Please wait a minute...
Journal of Integrative Agriculture  2013, Vol. 12 Issue (10): 1757-1770    DOI: 10.1016/S2095-3119(13)60336-6
Physiology & Biochentry · Tillage · Cultivation Advanced Online Publication | Current Issue | Archive | Adv Search |
Nitrogen Concentration in Subtending Cotton Leaves in Relation to Fiber Strength in Different Fruiting Branches
 ZHAO Wen-qing, LI Jian, GAO Xiang-bin, WANG You-hua, MENG Ya-li , ZHOU Zhi-guo
Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agriculture/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Nitrogen (N) fertilizer experiments were conducted to investigate the optimal subtending leaf N concentration for fiber strength, and its relationship with activities of key enzymes (sucrose synthase and β-1,3-glucanase) and contents of key constituents (sucrose and β-1,3-glucan) involved in fiber strength development in the lower, middle and upper fruiting branches of two cotton cultivars (Kemian 1 and NuCOTN 33B). For each sampling day, we simulated changes in fiber strength, activity of sucrose synthase and β-1,3-glucanase and levels of sucrose and β-1,3-glucan in response to leaf N concentration using quadratic eqs.; the optimal subtending leaf N concentrations were deduced from the eqs. For the same fruiting branch, changes in the optimal leaf N concentration based on fiber development (DPA) could be simulated by power functions. From these functions, the average optimal subtending leaf N concentrations during fiber development for the cultivar, Kemian 1, were 2.84% in the lower fruiting branches, 3.15% in the middle fruiting branches and 3.04% in the upper fruiting branches. For the cultivar, NuCOTN 33B, the optimum concentrations were 3.04, 3.28 and 3.18% in the lower, middle and upper fruiting branches, respectively. This quantification may be used as a monitoring index for evaluating fiber strength and its related key enzymes and constituents during fiber formation at the lower, middle and upper fruiting branches.

Abstract  Nitrogen (N) fertilizer experiments were conducted to investigate the optimal subtending leaf N concentration for fiber strength, and its relationship with activities of key enzymes (sucrose synthase and β-1,3-glucanase) and contents of key constituents (sucrose and β-1,3-glucan) involved in fiber strength development in the lower, middle and upper fruiting branches of two cotton cultivars (Kemian 1 and NuCOTN 33B). For each sampling day, we simulated changes in fiber strength, activity of sucrose synthase and β-1,3-glucanase and levels of sucrose and β-1,3-glucan in response to leaf N concentration using quadratic eqs.; the optimal subtending leaf N concentrations were deduced from the eqs. For the same fruiting branch, changes in the optimal leaf N concentration based on fiber development (DPA) could be simulated by power functions. From these functions, the average optimal subtending leaf N concentrations during fiber development for the cultivar, Kemian 1, were 2.84% in the lower fruiting branches, 3.15% in the middle fruiting branches and 3.04% in the upper fruiting branches. For the cultivar, NuCOTN 33B, the optimum concentrations were 3.04, 3.28 and 3.18% in the lower, middle and upper fruiting branches, respectively. This quantification may be used as a monitoring index for evaluating fiber strength and its related key enzymes and constituents during fiber formation at the lower, middle and upper fruiting branches.
Keywords:  cotton       nitrogen       subtending leaf nitrogen concentration       fiber strength       key enzymes and constituents  
Received: 08 September 2012   Accepted: 01 October 2013
Fund: 

This work was funded by the National Natural Science Foundation of China (30771277, 30771279).

Corresponding Authors:  Correspondence ZHOU Zhi-guo, Tel/Fax: +86-25-84396813, E-mail: giscott@njau.edu.cn     E-mail:  giscott@njau.edu.cn

Cite this article: 

ZHAO Wen-qing, LI Jian, GAO Xiang-bin, WANG You-hua, MENG Ya-li , ZHOU Zhi-guo. 2013. Nitrogen Concentration in Subtending Cotton Leaves in Relation to Fiber Strength in Different Fruiting Branches. Journal of Integrative Agriculture, 12(10): 1757-1770.

