期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 转录组和代谢组分析揭示不同抗倒伏杂交小麦木质素合成积累的差异机制
YANG Wei-bing, ZHANG Sheng-quan, HOU Qi-ling, GAO Jian-gang, WANG Han-Xia, CHEN Xian-Chao, LIAO Xiang-zheng, ZHANG Feng-ting, ZHAO Chang-ping, QIN Zhi-lie
Journal of Integrative Agriculture    2024, 23 (4): 1105-1117.   DOI: 10.1016/j.jia.2023.06.027
摘要230)      PDF    收藏

杂交小麦应用是未来提高小麦产量的一种途径,当前部分杂交小麦品种株高的增加在一定程度上加大了其倒伏风险。本研究以个抗倒伏性不同的杂交组合为试验材料,通过分析不同灌浆时期茎秆相关性状变化基部第二节间转录组和代谢组数据及基部第二节间木质素合成积累揭示其抗倒伏差异的形成机制。结果表明,抗倒伏杂交组合茎秆相关性状,如茎秆抗折力、穿刺强度、茎秆充实度及木质素含量(含GS型单体)均显著高于倒伏敏感性组合。KEGG富集分析表明,灌浆后期差异代谢物和差异表达基因主要被显著富集到苯丙烷生物合成途径。本试验共鉴定了35个参与苯丙烷途径的关键调控基因,其中42%的基因在灌浆后期显著差异表达,在显著差异表达基因中,超过80%的基因在抗倒伏组合中的表达显著高于其在倒伏敏感组合中的表达,而抗倒伏组合木质素合成途径中松柏醛、阿魏酸和松柏醇等中间代谢物显著低于倒伏敏感组合。综合分析表明,抗倒伏组合灌浆后期具有较高抗倒伏能力的关键在于具有较高的木质素合成能力。本验还通过已审定杂交小麦和常规小麦品种茎秆特征比较,提出了培育抗倒伏杂交小麦组合应关注的茎秆性状。

参考文献 | 相关文章 | 多维度评价
2. Interactions between phosphorus availability and microbes in a wheat–maize double cropping system: a reduced fertilization scheme
YU Xiao-jing, CHEN Qi, SHI Wen-cong, GAO Zheng, SUN Xiao, DONG Jing-jing, LI Juan, WANG Heng-tao, GAO Jian-guo, LIU Zhi-guang, ZHANG Min
Journal of Integrative Agriculture    2022, 21 (3): 840-854.   DOI: 10.1016/S2095-3119(20)63599-7
摘要197)      PDF    收藏

小麦-玉米轮作体系减磷措施调控土壤磷素有效性与微生物间的耦合机制研究鲜有报道。本研究基于初始高磷(30.36 mg kg-1)和低磷水平(9.78 mg kg-1)石灰性土壤,通过连续四季的盆栽试验(2016-2018),探究小麦-玉米轮作体系仅麦季施磷(Pw)较常规麦-玉两季均施磷肥(Pwm)措施对作物产量、土壤有效磷和微生物群落结构的影响。结果表明,高磷水平Pw处理较Pwm处理每年减少33.3%的磷肥投入情况下,作物总产量能够连续两年稳产。玉米大喇叭口期,Pw处理土壤水溶性磷浓度与Pwm处理含量无显著差异。土壤磷含量显着影响土壤微生物群落,尤其是真菌群落。Pw处理变形菌门的相对丰度和碱性磷酸酶(ALP)活性显著高于Pwm处理(分别为11.4和13.3%)。高磷水平下,土壤微生物对产量的贡献大于土壤有效磷的影响。Pw处理芽孢杆菌和根瘤菌相对丰度显著高于Pwm处理。芽孢杆菌与酸性磷酸酶(ACP)活性呈显着正相关,根瘤菌与ACP和ALP活性均呈显着正相关,可能利于土壤磷素活化。本研究说明高磷土壤条件下,小麦-玉米轮作体系仅麦季施磷可通过土壤磷有效性与微生物间的耦合实现全年作物稳产。


参考文献 | 相关文章 | 多维度评价
3. 小麦茎杆相关性状的配合力及其与抗倒伏杂种优势形成的关系研究
YANG Wei-bing, QIN Zhi-lie, SUN Hui, HOU Qi-ling, GAO Jian-gang, CHEN Xian-chao, ZHANG Li-ping, WANG Yong-bo, ZHAO Chang-ping, ZHANG Feng-ting
Journal of Integrative Agriculture    2022, 21 (1): 26-35.   DOI: 10.1016/S2095-3119(20)63408-6
摘要243)      PDF    收藏

随着杂交小麦的面积逐渐增加,倒伏正在成为其获得高产的主要限制因素之一。然而,关于茎秆相关性状的配合力及其与抗倒伏杂种优势形成的研究较少。本研究,按照不完全双列杂交设计(NCII),以茎秆相关性状显著差异的3个不育系(母本)和8个恢复系(父本)为试验材料,配置24个杂交组合。对基部第二节间长度、基部第二节间抗折力等茎秆相关的8个性状开展主成分分析(PCA)、配合力分析及杂种优势分析。PCA结果表明,8个变量可被提取为两个主要因子,分别为正相关因子(因子1)和负相关因子(因子2),分别解释总变异的52.3%和33.2。PCA和指标权重分析表明,因子1相关性状在抗倒伏优势形成中起主要作用,研究还表明,茎秆相关性状的遗传以加性效应为主。以恢复系R1R4R6及R7与不育系M3配置组合可获得具有较高抗倒伏能力的杂交组合,与其因子2相关性状具有较低的一般配合力效应(GCA),及因子1相关性状具有较高的GCA密切相关。杂种优势分析表明,因子1相关性状(除基部第二节间壁厚外)的GCA或特殊配合力效应(SCA)与抗倒伏杂种优势呈正相关关系一般而言,抗倒伏杂种优势与不育系因子1相关性状GCA的相关系数显著高于其与恢复系的,此外,不育系因子1相关性状具有更高的方差值,表明,在配置杂交组合时应特别关注不育系因子1相关性状的选择。遗传分析表明,基第二节间直径和重心高度的狭义遗传力明显低于其他性状(<60%),表明,在亲本选育时这两个性状适合在高世代进行选择。这些发现可为亲本选育和抗倒伏杂种优势的利用提供理论依据。

参考文献 | 相关文章 | 多维度评价
4. Heterologous expression of the ThIPK2 gene enhances drought resistance of common wheat
ZHANG Shu-juan, LI Yu-lian, SONG Guo-qi, GAO Jie, ZHANG Rong-zhi, LI Wei, CHEN Ming-li, LI Gen-ying
Journal of Integrative Agriculture    2020, 19 (4): 941-952.   DOI: 10.1016/S2095-3119(19)62714-0
摘要129)      PDF    收藏
