Please wait a minute...
Journal of Integrative Agriculture  2013, Vol. 12 Issue (9): 1501-1511    DOI: 10.1016/S2095-3119(13)60418-9
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Evaluation of Genetic Diversity of Sichuan Common Wheat Landraces in China by SSR Markers
 LI Wei, BIAN Chun-mei, WEI Yu-ming, LIU An-jun, CHEN Guo-yue, PU Zhi-en, LIU Ya-xi, ZHENG You-liang
1.Key Laboratory of Crop Genetic Resources and Improvement in Southwest China, Ministry of Education, Sichuan Agricultural University,Ya'an 625014, P.R.China
2.Triticeae Research Institute, Sichuan Agricultural University, Ya’an 625014, P.R.China
3.College of Agronomy, Sichuan Agricultural University, Ya’an 625014, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Genetic diversity of 62 Sichuan wheat landraces accessions of China was investigated by agronomic traits and SSR markers. The landrace population showed the characters of higher tiller capability and more kernels/spike, especially tiller no./plant of six accessions was over 40 and kernels/spike of three accessions was more than 70. A total of 547 alleles in 124 polymorphic loci were detected with an average of 4.76 alleles per locus by 114 SSR markers. Parameters analysis indicated that the genetic diversity ranked as genome A> genome B > genome D, and the homoeologous groups ranked as 5>4>3>1>2>7>6 based on genetic richness (Ri). Furthermore, chromosomes 2A, 1B and 3D had more diversity than that of chromosomes 4A, 7A and 6B. The variation of SSR loci on chromosomes 1B, 2A, 2D, 3B, and 4B implied that, in the past, different selective pressures might have acted on different chromosome regions of these landraces. Our results suggested that Sichuan common wheat landraces is a useful genetic resource for genetic research and wheat improvement.

Abstract  Genetic diversity of 62 Sichuan wheat landraces accessions of China was investigated by agronomic traits and SSR markers. The landrace population showed the characters of higher tiller capability and more kernels/spike, especially tiller no./plant of six accessions was over 40 and kernels/spike of three accessions was more than 70. A total of 547 alleles in 124 polymorphic loci were detected with an average of 4.76 alleles per locus by 114 SSR markers. Parameters analysis indicated that the genetic diversity ranked as genome A> genome B > genome D, and the homoeologous groups ranked as 5>4>3>1>2>7>6 based on genetic richness (Ri). Furthermore, chromosomes 2A, 1B and 3D had more diversity than that of chromosomes 4A, 7A and 6B. The variation of SSR loci on chromosomes 1B, 2A, 2D, 3B, and 4B implied that, in the past, different selective pressures might have acted on different chromosome regions of these landraces. Our results suggested that Sichuan common wheat landraces is a useful genetic resource for genetic research and wheat improvement.
Keywords:  genetic diversity       SSR marker       landraces       wheat  
Received: 12 September 2012   Accepted:
Fund: 

This work was supported by the National Basic Research Program of China (2011CB100100) and the Program for Scientific Innovative Research Team in Sichuan, China (2011JTD0015 and 11TD005).

Corresponding Authors:  Correspondence ZHENG You-liang, Tel: +86-835-2882007, Fax: +86-835-2883153, E-mail: ylzheng@sicau.edu.cn   

Cite this article: 

LI Wei, BIAN Chun-mei, WEI Yu-ming, LIU An-jun, CHEN Guo-yue, PU Zhi-en, LIU Ya-xi, ZHENG You-liang. 2013. Evaluation of Genetic Diversity of Sichuan Common Wheat Landraces in China by SSR Markers. Journal of Integrative Agriculture, 12(9): 1501-1511.

[1]Andolfatto P. 2001. Adaptive hitchhiking effects on genomevariability. Current Opinion in Genetics &Development, 11, 635-641

[2]Börner A, Röder M S, Unger O, Meinel A. 2000. Thedetection and molecular mapping of a major gene fornon-specific adult-plant disease resistance againststripe rust in wheat. Theoretical and Applied Genetics,100, 1095-1099

[3]Börner A, Schumann E, Fürste A, Cöster H, Leithold B,Röder M, Weber W. 2002. Mapping of quantitative traitloci determining agronomic important characters inhexaploid wheat (Triticum aestivum L.). Theoretical andApplied Genetics, 105, 921-936

