Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 11 Issue (2): 187-196    DOI: 10.1016/S1671-2927(00)8536
SECTION 1: THE Bemisia tabaci CRYPTIC SPECIES COMPLEX Advanced Online Publication | Current Issue | Archive | Adv Search |
The Bemisia tabaci Species Complex: Questions to Guide Future Research
 Paul  J De Barro
1.CSIRO Ecosystem Sciences, Brisbane QLD 4001, Australia
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Since 2007 we have began to consider the relationships between the different members of the Bemisia tabaci species complex in a more structured and systematic way. Much of these relationships has been infered from considerations of a portion of the mitochondrial cytochrome oxidase one (mtCOI) gene. While this is a quite limited approach which would benefit from the consideration of a much greater diversity of genetic material, it is the only publically available data that spans the diversity of the species complex. Despite the limitations, the phylogenetic reconstruction that can be derived from this data is useful and can be used as a basis to frame questions and construct testable hypotheses that will form the basis for future research. This study uses the largest available mtCOI dataset, consisting of 383 unique mtCOI haplotypes that spans the full diversity of the B. tabaci species complex as we currently know it, to make a range of observations which are then used to develop questions as guide for future research.

Abstract  Since 2007 we have began to consider the relationships between the different members of the Bemisia tabaci species complex in a more structured and systematic way. Much of these relationships has been infered from considerations of a portion of the mitochondrial cytochrome oxidase one (mtCOI) gene. While this is a quite limited approach which would benefit from the consideration of a much greater diversity of genetic material, it is the only publically available data that spans the diversity of the species complex. Despite the limitations, the phylogenetic reconstruction that can be derived from this data is useful and can be used as a basis to frame questions and construct testable hypotheses that will form the basis for future research. This study uses the largest available mtCOI dataset, consisting of 383 unique mtCOI haplotypes that spans the full diversity of the B. tabaci species complex as we currently know it, to make a range of observations which are then used to develop questions as guide for future research.
Keywords:  mitochondrial cytochrome oxidase one      phylogenetic analysis  
Received: 21 May 2011   Accepted:
Corresponding Authors:  Correspondence Paul J De Barro, Tel: +61-7-38335720, E-mail: paul.debarro@csiro.au     E-mail:  paul.debarro@csiro.au
About author:  Paul J De Barro, Tel: +61-7-38335720, E-mail: paul.debarro@csiro.au

Cite this article: 

Paul J De Barro. 2012. The Bemisia tabaci Species Complex: Questions to Guide Future Research. Journal of Integrative Agriculture, 11(2): 187-196.

mitochondrial cytochrome oxidase one| phylogenetic analysis[1]Abdullahi I, Winter S, Atiri G I, Thottappilly G. 2003. Molecular characterization of whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) populations infesting cassava. Bulletin of Entomological Research, 93, 97- 106.

[2]Ahmed M Z, De Barro P J, Greeff J M, Rena S X, Naveedd M, Qiu B L. 2010. Genetic identity of the bemisia tabaci species complex and association with high cotton leaf curl disease (CLCuD) incidence in Pakistan. Pest Management Science, 67, 307-317.

[3]Alemandri V, De Barro P J, Bejerman N, Argüello Caro E B, Dumón A D, Mattio M F, Rodriguez S M, Truol G. 2012. Species within the Bemisia tabaci (Hemiptera: Aleyrodidae) complex in soybean and bean crops in Argentina. Journal of Economic Entomology. (in Press)

[4]De Barro P J, Ahmed M Z. 2011. Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions. PLoS ONE, 6, e25579. De Barro P, Bourne A. 2010. Ovipositional host choice by an invader accelerates displacement of its indigenous competitor. Biological Invasions, 12, 3013-3023.

[5]De Barro P J, Bourne A, Khan S A, Brancatini V A L. 2006. Host plant and biotype density interactions-their role in the establishment of the invasive B biotype of Bemisia tabaci. Biological Invasions, 8, 287-294.

[6]De Barro P J, Coombs M T. 2009. Post-release evaluation of Eretmocerus hayati Zolnerowich and Rose in Australia. Bulletin of Entomological Research, 99, 193- 206.