ThIPK2 is an inositol polyphosphate kinase gene cloned from Thellungiella halophila that participates in diverse cellular processes.  Drought is a major limiting factor in wheat (Triticum aestivum L.) production.  The present study investigated whether the application of the ThIPK2 gene could increase the drought resistance of transgenic wheat.  The codon-optimized ThIPK2 gene was transferred into common wheat through Agrobacterium-mediated transformation driven by either a constitutive maize ubiquitin promoter or a stress-inducible rd29A promoter from Arabidopsis.  Molecular characterization confirmed the presence of the foreign gene in the transformed plants.  The transgenic expression of ThIPK2 in wheat led to significantly improve drought tolerance compared to that observed in control plants.  Compared to the wild type (WT) plants, the transgenic plants showed higher seed germination rates, better developed root systems, a higher relative water content (RWC) and total soluble sugar content, and less cell membrane damage under drought stress conditions.  The expression profiles showed different expression patterns with the use of different promoters.  The codon-optimized ThIPK2 gene is a candidate gene to enhance wheat drought stress tolerance by genetic engineering.
 
参考文献 | 相关文章 | 多维度评价
5. Impacts of the COVID-19 pandemic on rural poverty and policy responses in China
LUO Ren-fu, LIU Cheng-fang, GAO Jing-jing, WANG Tian-yi, ZHI Hua-yong, SHI Peng-fei, HUANG Ji-kun
Journal of Integrative Agriculture    2020, 19 (12): 2946-2964.   DOI: 10.1016/S2095-3119(20)63426-8
摘要136)      PDF    收藏
Given the sudden outbreak of the COVID-19 pandemic, a timely study on the impacts of and policy response to the pandemic on rural poverty in China is critically important because China has aimed to completely eradicate extreme poverty by the end of 2020.  This paper uses data from the latest round of a nationally representative household panel survey to examine the impacts of the pandemic on rural poverty in China.  Our data show that 11.9% of sample households were ever officially registered as poor households between 2013 and 2019, and this poverty incidence fell to 2.7% by the end of 2019.  In the middle February of 2020, 23% of the households who have graduated from poverty since 2013 perceived that they would fall back into poverty due to the COVID-19.  Among those never poor households, 7.1% perceived that they would possibly fall into poverty due to the pandemic.  Results from both descriptive and multivariate analyses consistently show the interruptions that the pandemic caused in off-farm employment is an important channel that led households to perceive of falling back into or falling into poverty.  We also find households in the bottom four quintiles when ranked in terms of household income per capita are much more likely to perceive themselves of falling back into or falling into poverty during this pandemic than those in the richest quintile.  Meanwhile, our results show that the education and age of household heads, as well as being from Hubei Province matter in explaining household perception about falling back into or falling into poverty in some cases but not all.  The paper concludes with a set of policy responses that China has taken to mitigate the impact of COVID-19 pandemic on poverty alleviation. 