[4]Chao S, Zhang W, Dubcovsky J, Sorrells M. 2007.Evaluation of genetic diversity and genome-widelinkage disequilibrium among U. S. wheat (Ttiticumaestivum L.) germplasm representing different marketclasses. Crop Science, 47, 1018-1030

[5]Chen G Y, Li L H. 2007. Detection of genetic diversity insynthetic hexaploid wheats using microsatellitemarkers. Agricultural Sciences in China, 6, 1403-1410

[6]Chen H P, Wei Y M, Zheng Y L. 2006. Analysis on qualitycharacters of wheat landraces in Sichuan Province.Journal of Plant Genetic Resources, 7, 89-94

[7]Chen X M, He Z H, Shi J R, Xia L Q, Ward R, Zhou Y, JiangG L. 2003. Genetic diversity of high quality winter wheatvarieties (lines) based on SSR markers. ActaAgronomica Sinica, 29, 13-19

[8]Cook J P, Wichman D M, Martin J M. 2004. Identification ofmicrosatellite markers associated with a stem solidnesslocus in wheat. Crop Science, 44, 1397-1402

[9]Cui G H, Ni Z F, Liu Z Y, Wang X L, Wu L M, Sun Q X. 1999.Study on wheat heterotic Group III genetic diversityrevealed by microsatellite in wheat and spelt. Journalof Agricultural Biotechology, 7, 333-338

[10]Dholakia B B, Ammiraju J S S, Singh H, Lagu M D, Röder MS, Rao V S, Dhaliwal H S, Ranjekar P K, Gupta V S,Weber W E. 2003. Molecular marker analysis of kernelsize and shape in bread wheat. Plant Breeding, 122,392-395

[11]Dong Y C, Zheng D S. 2000. China Wheat Genetic Resources.China Agriculture Press, Beijing. (in Chinese)Dreisigacker S, Zhang P, Warburton M L, Ginkel M V,Hoisington D, Bohn M, Melchinger A E. 2004. SSR andpedigree analyses of genetic diversity among CIMMYTwheat lines targeted to different megaenvironments.Crop Science, 44, 381-388

[12]Gupta P K, Balyan H S, Edwards K J, Isaac P, Korzun V,Röder M, Gautier M F, Joudrier P, Schlatter A R,Dubcovsky J, et al. 2002. Genetic mapping of 66 newmicrosatellite (SSR) loci in bread wheat. Theoreticaland Applied Genettics, 105, 413-422

[13]Hao C Y, Wang L F, Ge H M, Dong Y C, Zhang X Y. 2011.Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSRmarkers. PLoS ONE, 6, e17279.Hao C Y, Wang L F, Zhang X Y, You G X, Dong Y C, Jia J Z,Liu X, Shang X W, Liu S C, Cao Y S. 2005. Evolvementof genetic diversity of cultivars in common wheat.Science in China (Ser. C Life Sciences), 35, 408-415

[14]Huang X Q, Börner A, Röder M, Ganal M. 2002. Assessinggenetic diversity of wheat (Triticum aestivum L.)germplasm using microsatellite markers. Theoreticaland Applied Genetics, 105, 699-707

[15]Huang X Q, Cöster H, Ganal M W, Röder M S. 2003.Advanced backcross QTL analysis for theindentification of quantitative trait loci alleles from wildrelatives of wheat (Triticum aestivum L.). Theoreticaland Applied Genetics, 106, 1379-1389

[16]Iqbal N, Reader S M, Caligari P D S, Miller T E. 2000.Characterization of Aegilops uniaristata chromosomesby comparative DNA marker analysis and repetitiveDNA sequence in situ hybridization. Theoretical andApplied Genetics, 101, 1l73-l179.Ishii T, Mori N, Ogihara Y. 2001. Evaluation of allelicdiversity at chloroplast microsatellite loci amongcommon wheat and its ancestral species. Theoreticaland Applied Genetics, 103, 896-904

[17]Korzun V, Röder M S, Ganal M W, Worland A J, Law C N.1998. Genetic analysis of the dwarfing gene (Rht8) inwheat. Part I. Molecular mapping of Rht8 on the shortarm of chromosome 2D of bread wheat (Triticumaestivum L.). Theoretical and Applied Genetics, 96,1104-1109

[18]Lelley T, Stachel M, Grauagmber H, Vollmann J. 2000.Analysis of relationship between Aegilops tauschii andthe D genome of wheat utilizing microsatellites.Genome, 43, 661-668

