Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 12 Issue (3): 397-404    DOI: 10.1016/S1671-2927(00)8557
PHYSIOLOGY & BIOCHEMISTRY · TILLAGE · CULTIVATION Advanced Online Publication | Current Issue | Archive | Adv Search |
Photosynthesis and Dry Matter Accumulation in Different Chlorophyll-Deficient Rice Lines
 WANG Dan-ying, CHEN Song, TIAO Long-xing, ZHANG Xiu-fu
1.China National Rice Research Institute, Hangzhou 310006, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Three different chlorophyll-deficient rice isogenic lines chl, fgl and pgl, and their recurrent parent zhefu802 (zf802) wereused to study effects of leaf color on photosynthesis, dry matter accumulation, yield, and quality in early season indicarice. Analysis showed that the chlorophyll (Chl.) a/b ratio of isogenic lines chl-8, pgl and fgl was 5.35, 10.00 and 15.46,respectively, among them, line fgl had higher leaf area index (LAI), higher net photosynthetic rate and higher grain-fillingrate than its recurrent parent zf802 at the later period of grain filling stage; while LAI, net photosynthetic rate and drymatter accumulated in lines chl-8 and pgl were lower than in zf802. Differences were found in the grain yield and qualityamong chlorophyll deficient isogenic lines, lines fgl, chl-8 and zf802 had similar grain yield, which was significantly higherthan that of pgl; the highest milling quality was observed in isogenic line fgl, with relatively high protein content. Thisstudy showed that isogenic line fgl would become a unique material for the development of high yield rice with high grainquality because of its slow aging process and relative steady grain-filling rate.

Abstract  Three different chlorophyll-deficient rice isogenic lines chl, fgl and pgl, and their recurrent parent zhefu802 (zf802) wereused to study effects of leaf color on photosynthesis, dry matter accumulation, yield, and quality in early season indicarice. Analysis showed that the chlorophyll (Chl.) a/b ratio of isogenic lines chl-8, pgl and fgl was 5.35, 10.00 and 15.46,respectively, among them, line fgl had higher leaf area index (LAI), higher net photosynthetic rate and higher grain-fillingrate than its recurrent parent zf802 at the later period of grain filling stage; while LAI, net photosynthetic rate and drymatter accumulated in lines chl-8 and pgl were lower than in zf802. Differences were found in the grain yield and qualityamong chlorophyll deficient isogenic lines, lines fgl, chl-8 and zf802 had similar grain yield, which was significantly higherthan that of pgl; the highest milling quality was observed in isogenic line fgl, with relatively high protein content. Thisstudy showed that isogenic line fgl would become a unique material for the development of high yield rice with high grainquality because of its slow aging process and relative steady grain-filling rate.
Keywords:  rice      photosynthesis      dry matter accumulation      chlorophyll-deficient      isogenic lines  
Received: 24 December 2010   Accepted:
Fund: 

This work was supported by the National Natural Science Foundation of China (30800674).

Corresponding Authors:  Correspondence ZHANG Xiu-fu, Tel: +86-571-63370584, Fax: +86-571-63370276, E-mail: zhangxf169@sohu.com   
About author:  WANG Dan-ying, Tel: +86-571-63370276, E-mail: wdanying@yahoo.com.cn

Cite this article: 

WANG Dan-ying, CHEN Song, TIAO Long-xing, ZHANG Xiu-fu. 2012. Photosynthesis and Dry Matter Accumulation in Different Chlorophyll-Deficient Rice Lines. Journal of Integrative Agriculture, 12(3): 397-404.

[1]Dai X B, Cao S Q, Xu X M, Lu W, Zhang R X, Xu C C, Chen Y D, Kuang T Y. 2000. Study on a mutant with low content chlorophyll b in a high yielding rice and its photosynthesis properties. Acta Botanica Sinica, 42, 1289-1294. (in Chinese)

[2]Dai X B, Xu X M, Lu W, Kuang T Y. 2003. Photoinhibition characteristics of a low chlorophyll b mutant of high yield rice. Photosynthetica, 41, 57-60.