参考文献 | 相关文章 | 多维度评价
6. Yield-related agronomic traits evaluation for hybrid wheat and relations of ethylene and polyamines biosynthesis to filling at the mid-grain filling stage
YANG Wei-bing, QIN Zhi-lie, SUN Hui, LIAO Xiang-zheng, GAO Jian-gang, WANG Yong-bo, HOU Qi-ling, CHEN Xian-chao, TIAN Li-ping, ZHANG li-ping, MA Jin-xiu, CHEN Zhao-bo, ZHANG Feng-ting, ZHAO Chang-ping
Journal of Integrative Agriculture    2020, 19 (10): 2407-2418.   DOI: 10.1016/S2095-3119(19)62873-X
摘要106)      PDF    收藏
Because of the yield increase of 3.5–15% compared to conventional wheat, hybrid wheat is considered to be one of the main ways to greatly improve the wheat yield in the future.  In this study, we performed a principal component analysis (PCA) on two-line hybrids wheat and their parents using the grain weight (GW), the length of spike (LS), the kernel number of spike (KSN), and spike number (SPN) as variables.  The results showed that the variables could be classified into three main factors, the weight factor (factor 1), the quantity factor 1 (factor 2) and the quantity factor 2 (factor 3), which accounted for 37.1, 22.6 and 18.5%, respectively of the total variance in different agronomic variables, suggesting that the GW is an important indicator for evaluating hybrid combinations, and the grain weight of restorer line (RGW) could be used as a reference for parents selection.  The hybrid combination with a higher score in factor 1 direction and larger mid-parent heterosis (MPH) of the GW and its parents were used to carry out the analysis of grain filling, 1-aminocylopropane-1-carboxylicacid (ACC) and polyamine synthesis related genes.  The results suggested that the GW of superior grain was significantly higher than that of inferior grains in BS1453×JS1 (H) and its parents.  Both grain types showed a weight of H between BS1453 (M) and JS1(R), and a larger MPH, which may be caused by their differences in the active filling stage and the grain filling rate.  The ADP-glucose pyrophosphorylase (AGPase), granule bound starch synthase I (GBSSI), starch synthase III (SSS), and starch branching enzyme-I (SBE-I) expression levels of H were intermediated between M and R, which might be closely related to MPH formation of the GW.  Compared with R and H, the GW of M at maturity was the lowest.  The expression levels of spermidine synthase 2 (Spd2), ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) had significantly positive correlations with the grain filling rate (r=0.77*, 0.51*, 0.59*), suggesting their major roles in the grain filling and heterosis formation.  These provide a theoretical basis for improving the GW of photo-thermo-sensitive male sterile lines (PTSMSL) by changing the endogenous polyamine synthesis in commercial applications.
  
参考文献 | 相关文章 | 多维度评价
7. Transcriptome profiling using RNA-seq to provide insights into foxtail millet seedling tolerance to short-term water deficit stress induced by PEG-6000
XU Bing-qin, GAO Xiao-li, GAO Jin-feng, LI Jing, YANG Pu, FENG Bai-li
Journal of Integrative Agriculture    2019, 18 (11): 2457-2471.   DOI: 10.1016/S2095-3119(19)62576-1
摘要144)      PDF    收藏
 
参考文献 | 相关文章 | 多维度评价
8. Systemic acquired resistance, NPR1, and pathogenesis-related genes in wheat and barley
WANG Xiao-dong, BI Wei-shuai, GAO Jing, YU Xiu-mei, WANG Hai-yan, LIU Da-qun
Journal of Integrative Agriculture    2018, 17 (11): 2468-2476.   DOI: 10.1016/S2095-3119(17)61852-5
摘要384)      PDF(pc) (2791KB)(744)    收藏
In Arabidopsis, systemic acquired resistance (SAR) is established beyond the initial infection by a pathogen or is directly induced by treatment with salicylic acid (SA) or its functional analogs, 2,6-dichloroisonicotinic acid (INA) and benzothiadiazole (BTH).  NPR1 protein is considered the master regulator of SAR in both SA signal sensing and transduction.  In wheat (Triticum aestivum) and barley (Hordeum vulgare), both pathogen infection and BTH treatment can induce broad-spectrum resistance to various diseases, including powdery mildew, leaf rust, Fusarium head blight, etc.  However, three different types of SAR-like responses including acquired resistance (AR), systemic immunity (SI), and BTH-induced resistance (BIR) seem to be achieved by activating different gene pathways.  Recent research on wheat and barley NPR1 homologs in AR and SI has provided the initial clue for understanding the mechanism of SAR in these two plant species.  In this review, the specific features of AR, SI, and BIR in wheat and barley were summarized and compared with that of SAR in model plants of Arabidopsis and rice.  Research updates on downstream genes of SAR, including pathogenesis-related (PR) and BTH-induced genes, were highlighted.