[1]Amor Y, Haigler C H, Johnson S, Wainscott M, Delmer D P. 1995. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proceedings of the National Academy of Sciences of the United States of America, 92, 9353-9357

[2]Bauer P J, Foulk J A, Gamble G R, Sadler E J. 2008. A comparison of two cotton cultivars differing in maturity for within-canopy fiber property variation. Crop Science, 49, 651-657

[3]Bauer P J, Frederick J R. 2005. Tillage effects on canopy position specific cotton fiber properties on two soils. Crop Science, 45, 698-703

[4]Blaise D, Singh J V, Bonde A N, Tekale K U, Mayee C D. 2005. Effects of farmyard manure and fertilizers on yield, fibre quality and nutrient balance of rainfed cotton (Gossypium hirsutum). Bioresource Technology, 96, 345- 349.

[5]Bondada B R, Osterhuis D M, Norman R J, Baker W H. 1996. Canopy photosynthesis, growth, yield and boll 15N accumulation under nitrogen stress in cotton. Crop Science, 36, 127-133

[6]Boquet D J, Hutchinson R L, Breitenbeck G A. 2004. Long-term tillage, cover crop, and nitrogen rate effects on cotton: yield and fiber properties. Agronomy Journal, 96, 1436-1442

[7]Boquet D J, Moser E B, Breitenbeck G A. 1994. Boll weight and within-plant yield distribution in field-grown cotton given different levels of nitrogen. Agronomy Journal, 86, 20-26

[8]Bradow J M, Davidonis G H. 2010. Effects of environment on fiber quality. In: Stewart J M, Oosterhuis D, Heitholt J J, Mauney J, eds., Physiology of Cotton. Springer Science+Business Media B V, New York. pp. 229-245

[9]Brown Jr R M, Saxena I M, Kudlicka K. 1996. Cellulose biosynthesis in higher plants. Trends in Plant Science, 1, 149-156

[10]Constable G A, Hearn A B. 1981. Irrigation for crops in a subhumid environment. VI. Effect of irrigation and nitrogen fertilizer on growth, yield and quality of cotton. Irrigation Science, 3, 17-28

[11]Delmer D P, Amor Y. 1995. Cellulose biosynthesis. The Plant Cell, 7, 987-1000

[12]Delmer D P, Haigler C H. 2002. The regulation of metabolic flux to cellulose, a major sink for carbon in plants. Metabolic Engineering, 4, 22-28

[13]Feng Y, Zhao X H, Wang Y H, Ma R H, Zhou Z G. 2009. Responses of carbohydrate metabolism to nitrogen in cotton fiber development and its relationships with fiber strength formation. Scientia Agricultura Sinica, 42, 93- 102. (in Chinese)

[14]Gao X, Wang Y, Zhou Z, Oosterhuis D M. 2012. Response of cotton fiber quality to the carbohydrates in the leaf subtending the cotton boll. Journal of Plant Nutrition and Soil Science, 175, 152-160

[15]Ge Y. 2007. Mapping In-Field Cotton Fiber Quality and Relating It to Soil Moisture. PhD thesis, Texas A & M University. Gokani S J, Thaker V S. 2002. Physiological and biochemical changes associated with cotton fiber development: IX. Role of IAA and PAA. Field Crops Research, 77, 127-136

[16]Grindlay D J C. 1997. Towards an explanation of crop nitrogen demand based on the optimization of leaf nitrogen per unit leaf area. Journal of Agricultural Science, 128, 377-396

[17]Haigler C H. 2007. Substrate supply for cellulose synthesis and its stress sensitivity in the cotton fiber. In: Brown R M, Saxena I M, eds., Cellulose: Molecular and Structural Biology. Springer, Dordecht, The Netherlands. pp. 147-168

[18]Haigler C H. 2010. Physiological and anatomical factors determining fiber structure and utility. In: Stewart J M, Oosterhuis D, Heitholt J J, Mauney J, eds., Physiology of Cotton. Springer Science+Business Media B V, New York. pp. 33-47

[19]Haigler C H, Ivanova-Datcheva M, Hogan P S, Salnikov V V, Hwang S, Martin K, Delmer D P. 2001. Carbon partitioning to cellulose synthesis. Plant Molecular Biology, 47, 29-51

[20]H a i g l e r C H , Z h a n g D , Wi l k e r s o n C G . 2 0 0 5 . Biotechnological improvement of cotton fibre maturity. Physiologia Plantarum, 124, 285-294

[21]Hendrix D L. 1993. Rapid extraction and analysis of nonstructural carbohydrates in plant tissues. Crop Science, 33, 1306-1311

[22]Hikosaka K. 2005. Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Annals of Botany, 95, 521-533

[23]Ippolito A, Ghaouth A E, Wilson C L, Wisniewski M. 2000. Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biology and Technology, 19, 265- 272.