[19]Liu D C, Zheng Y L, Lan X J. 2003. Utilization of wheatlandrace Chinese spring in breeding. ScientiaAgricultura Sinica, 36, 1383-1389

[20](in Chinese)Luo M C, Yen C, Yang J L. 1992. Crossability percentagesof bread wheat landraces from Sichuan Province, Chinawith rye. Euphytica, 61, 1-7

[21]Murray M, Thompson W F. 1980. Rapid isolation of highmolecular weight plant DNA. Nucleic Acids Research,8, 4321-4325

[22]Peng J H, Lapitan N L V. 2005. Characterization of ESTderivedmicrosatellites in the wheat genome anddevelopment of eSSR markers. Functional &Integrative Genomics, 5, 80-96

[23]Peng J H, Ronin Y, Fahima T, Röder M S, Li Y C, Nevo E,Korol A. 2003. Domestication quantitative trait loci inTriticum dicoccoides, the progenitor of wheat.Proceedings of the National Academy of Sciences ofthe United States of America, 100, 147-159

[24]Pestsova E, Ganal M W, Röder M S. 2000. Isolation andmappingof microsatellite markers specific for the Dgenome of bread wheat. Genome, 43, 689-699

[25]Prasad M, Varshney R K, Kumar A, Balyan H S, Sharma PC, Edwards K J, Singh H, Dhaliwal H S, Roy J K, GuptaP K. 2003. A microsatellite marker associated with a QTLfor grain protein content on chromosome arm 2DL ofbread wheat. Theoretical and Applied Genetics, 99,341-345

[26]Prasad M, Varshney R K, Roy J K, Balyan H S, Gupta P K.2000. The use of microsatellites for detecting DNApolymorphism, genotype identification and geneticdiversity in wheat. Theoretical and Applied Genetics,100, 584-592

[27]Relf J C, Zhang P, Dreisigacker S, Warburton M L, vanGinkel M, Hoisington D, Bohn M, Melchinger A E. 2005.Wheat genetic diversity trends during domesticationand breeding. Theoretical and Applied Genetics, 110,859-864

[28]Rohlf F J. 1990. NTSYS-pc Manual. Exeter Software,Setauket, N Y.Roussel V, Koenig J, Beckertet M, Balfourier F. 2004.Molecular diversity in French bread wheat accessionsrelated to temporal trends and breeding programmes.Theoretical and Applied Genetics, 108, 920-930

[29]Röder M S, Korzun V, Gill B S, Ganal M W. 1998. Thephysical mapping of microsatellite markers in wheat.Genome, 41, 278-283

[30]Röder M S, Wendehake K, Korzun V, Bredemeijer G, LaborieD, Bertrand L, Isaac P, Rendell S, Jackson J, Cooke R J,et al. 2002. Construction and analysis of a microsatellitebaseddatabase of European wheat varieties.Theoretical and Applied Genetics, 106, 67-73

[31]Somers D J, Isaac P, Edwards K. 2004. A high-densitymicrosatellite consensus map for bread wheat(Triticuma estivum L.). Theoretical and AppliedGenetics, 109, 1105-1114

[32]Song Q J, Shi J R, Singh S, Fickus E W, Costa J M, Lewis J,Gill B S, Ward R, Cregan P B. 2005. Development andmapping of microsatellite (SSR) markers in wheat.Theoretical and Applied Genettics, 110, 550-560

[33]Sourdille P, Singh S, Cadalen T, Brown-Guedira G L, Gay G,Qi L L, Gill B S, Dufour P, Murigneux A, Bernard M.2004. Microsatellite-based deletion bin system for theestablishment of genetic-physical map relationships inwheat (Triticum aestivum L.). Functional IntegrativeGenomics, 4, 12-25

[34]Tixier M H, Sourdille P, Leroy P, Bernard M, Röder M S.1997. Detection of wheat microsatellites using a nonradioactive silver-nitrate staining method. Journal ofGenetics and Breeding, 51, 175-177

[35]Verma V, Worland A J, Sayers E J, Fish L, Caligari P D S,Snape J W. 2005. Identification and characterization ofquantitative trait loci related to loadging resistance andassociated traits in bread wheat. Plant Breeding, 124,234-241