 
参考文献 | 相关文章 | 多维度评价
9. Reducing nitrogen fertilization of intensive kiwifruit orchards decreases nitrate accumulation in soil without compromising crop production
LU Yong-li, KANG Ting-ting, GAO Jing-bo, CHEN Zhu-jun, ZHOU Jian-bin
Journal of Integrative Agriculture    2018, 17 (06): 1421-1431.   DOI: 10.1016/S2095-3119(17)61899-9
摘要460)      PDF    收藏
Excessive nitrogen (N) fertilization of high value horticultural crops is a common problem that not only increases the cost to farmers, but also negatively affects crop growth and the environment.  A three-year field experiment was conducted in an intensive kiwifruit orchard in Shaanxi Province, China to compare the effects of reduced N fertilization applied as urea (U), and controlled release urea (CRU) on the N nutrition of kiwi vines, fruit yield and quality, and nitrate-N accumulation in the soil profile.  The three treatments included a conventional N application rate (CF-U, 900 kg N ha–1 yr–1 as urea), two reduced N fertilization treatments where the amount of N fertilizer applied as U and CRU was reduced by 25% in 2013 and 2014, and by 45% in 2015.  The 25 and 45% reduced N treatments had no adverse effects on the N concentrations in leaves and pruning branches and the fruit yield and quality of kiwi vines.  However, they significantly enhanced the partial factor productivity of applied N (PFPN) and the economic benefits, and reduced nitrate accumulation in the 0–200 cm soil profile.  The same benefits of reduced N fertilization were observed for both the U and CRU treatments, but the CRU treatment had the added benefit of decreasing the loss of nitrate through leaching.  We concluded that the current level of N fertilization in kiwi orchards is very excessive, and reducing the N fertilizer rate by 25–45% could not only guarantee fruit yield, but also reduce N accumulation and loss.
 
参考文献 | 相关文章 | 多维度评价
10. MAPKs and acetyl-CoA are associated with Curvularia lunata pathogenicity and toxin production in maize
NI Xuan, GAO Jin-xin, YU Chuan-jin, WANG Meng, Sun Jia-nan, LI Ya-qian, CHEN Jie
Journal of Integrative Agriculture    2018, 17 (01): 139-148.   DOI: 10.1016/S2095-3119(17)61697-6
摘要633)      PDF    收藏
Mitogen-activated protein kinase (MAPK) cascades play an important role in extracellular signal transduction and are involved in the pathogenicity of fungal pathogens to host plants.  In Curvularia lunata, the roles of two MAPK genes, Clk1 and Clm1, have already been studied.  Clk1 is involved in conidia formation and pathogenicity, and Clm1 is closely related to pathogen cell wall formation and pathogenicity to maize leaves.  In this study, a third C. lunata MAPK gene, Clh1, which is homologous to hog1, was successfully cloned.  We found that a Clh1 deletion mutant had lower intracellular glycerol accumulation than the wild-type stain and was unable to grow normally under osmotic stress conditions.  Furthermore, the deletion mutants of three C. lunata MAPK genes (Clk1, Clm1 and Clh1) had lower levels of acetyl-CoA, which is an important intermediate product in the synthesis of melanin and furan toxin, and down-regulated expression of pathogenicity-associated genes.  Furthermore, pathogenicity and the ability to produce toxin were restored after adding acetyl-CoA to the culture medium, suggesting that acetyl-CoA is closely involved in the pathogen MAPK signaling pathway. 
参考文献 | 相关文章 | 多维度评价
11. Inheritance and molecular characterization of resistance to AHAS-inhibiting herbicides in rapeseed
HU Mao-long, PU Hui-ming, GAO Jian-qin, LONG Wei-hua, CHEN Feng, ZHOU Xiao-ying, ZHANG Wei, PENG Qi, CHEN Song, ZHANG Jie-fu
Journal of Integrative Agriculture    2017, 16 (11): 2421-2433.   DOI: 10.1016/S2095-3119(17)61659-9
摘要791)      PDF    收藏
Rapeseed is a very important oil crop in China; however, its production is challenging due to the absence of effective weed management strategies.  This is predominantly because of a shortage of herbicide resistance genes.  Acetohydroxyacid synthase (AHAS) herbicides inhibit AHAS, a key enzyme involved in branched-chain amino acid synthesis that is required for plant growth.  A rapeseed line designated M342 with AHAS herbicide resistance was developed through seed mutagenesis and was studied to assess the level and mode of inheritance of the resistance and to identify the molecular basis of resistance.  M342 possessed a high level of cross-resistance to sulfonylureas (SUs) and imidazolinones (IMIs).  This resistance was due to AHAS insensitivity to these herbicides and was inherited as a dominant trait conferred by a single nuclear-encoded gene.  Molecular analysis revealed the presence of a Trp574Leu mutation in M342, and an allele-specific cleaved amplified polymorphic sequence (AS-CAPS) marker was developed and cosegregated with herbicide resistance in the F2, BC1, and BC2 populations.  This mutation altered the transcript levels of BnAHAS1 and BnAHAS3 in M342 compared with those in the wild type, but it did not affect the agronomic or quality traits.  The simple genetic inheritance of this mutation and the availability of the cleaved amplified polymorphic sequence (CAPS) marker and herbicide resistance gene should facilitate the development of herbicide-resistant rapeseed cultivars for effective weed control in China.  