[24]Jenkins J N, McCarty J C, Wu J, Saha S, Gutierrez O, Hayes R, Stelly D M. 2007. Genetic effects of thirteen Gossypium barbadense L. chromosome substitution lines in topcrosses with upland cotton cultivars: II. fiber quality traits. Crop Science, 47, 561-572

[25]Köhle H, Jeblick W, Poten F, Blaschek W, Kauss H. 1985. Chitosan-elicited callose synthesis in soybean cells as a Ca2+-dependent process. Plant Physiology, 77, 544-551

[26]King S P, Lunn J E, Furbank R T. 1997. Carbohydrate content and enzyme metabolism in developing canola siliques. Plant Physiology, 114, 153-160

[27]Kloth R H, Turley R B. 2010. Physiology of seed and fiber development. In: Stewart J M, Oosterhuis D, Heitholt J J, Mauney J, eds., Physiology of Cotton. Springer Science+Business Media B V, New York. pp. 111-122

[28]Li W, Zhou Z, Meng Y, Xu N, Fok M. 2009. Modeling boll maturation period, seed growth, protein, and oil content of cotton (Gossypium hirsutum L.) in China. Field Crops Research, 112, 131-140

[29]Liu L T, Li C D, Sun C H, Lu W J, Feng L X. 2007. Physiological effects of nitrogen nutrition on the senescence of cotton leafves at different postions. Plant Nutrition and Fertilizer Science, 13, 910-914 (in Chinese)

[30]Ma R H, Xu N Y, Zhang C X, Li W F, Feng Y, Qu L, Wang Y H, Zhou Z G. 2008a. Physiological mechanism of sucrose metabolism in cotton fiber and fiber strength regulated by nitrogen. Acta Agronomica Sinica, 34, 2143-2151

[31]Ma R H, Xu N Y, Zhang C X, Li W F, Feng Y, Qu L, Wang Y H, Zhou Z G. 2008b. Roles of nitrogen fertilization in regulating the physiological bases of fiber specific strength formation in cotton bolls bloomed at different dates. Chinese Journal of Applied Ecology, 19, 2618- 2626. (in Chinese)

[32]Ma R H, Zhou Z G, Wang Y H, Feng Y, Meng Y L. 2009. Relationship between nitrogen concentration in the subtending leaf of cotton boll and fiber quality indices. Scientia Agricultura Sinica, 42, 833-842

[33](in Chinese) Meier H, Buchs L, Buchala A, Homewood T. 1981. (1 3)-β-D-Glucan (callose) is a probable intermediate in biosynthesis of cellulose of cotton fibres. Nature, 289, 821-822

[34]Milroy S P, Bange M P. 2003. Nitrogen and light responses of cotton photosynthesis and implications for crop growth. Crop Science, 43, 904-913

[35]Pettigrew W T. 2001. Environmental effects on cotton fiber carbohydrate concentration and quality. Crop Science, 41, 1108-1113

[36]Pettigrew W T, Adamczyk J J. 2006. Nitrogen fertility and planting date effects on lint yield and Cry1Ac (Bt) endotoxin production. Agronomy Journal, 98, 691-697

[37]Reddy K R, Koti S, Davidonis G H, Reddy V R. 2004. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield, and fiber quality. Agronomy Journal, 96, 1148-1157

[38]Rochester I J, Peoples M B, Constable G A. 2001. Estimation of the N fertilizer requirement of cotton grown after legume crops. Field Crops Research, 70, 43- 53.

[39]Ruan Y L, Chourey P S, Delmer D P, Perez-Grau L. 1997. The differential expression of sucrose synthase in relation to diverse patterns of carbon partitioning in developing cotton seed. Plant Physiology, 115, 375-385

[40]Salnikov V V, Grimson M J, Seagull R W, Haigler C H. 2003. Localization of sucrose synthase and callose in freeze-substituted secondary-wall-stage cotton fibers. Protoplasma, 221, 175-184

[41]Saxena I M, Brown Jr R M. 2000. Cellulose synthases and related enzymes. Current Opinion in Plant Biology, 3, 523-531

[42]Seagull R W, Oliveri V, Murphy K, Binder A, Kothari S. 2000. Cotton fiber growth and development 2. Changes in cell wall diameter and wall birefringence. Cotton Science, 4, 97-104