[3]Dong F G, Xiong Z M, Qian, Q, Zu X D, Chen S H. 1994. Breeding near-isogenic lines of morphological markers in indica rice. Chinese Journal of Rice Science, 8, 135-139. (in Chinese)

[4]Esfahani M, Ali Abbasi H R, Rabiei B, Kavousi M. 2008. Improvement of nitrogen management in rice paddy fields using chlorophyll meter (SPAD). Paddy Water Environ, 6, 181-188.

[5]Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. 2003. Characterization of a rice chlorophylldeficient mutant using the T-DNA gene-trap system. Plant Cell Physiology, 44, 463-472.

[6]Jiao D M, Li X, Huang X Q, Ji B H. 2002. The relationship among photoinhibition, photooxidation and early aging at later developmental stages in different high yield varieties. Scientia Agricultura Sinica, 35, 487-492. (in Chinese)

[7]Kurata N, Miyoshi K, Nonomura1 K I, Yamazaki Y, Ito Y. 2005. Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiology, 46, 48-62.

[8]Huq E, Al-Sady B, Hudson M, Kim C, Apel K, Quail P H. 2004. PHYTOCHROME-INTERACTING FACTOR 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science, 305, 1937-1941.

[9]Li W M, Pan R S, Lin G L, Liu X D, Chen D Q, Ding F, Zhao J Z, Chen Q F. 1994. Analysis on the linkage between leaf color and several agronomic characters in rice. Genetics, 16, 35-39. (in Chinese)

[10]Lin Y Q, Lu S, Fu Y P, Yu Y H, Hu G C, Si H M, Sun Z X. 2003. Chlorophyll contents and net photosynthetics rates of T-DNA inserted rice mutant population. Chinese Journal of Rice Science, 17, 369-372. (in Chinese)

[11]Long S P, Zhu X G, Naidu S L, Ort D R. 2006. Can improvement in photosynthesis increase crop yields. Plant, Cell and Environment, 29, 315-330.

[12]Murchie E H, Pinto M, Horton P. 2009. Agriculture and the new challenges for photosynthesis research. New Phytologist, 181, 532-552.

[13]Nakanishi H, Nozue H, Suzuki K, Kaneko Y, Taguchi G, Hayashida N. 2005. Characterization of the Arabidopsis thaliana mutant pcb2 which accumulates divinyl chlorophylls. Plant Cell Physiology, 46, 467-473.

[14]Nagata N, Tanaka R, Satoh S, Tanaka A. 2005. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of prochlorococcus species. The plant Cell, 17, 233-240.

[15]Reddi T V V R, Reddi V R. 1984. Frequency and spectrum of chlorophyll mutants induced in rice by chemical mutagens. Theoretical and Applied Genetics, 67, 231-233.

[16]Ramesh K, Chandrasekaran B, Balasubramanian T N, Bangarusamy U B, Sivasamy R, Sankaran N. 2002. Chlorophyll dynamics in rice (Oryza sativa) before and after flowering based on SPAD (chlorophyll) meter monitoring and its relation with grain yield. Journal of Agronomy and Crop Science, 188, 102-105.

[17]Rzeznicka K, Walker C J, Westergren T, Kannangara C G, Wettstein D, Merchant S, Gough S P, Hansson M. 2005. Xantha-l encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis. Proceeding of the National Academy of Sciences of the United States of America, 102, 5886-5891.

[18]Swain D K, Jagtap Sandip S. 2010. Development of SPAD medium-and long-duration rice variety for site-specific nitrogen management. Journal of Agronomy, 9, 38-44.

[19]Xu X M, Zhang R X, Tang Y L. 2004. Effect of low content chlorophyll on distribution properties of absorbed light energy in leaves of mutant rice. Agricultural Science in China, 3, 24-30.

[20]Zeng D L, Qian Q, Dong G J, Zhu X D, Dong F G, Teng S, Guo L B, Cao L Y, Cheng S H, Xiong Z M. 2003. Development of isogenic lines of morphological markers in Indica rice. Acta Botanica Sinica, 45, 1116-1120.

[21]Zhang H, Li J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. 2006. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Molecular Biology, 62, 325-337.