参考文献 | 相关文章 | 多维度评价
12. Effects of relative humidity on animal health and welfare
XIONG Yan, MENG Qing-shi, GAO Jie, TANG Xiang-fang, ZHANG Hong-fu
Journal of Integrative Agriculture    2017, 16 (08): 1653-1658.   DOI: 10.1016/S2095-3119(16)61532-0
摘要1687)      PDF    收藏
   Farm animals are sources of meat, milk and eggs for the humans, and animal health ensures the quality and security of these agricultural and sideline products. The animal raising conditions in livestock stations and poultry houses play vital roles in both animal health and production. One of the major factors affecting raising conditions, relative humidity, has not received much attention even though it is important for animal husbandry. In this review, we summarize the impacts of relative humidity on animal health and welfare to draw attention for its importance in the improvement of animal raising conditions in the future.
参考文献 | 相关文章 | 多维度评价
13. The allelic distribution and variation analysis of the NAM-B1 gene in Chinese wheat cultivars
CHEN Xue-yan, SONG Guo-qi, ZHANG Shu-juan, LI Yu-lian, GAO Jie, Islam Shahidul, MA Wu-jun, LI Gen-ying, JI Wan-quan
Journal of Integrative Agriculture    2017, 16 (06): 1294-1303.   DOI: 10.1016/S2095-3119(16)61459-4
摘要844)      PDF    收藏
The NAM-B1 gene is a member of the NAC (NAM, ATAF, and CUC) transcription factor family and plays an important role in regulating wheat grain protein content (GPC).  The ancestral NAM-B1 allele has been discovered in many tetraploid wild emmer (Triticum turgidum ssp. dicoccoides) accessions and few domesticated emmer accessions (T. turgidum ssp. dicoccum), however, it is rarely found in hexaploid bread wheat (Triticum aestivum L.).  There are no systematic reports on the distribution of NAM-B1 alleles in Chinese wheat cultivars.  In this study, the NAM-B1 alleles in 218 Chinese cultivars were investigated.  The cultivars were collected from five major wheat regions (12 provinces), covering most of the winter wheat growing regions in China.  The results showed that the NAM-B1 gene is present in 53 (24.3%) cultivars and absent in the remaining 165 (75.7%) cultivars.  Further analysis revealed that in contrast to the wild-type allele, the NAM-B1 gene in Chinese wheat cultivars contained a 1-bp insertion in the coding region.  This caused a frame-shift mutation and introduced a stop codon in the middle of the gene, rendering it non-functional.  Polymorphisms were detected in DNA sequences of 21 cultivars among these 53 cultivars.  However, cDNA sequence analysis suggested that these variations in the exon region were not able to restore NAM-B1 gene (1-bp insertion) function.  Thus, exploring the distribution of NAM-B1 gene variations (1-bp insertion and deletion) can provide some information for improving the quality of winter wheat in China and other countries.
参考文献 | 相关文章 | 多维度评价
14. Sod gene of Curvularia lunata is associated with the virulence in maize leaf
GAO Shi-gang, NI Xuan, LI Ying-ying, FU Ke-he, YU Chuan-jin, GAO Jin-xin, WANG Meng, LI Ya-qian, CHEN Jie
Journal of Integrative Agriculture    2017, 16 (04): 874-883.   DOI: 10.1016/S2095-3119(16)61513-7
摘要976)      PDF    收藏
Curvularia leaf spot, caused mainly by Curvularia lunata, is a widespread plant disease in China.  In the recent years, directional host selection by the pathogen, which likely results in the virulence differentiation in pathogens, is widely reported.  Among the hallmarks potentially associated to pathogen variation in virulence, superoxide dismutase gene Sod has been found to be closely related to the enhancement of virulence.  In the present study, the full-length of Sod was obtained via Blastn alignment against GenBank and the whole genome of C. lunata.  In order to understand the role of Sod in the virulence variation in C. lunata, targeted gene disruption was performed to construct Sod mutants.  The cell wall degrading enzyme (CWDE) activities and toxin production of ΔSod were not distinctly different from wild-type strain CX-3 and its complon.  However, at an early stage of infection, ΔSod virulence appeared to be lower than CX-3 and the complon, while at a later stage, its virulence gradually returned to the level of CX-3 and the complon.  Furthermore, the melanin production of ΔSod was significantly reduced compared to CX-3 and the complon, suggesting that Sod gene influences the virulence by regulating melanin production at an early stage of infection but is not essential for pathogenicity.  However, the disruption of Sod did not significantly affect the transcriptional expression of the melanin biosynthesis-associated genes, brn1 and scd.  Therefore, we infer that Sod in C. lunata are involved, to some extent, with the virulence in maize leaf, but still needs further studies to have a clear understanding of its mechanism.