[43]Shimizu Y, Aotsuka S, Hasegawa O, Kawada T, Sakuno T, Sakai F, Hayashi T. 1997. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells. Plant and Cell Physiology, 38, 375-378

[44]Shu H M, Wang Y H, Zhang W J, Zhou Z G. 2008. Activity changes of enzymes associated with fiber development and relationship with fiber specific strength in two cotton cultivars. Acta Agronomica Sinica, 34, 437-446

[45]Stockle C O, Debaeke P. 1997. Modeling crop nitrogen requirements: a critical analysis. European Journal of Agronomy, 7, 161-169

[46]Sun C H, Feng L X, Xie Z X, Li C D, Li J C. 2007. Physiological characteristics of boll-leaf system and boll weight space distributing of cotton under different nitrogen levels. Scientia Agricultura Sinica, 40, 1638- 1645. (in Chinese)

[47]Tewolde H, Fernandez C J. 2003. Fiber quality response of Pima cotton to nitrogen and phosphorus deficiency. Journal of Plant Nutrition, 26, 223-235

[48]Tewolde H, Fernandez C J, Foss D C. 1994. Maturity and lint yield of nitrogen and phosphorus deficient Pima cotton. Agronomy Journal, 86, 303-309

[49]Wang Y H, Chen B L, Bian H Y, Jiang G H, Zhang W J, Hu H B, Shu H M, Zhou Z G. 2006. Synergistic effect of temperature and cotton physiological age on fiber development. Acta Agronomica Sinica, 32, 1671-1677

[50](in Chinese) Williamson R E, Burn J E, Hocart C H. 2002. Towards the mechanism of cellulose synthesis. Trends in Plant Science, 7, 461-467

[51]Xue X P, Wang J G, Wang Z W, Guo W Q, Zhou Z G. 2007. Determination of a critical dilution curve for nitrogen concentration in cotton. Journal of Plant Nutrition and Soil Science, 170, 811-817

[52]Xue Z, Wang Y, Chen B, Gao X, Zhou Z. 2010. Effects of the subtending leaf nitrogen concentration on the saccharide compounds content and strength formation in cotton fiber. Scientia Agricultura Sinica, 43, 3520-3528

[53](in Chinese) Yao H, Tian S. 2005. Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved. Journal of Applied Microbiology, 98, 941-950

[54]Yeates S J, Constable G A, McCumstie T. 2010. Irrigated cotton in the tropical dry season. III: impact of temperature, cultivar and sowing date on fibre quality. Field Crops Research, 116, 300-307

[55]Zhao W Q, Meng Y L, Chen B L, Wang Y H, Li W F, Zhou Z G. 2011. Effects of fruiting branch position, temperature-light factors and nitrogen rates on cotton (Gossypium hirsutum L.) fiber strength development. Scientia Agricultura Sinica, 44, 3721-3732

[56](in Chinese) Zhao W Q, Wang Y H, Shu H M, Li J, Zhou Z G. 2012a. Sowing date and boll position affected boll weight, fiber quality and fiber physiological parameters in two cotton (Gossypium hirsutum L.) cultivars. African Journal of Agricultural Research, 7, 6073-6081

[57]Zhao W Q, Wang Y H, Zhou Z G, Meng Y L, Chen B L, Oosterhuis D M. 2012b. Effect of nitrogen rates and flowering dates on fiber quality formation of cotton. American Journal of Experimental Agriculture, 2, 133- 159.
[1] WANG Xin-xin, ZHANG Min, SHENG Jian-dong, FENG Gu, Thomas W. KUYPER. Breeding against mycorrhizal symbiosis: Modern cotton (Gossypium hirsutum L.) varieties perform more poorly than older varieties except at very high phosphorus supply levels[J]. >Journal of Integrative Agriculture, 2023, 22(3): 701-715.
[2] Sunusi Amin ABUBAKAR, Abdoul Kader Mounkaila HAMANI, WANG Guang-shuai, LIU Hao, Faisal MEHMOOD, Abubakar Sadiq ABDULLAHI, GAO Yang, DUAN Ai-wang. Growth and nitrogen productivity of drip-irrigated winter wheat under different nitrogen fertigation strategies in the North China Plain[J]. >Journal of Integrative Agriculture, 2023, 22(3): 908-922.
[3] XU Chun-mei, XIAO De-shun, CHEN Song, CHU Guang, LIU Yuan-hui, ZHANG Xiu-fu, WANG Dan-ying.