[7]De Barro P J, Driver F, Trueman J W H, Curran J. 2000. Phylogenetic relationship of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1. Molecular Phylogenetics and Evolution, 16, 29-36.

[8]De Barro P J, Hart P J. 2000. Mating interactions between two biotypes of the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) in Australia. Bulletin of Entomological Research, 90, 103-112.

[9]De Barro P J, Liu S S, Boykin L M, Dinsdale A B. 2011. Bemisia tabaci: A statement of species status. Annual Review of Entomology, 56, 1-19.

[10]De Barro P J, Trueman J W H, Frohlich D R. 2005. Bemisia argentifolii is a population of B. tabaci, the molecular genetic differentiation of B. tabaci populations around the world. Bulletin of Entomological Research, 95, 193- 203.

[11]Boykin L M, Shatters R G, Rosell R C, McKenzie C L, Bagnall R A, De Barro P J, Frohlich D R. 2007. Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequence. Molecular Phylogenetics and Evolution, 44, 1306-1319.

[12]Carolan J C, Caragea D, Reardon K T, Mutti N S, Dittmer N, Pappan K, Cui F, Castaneto M, Poulain J, Dossat C, et al. 2011. Predictor effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): A dual transcriptomic/proteomic approach. Journal of Proteome Research, 10, 1505-1518.

[13]Cheek S, Macdonald O. 1994. Extended summaries SCI pesticides group symposium management of Bemisia tabaci. Pesticide Science, 42, 135-142.

[14]Crowder D W, Ellers-Kirk C, Tabashnik B E, Carrière Y. 2009. Lack of fitness costs associated with pyriproxyfen resistance in the B biotype of Bemisia tabaci. Pest Management Science, 65, 235-240.

[15]Crowder D W, Ellers-Kirk C, Yafuso C M, Dennehy T J, Degain B A, Harpold V S, Tabashnik B E, Carrière Y. 2008. Inheritance of resistance to pyriproxyfen in Bemisia tabaci (Hemiptera: Aleyrodidae) males and females (B biotype). Journal of Economic Entomology, 101, 927-932.

[16]Crowder D W, Horowitz A R, Showalter A M, Kontsedalov S, De Barro P J, Liu S S, Liu J, Carrière Y. 2010. Behavior and life-history predict competitive displacement by an invasive whitefly. Journal of Animal Ecology, 79, 563-570.

[17]Cui X H, Wan F H, Xie M, Liu T X. 2008. Effects of heat shock on survival and reproduction of two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B. Journal of Insect Science, 8, 1-10.

[18]Cummings M P, Neel M C, Shaw K L. 2008. A genealogical approach to quantifying lineage divergence. Evolution, 62, 2411-2422.

[19]Dalton R. 2006. The Christmas invasion. Nature, 443, 898- 900.

[20]Dinsdale A, Cook L, Riginos C, Buckley Y M, De Barro P J. 2010. Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Annals of the Entomological Society of America, 103, 196-208.

[21]Dubey A K, Ko C C, David B V. 2009. The genus Lipaleyrodes takahashi, a junior synonym of Bemisia quaintance and baker (Hemiptera: Aleyrodidae): A revision based on morphology. Zoological Studies, 48, 539-557.

[22]Edwards O R, Papanicolaou A. 2012. A roadmap for whitefly genomics research: lessons from previous insect genome projects. Journal of Integrative Agriculture, 11, 269-280.

[23]Elbaz M, Lahav N, Morin S. 2010. Evidence for pre-zygotic reproductive barrier between the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Bulletin of Entomological Research, 100, 581-590.

[24]Fishpool L D C, Burban C. 1994. Bemisia tabaci: the whitefly vector of African cassava mosaic geminivirus. Tropical Science, 34, 55-72.

[25]Gao Q G, Luo C, Guo X J, Mo T L, Zhang Z L. 2006. EPGrecorded probing and feeding behaviors of Bemisia tabaci and Trialeurodes vaporariorum on cabbage. Chinese Bulletin of Entomology, 43, 802-805.

[26]Gill R J. 1992. A review of the sweetpotato whitefly in Southern California. Pan-Pacific Entomology, 68, 144- 152.