参考文献 | 相关文章 | 多维度评价
15. Corn cob biochar increases soil culturable bacterial abundance without enhancing their capacities in utilizing carbon sources in Biolog Eco-plates
JIANG Lin-lin, HAN Guang-ming, LAN Yu, LIU Sai-nan, GAO Ji-ping, YANG Xu, MENG Jun, CHEN Wen-fu
Journal of Integrative Agriculture    2017, 16 (03): 713-724.   DOI: 10.1016/S2095-3119(16)61338-2
摘要1072)      PDF    收藏
Biochar has been shown to influence soil microbial communities in terms of their abundance and diversity.  However, the relationship among microbial abundance, structure and C metabolic traits is not well studied under biochar application.  Here it was hypothesized that the addition of biochar with intrinsic properties (i.e., porous structure) could affect the proliferation of culturable microbes and the genetic structure of soil bacterial communities.  In the meantime, the presence of available organic carbon in biochar may influence the C utilization capacities of microbial community in Biolog Eco-plates.  A pot experiment was conducted with differenct biochar application (BC) rates: control (0 t ha–1), BC1 (20 t ha–1) and BC2 (40 t ha–1).  Culturable microorganisms were enumerated via the plate counting method.  Bacterial diversity was examined using denaturing gradient gel electrophoresis (DGGE).  Microbial capacity in using C sources was assessed using Biolog Eco-plates.  The addition of biochar stimulated the growth of actinomyces and bacteria, especially the ammonifying bacteria and azotobacteria, but had no significant effect on fungi proliferation.  The phylogenetic distribution of the operational taxonomic units could be divided into the following groups with the biochar addition: Firmicutes, Acidobacteria, Gemmatimonadetes, Actinobacteria, Cyanobacteria and α-, β-, γ- and δ-Proteobacteria (average similarity >95%).  Biochar application had a higher capacity utilization for L-asparagine, Tween 80, D-mannitol, L-serine, γ-hydroxybutyric acid, N-acetyl-D-glucosamine, glycogen, itaconic acid, glycyl-L-glutamic acid, α-ketobutyricacid and putrescine, whereas it had received decreased capacities in using the other 20 carbon sources in Biolog Eco-plates.  Redundancy analysis (RDA) revealed that the physico-chemical properties, indices of bacterial diversity, and C metabolic traits were positively correlated with the appearance of novel sequences under BC2 treatment.  Our study indicates that the addition of biochar can increase culturable microbial abundance and shift bacterial genetic structure without enhancing their capacities in utilizing C sources in Biolog Eco-plates, which could be associated with the porous structure and nutrients from biochar.
参考文献 | 相关文章 | 多维度评价
16. Effect of Fuzheng Jiedu granule on immunological function and level of immune-related cytokines in immune-suppressed mice
YU Zhan-mei, HUANG Xian-hui, YAN Chao-qun, GAO Jin, LIANG Zi-sen
Journal of Integrative Agriculture    2016, 15 (3): 650-657.   DOI: 10.1016/S2095-3119(14)60971-0
摘要1652)      PDF    收藏
Fuzheng Jiedu granule exhibits a number of health benefits and it is thought that the mechanisms involved in these effects are due to the modulation of immunity. In this article, we studied the effect of Fuzheng Jiedu granule on immunological function and the expression of immune-related cytokines in immune-suppressed mice. 72 mice were randomly divided into six groups, with 12 in each group. The control groups included an untreated group, a negative control group (Cyclophosphamide) and a positive control group (Astragalus polysaccharide). There were three treated groups, which were given different doses of Fuzheng Jiedu granule: a low dose (100 mg kg–1), a medium dose (400 mg kg–1) and a high dose (600 mg kg–1). With the exception of the untreated control animals, each group received an intraperitoneal injection of Cyclophosphamide (100 mg kg–1) for 3 days to establish the immune-suppressed model. Mice were then treated for 19 consecutive days and, 24 h after the last treatment, blood was taken for the eyeballs and serum separation was performed. Analysis was made of the levels of related cytokines (IgA, IgG, IgM, IL-6, IFN-γ, C3, C4 and TNF-α), the transformation of lymphocytes and the immune organ indexes. The results showed that Fuzheng Jiedu granule can improve the levels of cytokines, the rate of proliferation of lymphocytes and the immune organ indexes of immune-suppressed mice.
参考文献 | 相关文章 | 多维度评价
17. The effects of the unsaturated degree of long-chain fatty acids on the rumen microbial protein content and the activities of transaminases and dehydrogenase in vitro
GAO Jian, JING Yu-jia, WANG Meng-zhi, SHI Liang-feng, LIU Shi-min
Journal of Integrative Agriculture    2016, 15 (2): 424-431.   DOI: 10.1016/S2095-3119(15)61081-4
摘要1816)      PDF    收藏
This study investigated the effects of the degree of unsaturation (unsaturity) of long-chain fatty acids on microbial protein content and the activities of transaminases and dehydrogenase in vitro using goat rumen fluid as the cultural medium. Six types of fatty acids, stearic acid (C18:0, group A, control group), oleic acid (C18:1, n-9, group B), linoleic acid (C18:2, n-6, group C), α-linolenic acid (C18:3, n-3, group D), arachidonic acid (C20:4, n-6, group E), and eicosapentaenoic acid (C20:5, n-3, group F), were tested, and the inclusion ratio of each fatty acid was 3% (w/w) in total of culture substrate. Samples were taken at 0, 3, 6, 9, 12, 18 and 24 h, respectively, during culture for analyses. Compared with stearic acid, linoleic acid, α-linolenic acid, and arachidonic acid increased the bacterial protein content, while oleic acid and eicosapentaenoic acid had no significant effects; the protozoal protein content was reduced for all the unsaturated fatty acids, and the magnitude of the reduction appeared to be associated with the degree of unsaturity of fatty acids. The total microbial protein content was dominantly accounted by the protozoal protein content (about 4–9 folds of the bacterial protein), and only increased by linoleic acid, but reduced by oleic acid, arachidonic acid and eicosapentaenoic acid. There were no significant effects in the activities of both glutamic oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) for all the other fatty acids, except for arachidonic acid which enhanced GOT activity and oleic acid which enhanced GPT activity. The total dehydrogenase activity was positively correlated with the degree of unsaturation of fatty acids. In conclusion, the inclusion of 3% of long-chain unsaturated fatty acids increased bacterial protein content, whereas reduced protozoal protein content and enhanced dehydrogenase activity. The fatty acids with more than three double bonds had detrimental effects on the microbial protein content. This work demonstrates for the first time the effect rule of the unsaturation degree of long-chain fatty acids on the rumen microbial protein in vitro.