Changes in the activities of key enzymes and the abundance of functional genes involved in nitrogen transformation in rice rhizosphere soil under different aerated conditions [J]. >Journal of Integrative Agriculture, 2023, 22(3): 923-934.

[4] SONG Ke, QIN Qin, YANG Ye-feng, SUN Li-juan, SUN Ya-fei, ZHENG Xian-qing, LÜ Wei-guang, XUE Yong. Drip fertigation and plant hedgerows significantly reduce nitrogen and phosphorus losses and maintain high fruit yields in intensive orchards[J]. >Journal of Integrative Agriculture, 2023, 22(2): 598-610.
[5] Irshad AHMAD, Maksat BATYRBEK, Khushnuma IKRAM, Shakeel AHMAD, Muhammad KAMRAN, Misbah, Raham Sher KHAN, HOU Fu-jiang, HAN Qing-fang.

Nitrogen management improves lodging resistance and production in maize (Zea mays L.) at a high plant density [J]. >Journal of Integrative Agriculture, 2023, 22(2): 417-433.

[6] CHEN Zhe, REN Wei, YI Xia, LI Qiang, CAI Hong-guang, Farhan ALI, YUAN Li-xing, MI Guo-hua, PAN Qing-chun, CHEN Fan-jun. Local nitrogen application increases maize post-silking nitrogen uptake of responsive genotypes via enhanced deep root growth[J]. >Journal of Integrative Agriculture, 2023, 22(1): 235-250.
[7] ZHOU Qun, YUAN Rui, ZHANG Wei-yang, GU Jun-fei, LIU Li-jun, ZHANG Hao, WANG Zhi-qin, YANG Jian-chang. Grain yield, nitrogen use efficiency and physiological performance of indica/japonica hybrid rice in response to various nitrogen rates[J]. >Journal of Integrative Agriculture, 2023, 22(1): 63-79.
[8] QI Hai-kun, DU Ming-wei, MENG Lu, XIE Liu-wei, A. Egrinya ENEJI, XU Dong-yong, TIAN Xiao-li, LI Zhao-hu. Cotton maturity and responses to harvest aids following chemical topping with mepiquat chloride during bloom period[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2577-2587.
[9] HAN Yu-ling, GUO Dong, MA Wei, GE Jun-zhu, LI Xiang-ling, Ali Noor MEHMOOD, ZHAO Ming, ZHOU Bao-yuan. Strip deep rotary tillage combined with controlled-release urea improves the grain yield and nitrogen use efficiency of maize in the North China Plain[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2559-2576.
[10] WANG Yu-jiao, TAO Zhi-qiang, WANG De-mei, WANG Yan-jie, YANG Yu-shuang, ZHAO Guang-cai, SHI Shu-bing, CHANG Xu-hong. An economic and viable approach to improve wheat quality in Qinghai–Tibetan Plateau, China[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2227-2240.
[11] WANG Le, LIU Yang, WEN Ming, LI Ming-hua, DONG Zhi-qiang, CUI Jing, MA Fu-yu. Growth and yield responses to simulated hail damage in drip-irrigated cotton[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2241-2252.
[12] HUI Jing, LIU Zhi, DUAN Feng-ying, ZHAO Yang, LI Xue-lian, AN Xia, WU Xiang-yu, YUAN Li-xing. Ammonium-dependent regulation of ammonium transporter ZmAMT1s expression conferred by glutamine levels in roots of maize[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2413-2421.
[13] TIAN Chang, SUN Ming-xue, ZHOU Xuan, LI Juan, XIE Gui-xian, YANG Xiang-dong, PENG Jian-wei. Increase in yield and nitrogen use efficiency of double rice with long-term application of controlled-release urea[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2106-2118.
[14] ZHENG Ben-chuan, ZHOU Ying, CHEN Ping, ZHANG Xiao-na, DU Qing, YANG Huan, WANG Xiao-chun, YANG Feng, XIAO Te, LI Long, YANG Wen-yu, YONG Tai-wen. Maizelegume intercropping promote N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1755-1771.
[15] ZHOU Tian-yang, LI Zhi-kang, LI En-peng, WANG Wei-lu, YUAN Li-min, ZHANG Hao, LIU Li-jun, WANG Zhi-qin, GU Jun-fei, YANG Jian-chang. Optimization of nitrogen fertilization improves rice quality by affecting the structure and physicochemical properties of starch at high yield levels[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1576-1592.
No Suggested Reading articles found!