmental Biology-Plant,36, 456-463
Xu H J, Cai G P, Wu Y, Zhao N M, Tang H X, Jia S R. 1991.Gene transfer into protoplasts of Chinese cabbage andcucumber by electroporation. Acta Botanica Sinica, 33,7-13
Yao C N, Wang Y F. 2001. Sonication assisted Agrobacteriummediatedtransformation of cucumber. Acta HorticulturaeSinica, 28, 80-82 (in Chinese)
Yao Q, Cong L, He G, Chang J, Li K, Yang G. 2007. Optimizationof wheat co-transformation procedure with gene cassettesresulted in an improvement in transformation frequency.Molecular Biology Reports, 34, 61-67
Yin Z M, Bartoszewskj G, Szwacka M, Malepszy S.2005. Cucumber transformation methods-The review.Biotechnologia, 1, 95-113
Yin Z M, Malinowski R, Zió?kowska A, Sommer H, Plader W,Malepszy S. 2006b. The defH9-iaaM-containing constructefficiently induces parthenocarpy in cucumber. Cellular andMolecular Biology Letters, 11, 279-290
Yin Z M, Paw?owicz I, Malepszy S, Rorat T. 2004. Transcriptionalexpression of a Solanum sogarandinum GT-Dhn10 genefusion in cucumber and its correlation with chilling tolerancein transgenic seedlings. Cellular and Molecular BiologyLetters, 9, 891-902
Yin Z M, Rorat T, Szabala B M, Zió?kowska A, Malepszy S.2006a. Expression of a Solanum sogarandium SK3 typedehydrin enhances cold tolerance in transgenic cucumberseedlings. Plant Science, 170, 1164-1172
Zhang P, Potrykus I, Puonti-Kaerlas J. 2000. Efficient productionof transgenic cassava using negative and positive selection.Transgenic Research, 9, 405-415
Zhang R W, Gu X F, Wang Y, Zhang S P, Zhang B X. 2009.Effects of genotypes and 6-BA on regeneration frequencyof cotyledon nodes in cucumber (Cucumis sativus L.). ChinaVegetables, 22, 45-48 (in Chinese)
Zhang W Z, Wei A M, Du S L, Han Y K, Zhang G H, Liu N.2009. Transformation technoglogy through A. tumefaciensmediation and pollen tube pathway in cucumber. ActaAgriculturae Boreali-Occidentalis Sinica, 18, 217-220 (inChinese)
Zhang Y Y, Punja Z K. 1994. Induction and characterizationof chitinase isoforms in cucumber (Cucumis sativus L.):Effect of elicitors, wounding and pathogen inoculation. PlantScience, 99, 141-150
Zhao J, Wang H, Pan J S, Cai R, Wu A Z. 2004. In vitro cultureand plantlet regeneration from cotyledonary nodes ofcucumber (Cucumis sativus L.). Journal of ShanghaijiaotongUniversity (Agricultural Science), 22, 43-53 (in Chinese)