参考文献 | 相关文章 | 多维度评价
18. Impacts of the unsaturation degree of long-chain fatty acids on the volatile fatty acid profiles of rumen microbial fermentation in goats in vitro
GAO Jian, WANG Meng-zhi, JING Yu-jia, SUN Xue-zhao, WU Tian-yi, SHI Liang-feng
Journal of Integrative Agriculture    2016, 15 (12): 2827-2833.   DOI: 10.1016/S2095-3119(16)61418-1
摘要874)      PDF    收藏
    This study investigated the impacts of the degree of unsaturation (unsaturity) of long-chain fatty acids on volatile fatty acid (VFA) profiles of rumen fermentation in vitro. Six types of long-chain fatty acids, including stearic acid (C18:0, control group), oleic acid (C18:1, n-9), linoleic acid (C18:2, n-6), α-linolenic acid (C18:3, n-3), arachidonic acid (C20:4, n-6) and eicosapentaenoic acid (C20:5, n-3), were tested. Rumen fluid from three goats fitted with ruminal fistulae was used as inoculum and the inclusion rate of long-chain fatty acid was at 3% (w/w) of substrate. Samples were taken for VFA analysis at 0, 3, 6, 9, 12, 18 and 24 h of incubation, respectively. The analysis showed that there were significant differences in the total VFA among treatments, sampling time points, and treatment×time point interactions (P<0.01). α-Linolenic acid had the highest total VFA (P<0.01) among different long-chain fatty acids tested. The molar proportion of acetate in total VFA significantly differed among treatments (P<0.01) and sampling time points (P<0.01), but not treatment×time point interactions (P>0.05). In contrast, the molar proportion of propionate did not differ among treatments during the whole incubation (P>0.05). However, for butyrate molar proportions, significant differences were found not only among sampling time points but also among treatments and treatment×time point interactions (P<0.01), with eicosapentaenoic acid having the highest value (P<0.01). Additionally, no statistically significant differences were found in the acetate to propionate ratios among treatments groups (P>0.05), even the treatments stearic acid and α-linolenic acid were numerically higher than the others. The inclusion of 3% long-chain unsaturated fatty acids differing in the degree of unsaturation brought out a significant quadratic regression relation between the total VFA concentration and the double bond number of fatty acid. In conclusion, the α-linolenic acid with 3 double bonds appeared better for improving rumen microbial fermentation and the total VFA concentration.
参考文献 | 相关文章 | 多维度评价
19. Characterization of dwarf mutants and molecular mapping of a dwarf locus in soybean
CHENG Wen, GAO Jin-shan, FENG Xing-xing, SHAO Qun, YANG Su-xin, FENG Xian-zhong
Journal of Integrative Agriculture    2016, 15 (10): 2228-2236.   DOI: 10.1016/S2095-3119(15)61312-0
摘要1775)      PDF    收藏
    Plant height is one of the most important traits in soybean. The semi-dwarf soybean cultivars could improve the ability of lodging resistance to obtain higher yield. To broaden the dwarfism germplasm resources in soybean, 44 dwarf mutants were identified from a gamma rays mutagenized M2 population. Two of these mutants, Gmdwf1 (Glycine max dwarf 1) and Gmdwf2 (Glycine max dwarf 2), were investigated in this study. Genetic analysis showed that both mutants were inherited in a recessive manner and their mutated regions were delimited to a 2.610-Mb region on chromosome 1 by preliminary mapping. Further fine mapping study proved that the two mutants had a common deletion region of 1.552 Mb in the target region, which was located in a novel locus site without being reported previously. The dwarfism of Gmdwf1 could not be rescued by gibberellin (GA) and brassinolide (BR) treatments, which indicated that the biosynthesis of these hormones was not deficient in Gmdwf1.