[36]Wang H Y, Xiu W, Chen P D, Liu D J. 2007. Assessment ofgenetic diversity of Yunnan, Tibetan, and Xinjiang wheatusing SSR markers. Journal of Genetics and Genomics,34, 623-633

[37]Wei Y M, Zheng Y L, Zhou Y H, Liu D C, Lan X J, Yan Z H,Zhang Z Q. 2001. Comparison of genetic variationsamong Sichuan wheat landraces and cultivars basedon SSR analysis. Journal of Sichuan AgriculturalUniversity, 19, 117-121

[38]Xu X Y, Bai G H, Carver B E, Shaner G E. 2005. A QTL forearly heading in wheat cultivar Suwon 92. Euphytica,146, 233-237

[39]Yang J, Bai G H, Shaner G E. 2005. Novel quantitative traitloci (QTL) for Fusarium head blight resistance in wheatcultivar Chokwang. Theoretical and Applied Genetics,111, 1571-1579

[40]Yeh F C, Boyle T J B. 1997. Population genetic analysis ofcodominant and dominant markers and quantitativetraits. Belgian Journal of Botany, 129, 157.Zhang Z B. 2001. Wheat Genetics. China Agriculture Press,Beijing. (in Chinese)Zheng Y L, Luo M C, Yan J, Yang J L. 1993. Studies ofinheritance of the crossability of a new material “J-11”of common wheat with rye

[41]Acta Genetica Sinica, 20,147-153

[42]Zheng Y L, Luo M C, Yen C, Yang J L. 1992. Chromosomelocation of a new crossability gene in common wheat.Wheat Information Service, 75, 36-40

[43]Zhou W C, Kolb F L, Bai G, Shaner G, Domier L L. 2002.Genetic analysis of scab resistance QTL in wheat withmicrosatellite and AFLP markers. Genome, 45, 719-727.
[1] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[2] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[3] Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu. Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2920-2939.
[4] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[5] Liulong Li, Zhiqiang Mao, Pei Wang, Jian Cai, Qin Zhou, Yingxin Zhong, Dong Jiang, Xiao Wang. Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2888-2901.
[6] Xinhu Guo, Jinpeng Chu, Yifan Hua, Yuanjie Dong, Feina Zheng, Mingrong He, Xinglong Dai. Long-term integrated agronomic optimization maximizes soil quality and synergistically improves wheat yield and nitrogen use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2940-2953.
[7] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2974-2988.
[8] Baohua Liu, Ganqiong Li, Yongen Zhang, Ling Zhang, Dianjun Lu, Peng Yan, Shanchao Yue, Gerrit Hoogenboom, Qingfeng Meng, Xinping Chen. Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2989-3003.
[9] Ziqiang Che, Shuting Bie, Rongrong Wang, Yilin Ma, Yaoyuan Zhang, Fangfang He, Guiying Jiang. Mild deficit irrigation delays flag leaf senescence and increases yield in drip-irrigated spring wheat by regulating endogenous hormones[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2954-2973.
[10] Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou. Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2857-2868.
[11] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[12] Abdoul Kader Mounkaila Hamani, Sunusi Amin Abubakar, Yuanyuan Fu, Djifa Fidele Kpalari, Guangshuai Wang, Aiwang Duan, Yang Gao, Xiaotang Ju. The coupled effects of various irrigation schedules and split nitrogen fertilization modes on post-anthesis grain weight variation, yield, and grain quality of drip-irrigated winter wheat (Triticum aestivum L.) in the North China Plain[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2123-2137.
[13] Wei Liu, Xueling Huang, Meng Ju, Mudi Sun, Zhimin Du, Zhensheng Kang, Jie Zhao. Molecular evidence of the west-to-east dispersal of Puccinia striiformis f. sp. tritici in central Shaanxi and the migration of the inoculum from Gansu[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2251-2265.
[14] Tao Liu, Jianliang Wang, Jiayi Wang, Yuanyuan Zhao, Hui Wang, Weijun Zhang, Zhaosheng Yao, Shengping Liu, Xiaochun Zhong, Chengming Sun. Research on the estimation of wheat AGB at the entire growth stage based on improved convolutional features[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1403-1423.
[15] Yuxiang Qin, Bao Zhang, Shoufu Cui, Xiaochun Qin, Genying Li. TaFLZ54D enhances salt stress tolerance in wheat by interacting with TaSGT1 and TaPP2C[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1017-1029.
No Suggested Reading articles found!