[22]Zhou X S, Wu D X, Shen S Q, Sun J W, Shu Q Y. 2006. High photosynthetic efficiency of a rice (Oryza sativa L.) xantha mutant. Photosynthetica, 44, 316-319.

[23]Zhou X S, Shen S Q, Wu D X, Sun J W, Shu Q Y. 2006. Introduction of a xantha mutation for testing and increasing varietal purity in hybrid rice. Field Crops Reserch, 96, 71-79.

[24]Zhu L, Liu W Z, Wu C, Luan W J, Fu Y P, Hu G C, Si H M, Sun Z X. 2007. Identification and fine mapping of a gene related to pale green leaf phenotype near centromere region in rice. Rice Science, 14, 172-180.
[1] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[2] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[3] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[4] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[5] Siriyaporn Chanapanchai, Wahdan Fitriya, Ida Bagus Made Artadana, Kanyaratt Supaibulwatana. Important role and benefits of Azolla plants in the management of agroecosystem services, biodiversity, and sustainable rice production in Southeast Asia[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3004-3023.
[6] Weiguang Yang, Bin Zhang, Weicheng Xu, Shiyuan Liu, Yubin Lan, Lei Zhang. Impact of hyperspectral reconstruction techniques on the quantitative inversion of rice physiological parameters: A case study using the MST++ model[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2540-2557.
[7] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[8] Jianan Li, Weidong Li, Wenjie Ou, Waqas Ahmed, Mohsin Mahmood, Ahmed S. M. Elnahal, Haider Sultan, Zhan Xin, Sajid Mehmood. Alleviating vanadium-induced stress on rice growth using phosphorus-loaded biochar[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2525-2539.
[9] Kuanyu Zhu, Yuemei Xu, Zhiwei Sun, Yajun Zhang, Weiyang Zhang, Yunji Xu, Junfei Gu, Hao Zhang, Zhiqin Wang, Lijun Liu, Jianhua Zhang, Jianchang Yang. Post-anthesis dry matter production and leaf nitrogen distribution are associated with root-derived cytokinins gradient in rice[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2106-2122.
[10] Shulin Zhang, Yu Wang, Jinmei Hu, Xinyue Cui, Xiaoru Kang, Wei Zhao, Yuemin Pan. The N-mannosyltransferase MoAlg9 plays important roles in the development and pathogenicity of Magnaporthe oryzae[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2266-2284.
[11] Tongming Wang, Kai Zhou, Bingxian Yang, Benoit Lefebvre, Guanghua He. OsEXO70L2 is required for large lateral root formation and arbuscular mycorrhiza establishment in rice[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2035-2045.
[12] Teame Gereziher Mehari, Marijana Skorić, Hui Fang, Kai Wang, Fang Liu, Tesfay Araya, Branislav Šiler, Dengbing Yao, Baohua Wang. Insights into the role of GhCYP and GhTPS in the gossypol biosynthesis pathway via a multiomics and functional-based approach in cotton[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1671-1687.
[13] Zhaowen Mo, Siren Cheng, Yong Ren, Longxin He, Shenggang Pan, Haidong Liu, Hua Tian, Umair Ashraf, Meiyang Duan, Xiangru Tang. Reduced tillage coupled with straw return improves the grain yield and 2-acetyl-1-pyrroline content in fragrant rice[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1718-1737.
[14] Shumin Wang, Tao Guo, Shaolin Zhang, Hong Yang, Li Li, Qingchuan Yang, Junping Quan, Ruicai Long. Functional identification of Medicago truncatula MtRAV1 in regulating growth and development[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1944-1957.
[15] Yuanhao Liu, Ting Sun, Yuyong Li, Jianqiang Huang, Xianjun Wang, Huimin Bai, Jiayi Hu, Zifan Zhang, Shuai Wang, Dongmei Zhang, Xiuxiu Li, Zonghua Wang, Huakun Zheng, Guifang Lin. Proteomic analysis revealed the function of PoElp3 in development, pathogenicity, and autophagy through the tRNA-mediated translation efficiency in the rice blast fungus[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1515-1528.
No Suggested Reading articles found!