[27]Gill R J, Brown J K. 2010. Systematics of Bemisia and Bemisia relatives: can molecular techniques solve the Bemisia tabaci complex conundrum-a taxonomist’s viewpoint. In: Stansly P A, Narahjo S E, eds., Bemisia: Bionomics and Management of a Global Pest. Springer, Dordrecht, Germany. pp. 5-29.

[28]Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit L, Adiconis X, Fan L, Raychowdhury R, Zeng Q D, et al. 2011. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nature Biotechnology, 29, 656-652.

[29]Hidalgo S O, Leon Q G, Lindo E O, Vaughan R M. 1975. Informe de la mission de studio de al mosca blanc. In: Banco Nacionale de Nicaragua, Comision Nacionale del Algodon and Misisterio de Agricultura y Ganaderia. p. 6. Holder M, Lewis P O. 2003. Phylogeny estimation: traditional and bayesian approaches. Nature Reviews Genetics, 4, 275-284.

[30]Hu J, De Barro P, Zhao H, Wang J, Nardi F, Liu S S. 2011. An extensive field survey combined with a phylogenetic analysis reveals rapid and widespread invasion of two alien whiteflies in China. PLoS ONE, 6, e16161. Huelsenbeck J P, Ronquist F, Nielsen R, Bollback J P. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294, 2310-2314.

[31]Huelsenbeck J P, Ronquist F. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574.

[32]Jiu M, Zhou X P, Tong L, Xu J, Yang X, Wan F H, Liu S S. 2007. Vector-virus mutualism accelerates population increase of an invasive whitefly. PLoS ONE, 2, e182. Liang P, Cui J Z, Yang X Q, Gao X W. 2007. Effects of host p l a n t s o n i n s e c t i c i d e s u s c e p t i b i l i t y a n d carboxylesterase activity in Bemisia tabaci biotype B and greenhouse whitefly, Trialeurodes vaporariorum. Pest Management Science, 63, 365-371.

[33]Liu S S, Colvin J, De Barro P J. 2012. Species concepts as applied to the whitefly Bemisia tabaci systematics: how many species are there? Journal of Integrative Agriculture, 11, 176-186.

[34]Liu S S, De Barro P J, Xu J, Luan J B, Zang L S, Ruan Y M, Wan F H. 2007. Asymmetric mating Interactions drive widespread invasion and displacement in a whitefly. Science, 318, 1769-1772.

[35]Lu Z C, Wan F H. 2008. Differential gene expression in whitefly (Bemisia tabaci) B-biotype females and males under heat-shock condition. Comparative Biochemistry and Physiology (Part D: Genomics Proteomics), 3, 257-262.

[36]Lu Z C, Wan F H. 2011. Using double-stranded RNA to explore the role of heat shock protein genes in heat tolerance in Bemisia tabaci (Gennadius). Journal of Experimental Biology, 214, 764-769.

[37]Luo C, Xiang Y Y, Guo X J, Zhang F, Zhang Z L. 2007. Comparative on development and reproduction between Bemisla tabaci biotype B and Trialeurodes vaporariorum on four species of host plants. Acta Ecologica Sinica, 27, 1035-1041.

[38]Mound L A. 1963. Host-correlated variation in Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Proceedings of the Royal Society of London (Series A), 38, 171-180.

[39]Mound L A, Halsey S H. 1978. Whitefly of the World. A Systematic Catalogue of the Aleyrodidae (Homoptera) with Host Plant and Natural Enemy Data. Wiley, Chichester, UK. p. 340. Page R D M. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences, 12, 357-358.

[40]Posada D, Crandall K A. 2008. ModeltestO: testing the model of DNA substitution. Bioinformatics, 14, 817- 818.

[41]De Queiroz K. 1998. The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations. In: Howard D J, Berlocher S H, eds., Endless forms: Species and Speciation. Oxford University Press, Oxford, UK. pp. 57-75.

[42]De Queiroz K. 2005. Ernst Mayr and the modern concept of species. Proceedings of the National Academy of Sciences of the United States of America, 102 (Suppl.), 6600-6607.

[43]De Queiroz K. 2007. Species concepts and species delimitation. Systematic Biology, 56, 879-886.

[44]Rodrigo A, Bertels F, Heled J, Noder, R, Shearman H, Tsai P. 2008. The perils of plenty: what are we going to do with all these genes? Philosophical Transactions of the Royal Society of London (Series B Biological Sciences), 363, 3893-3902.

[45]Rosenberg N A. 2007. Statistical tests for taxonomic distinctiveness from observations of monophyly. Evolution, 61, 317-323.

[46]Sun D B, Xu J, Luan J B, Liu S S. 2011. Reproductive incompatibility between the B and Q biotypes of the whitefly Bemisia tabaci: genetic and behavioural evidence. Bulletin of Entomological Research, 101, 211-220.

[47]Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876-4882.

[48]Walling L L. 2009. Adaptive defense responses to pathogens and insects. Advances in Botanical Research, 51, 551-612.

[49]Wang P, Sun D B, Qiu B L, Liu S S. 2011. The presence of six cryptic species of the whitefly Bemisia tabaci complex in China as revealed by crossing experiments. Insect Science, 18, 67-77.

[50]Wang X W, Luan J B, Li J M, Bao Y Y, Zhang C X, Liu S S. 2010. De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics, 11, 400. Wang Z, Yan H, Yang Y, Wu Y. 2010. Biotype and insecticide resistance status of the whitefly Bemisia tabaci from China. Pest Management Science, 66, 1360-1366.

[51]Whitfield C W, Behura S K, Berlocher S H, Clark A G, Johnson J S, Sheppard W S, Smith D R, Suarez A V, Weaver D, Tsutsui N D. 2006. Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science, 314, 642-645.

[52]Xu J, De Barro P J, Liu S S. 2010. Reproductive incompatibility among genetic groups of Bemisia tabaci supports the proposition that the whitefly is a cryptic species complex. Bulletin of Entomological Research, 100, 359-366.

[53]Yu H, Wan F H. 2009. Cloning and expression of heat shock protein genes in two whitefly species in response to thermal stress. Journal of Applied Entomology, 133, 602-614.

[54]Zang L S, ChenW Q, Liu S S. 2006. Comparison of performance on different host plants between the B biotype and a non-B biotype of Bemisia tabaci from Zhejiang, China. Entomologia Experimentalis et Applicata, 121, 221-227.

[55]Zang L S, Liu S S. 2007. A comparative study on the morphological and biological characteristics of the B biotype and a non-B biotype of Bemisia tabaci (Homoptera: Aleyrodidae) from Zhejiang, China. Journal of Insect Behavior, 20, 157-171.

[56]Zhang G F, Lei F, Wan F H, Ma J, Yang Y G. 2008. Effects of plant species switching on dynamics of amylase and proteinase activity of Bemisia tabaci biotype B and Trialeurodes vaporariorum. Biodiversity Science, 16, 313-320. (in Chinese)
[1] Gulzhan N. YESSEMBEKOVA, XIAO Shuang, Assem ABENOV, Talgat KARIBAEV, Alexandr SHEVTSOV, Amirgazin ASYLULAN, Yersyn Y. MUKHANBETKALIYEV, SHUAI Lei, BU Zhi-gao, Sarsenbay K. ABDRAKHMANOV. Molecular epidemiological study of animal rabies in Kazakhstan[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1266-1275.
[2] WANG Deng-feng, YANG Xue-yun, WEI Yu-rong, LI Jian-jun, BOLATI Hongduzi, MENG Xiao-xiao, TUERXUN Gunuer, NUERDAN Nuerbaiheti, WU Jian-yong. Genome characterization of the Caprine arthritis-encephalitis virus in China: A retrospective genomic analysis of the earliest Chinese isolates[J]. >Journal of Integrative Agriculture, 2023, 22(3): 872-880.
[3] HUANG Tian-yu, ZHANG Rui-bin, YANG Lu-lu, CAO Song, Frederic FRANCIS, WANG Bing, WANG Gui-rong. Identification and functional characterization of ApisOr23 in pea aphid Acyrthosiphon pisum[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1414-1423.
[4] ZHANG Yu, YANG Bin, YU Jie, PANG Bao-ping, WANG Gui-rong. Expression profiles and functional prediction of ionotropic receptors in Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae)[J]. >Journal of Integrative Agriculture, 2022, 21(2): 474-485.
[5] MA Xuan-yan, JIAO Wei-qi, LI Heng, ZHANG Wei, REN Wei-chao, WU Yan, ZHANG Zhi-chang, LI Bao-hua, ZHOU Shan-yue. Neopestalotiopsis eucalypti, a causal agent of grapevine shoot rot in cutting nurseries in China[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3684-3691.
[6] XIAO Qian-lin, LI Zhen, WANG Ya-yun, HOU Xian-bin, WEI Xi-mei, ZHAO Xiao, HUANG Lei, GUO Yan-jun, LIU Zhi-zhai. Genome-wide identification, expression and functional analysis of sugar transporters in sorghum (Sorghum bicolor L.) [J]. >Journal of Integrative Agriculture, 2022, 21(10): 2848-2864.
[7] FAN Xu-dong, ZHANG meng-yan, ZHANG Zun-ping, REN Fang, HU Guo-jun, DONG Ya-feng. Prevalence and genetic diversity of grapevine fabavirus isolates from different grapevine cultivars and regions in China[J]. >Journal of Integrative Agriculture, 2020, 19(3): 768-774.
[8] CHANG Jia-ying, LIU Shu-sen, SHI Jie, GUO Ning, ZHANG Hai-jian, CHEN Jie .
A new Curvularia lunata variety discovered in Huanghuaihai Region in China
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 551-560.
[9] TONG Xiao-lei, WANG Zheng-yang, MA Bai-quan, ZHANG Chun-xia, ZHU Ling-cheng, MA Feng-wang, LI Ming-jun. Structure and expression analysis of the sucrose synthase gene family in apple[J]. >Journal of Integrative Agriculture, 2018, 17(04): 847-856.
[10] HU Li-ping, ZHANG Feng, SONG Shu-hui, TANG Xiao-wei, XU Hui, LIU Guang-min, WANG Ya-qin, HE Hong-ju . Genome-wide identification, characterization, and expression analysis of the SWEET gene family in cucumber[J]. >Journal of Integrative Agriculture, 2017, 16(07): 1486-1501.
[11] WEN Chu, ZHONG Qi, ZHANG Jia-dong, LU Jian-shan, ZHANG Li-xin, YUAN Xi-min, GAN Menghou, CAI Xue-peng, ZHANG Guo-zhong. Sequence and phylogenetic analysis of chicken reoviruses in China[J]. >Journal of Integrative Agriculture, 2016, 15(8): 1846-1855.
[12] QIU Cai-ling, ZHANG Zhi-xiang, LI Shi-fang, BAI Yan-ju, LIU Shang-wu, FAN Guo-quan, GAO Yan-ling, ZHANG Wei, ZHANG Shu, Lü Wen-he, Lü Dian-qiu. Occurrence and molecular characterization of Potato spindle tuber viroid (PSTVd) isolates from potato plants in North China[J]. >Journal of Integrative Agriculture, 2016, 15(2): 349-363.
[13] DOU Ling-ling, GUO Ya-ning, Ondati Evans, PANG Chao-you, WEI Heng-ling, SONG Mei-zhen, FAN Shu-li, YU Shu-xun. Identification and expression analysis of group III WRKY transcription factors in cotton[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2469-2480.
[14] SU Xiao-na, XIE Qing-mei, LIAO Chang-tao, YAN Zhuan-qiang, CHEN Wei-guo, BI Ying-zuo, CHEN Feng. Sequence and phylogenetic analysis of hemagglutinin genes of H9N2 influenza viruses isolated from chicken in China from 2013 to 2015[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2604-2612.
[15] SONG Zhen, LI Zhong-an, LIU Ke-hong, ZHOU Chang-yong. Complete genome sequence analysis of two Citrus tatter leaf virus (CTLV) isolates from China[J]. >Journal of Integrative Agriculture, 2015, 14(5): 984-987.
No Suggested Reading articles found!