参考文献 | 相关文章 | 多维度评价
20. Using side-dressing technique to reduce nitrogen leaching and improve nitrogen recovery efficiency under an irrigated rice system in the upper reaches of Yellow River Basin, Northwest China
ZHANG Ai-ping, GAO Ji, LIU Ru-liang, ZHANG Qing-wen, CHEN Zhe, YANG Shi-qi, YANG Zheng-li
Journal of Integrative Agriculture    2016, 15 (1): 220-231.   DOI: 10.1016/S2095-3119(14)60952-7
摘要1936)      PDF    收藏
The excessive nitrogen (N) fertilizer input coupled with flood irrigation might result in higher N leaching and lower nitrogen recovery efficiency (NRE). Under an intensive rice system in the Ningxia irrigation region, China, environmental friendly N management practices are heavily needed to balance the amount of N input for optimum crop production while minimize the nitrogen loss. The objective of this study was to determine the influences of side-dressing (SD) technique in mechanical transplanting systems on the NRE, N leaching losses and rice yield in anthropogenic-alluvial soil during two rice growing seasons (2010-2011). Four fertilizer N treatments were established, including conventional urea rate (CU, 300 kg ha–1 yr–1); higher SD of controlled-release N fertilizer rate (SD1, 176 kg ha–1 yr–1); lower SD of controlled-release N fertilizer rate (SD2, 125 kg ha–1 yr–1); and control (CK, no N fertilizer). Field lysimeters were used to quantify drainage from undisturbed soil during six rice growing stages. Meanwhile, the temporal variations of total nitrigen (TN), NO3 –-N, and NH4 +-N concentrations in percolation water were examined. The results showed that SD1 substantially improved NRE and reduced N leaching losses while maintaining rice yields. Across two years, the averaged NRE under SD1 treatment increased by 25.5% as relative to CU, but yet the rice yield was similar between two treatments. On average, the nitrogen loss defined as TN, NH4 +-N, and NO3 –-N under the SD1 treatment reduced by 27.4, 37.2 and 24.1%, respectively, when compared with CU during the study periods. Although the SD2 treatment could further reduce N leaching loss to some extent, this technique would sharply decline rice yield, with the magnitude of as high as 21.0% relative to CU treatment. Additionally, the average NRE under SD2 was 11.2% lower than that under SD1 treatment. Overall, the present study concluded that the SD technique is an effective strategy to reduce N leaching and increase NRE, thus potentially mitigate local environmental threat. We propose SD1 as a novel alternative fertilizer technique under an irrigated rice-based system in Ningxia irrigation region when higher yields are under consideration.
参考文献 | 相关文章 | 多维度评价
21. Leaf photosynthesis and yield components of mung bean under fully open-air elevated [CO2]
GAO Ji, HAN Xue, Saman Seneweera, LI Ping, ZONG Yu-zheng, DONG Qi, LIN Er-da, HAO Xing-yu
Journal of Integrative Agriculture    2015, 14 (5): 977-983.   DOI: 10.1016/S2095-3119(14)60941-2
摘要2330)      PDF    收藏
Mung bean (Vigna radiata L.) has the potential to establish symbiosis with rhizobia, and symbiotic association of soil micro flora may facilitate the photosynthesis and plant growth response to elevated [CO2]. Mung bean was grown at either ambient CO2 400 μmol mol–1 or [CO2] ((550±17) μmol mol–1) under free air carbon dioxide enrichment (FACE) experimental facility in North China. Elevated [CO2] increased net photosynthetic rate (Pn), water use efficiency (WUE) and the non-photochemical quenching (NPQ) of upper most fully-expanded leaves, but decreased stomatal conductance (Gs), intrinsic efficiency of PSII (Fv´/Fm´), quantum yield of PSII (ΦPSII) and proportion of open PSII reaction centers (qP). At elevated [CO2], the decrease of Fv´/Fm´, ΦPSII, qP at the bloom stage were smaller than that at the pod stage. On the other hand, Pn was increased at elevated [CO2] by 18.7 and 7.4% at full bloom (R2) and pod maturity stages (R4), respectively. From these findings, we concluded that as a legume despite greater nutrient supply to the carbon assimilation at elevated [CO2], photosynthetic capacity of mung bean was still suppressed under elevated [CO2] particularly at pod maturity stage but plant biomass and yield was increased by 11.6 and 14.2%, respectively. Further, these findings suggest that even under higher nutrient acquisition systems such as legumes, nutrient assimilation does not match carbon assimilation under elevated [CO2] and leads photosynthesis down-regulation to elevated [CO2].
参考文献 | 相关文章 | 多维度评价
22. Use of chlorophyll fluorescence and P700 absorbance to rapidly detect glyphosate resistance in goosegrass (Eleusine indica)
ZHANG Tai-jie, FENG Li, TIAN Xing-shan, YANG Cai-hong, GAO Jia-dong
Journal of Integrative Agriculture    2015, 14 (4): 714-723.   DOI: 10.1016/S2095-3119(14)60869-8
摘要1797)      PDF    收藏
The rapid detection of glyphosate resistance in goosegrass (Eleusine indica) will enhance our ability to respond to new resistant populations of this major weed. Chlorophyll fluorescence (Fluo) and P700 (reaction center chlorophyll of photosystem I) absorbance were analyzed in one biotype of goosegrass that is resistant to glyphosate and in another that remains sensitive to the herbicide. Both biotypes were treated with a foliar spray of glyphosate. Differences in photosystem II maximum quantum yield (Fv/Fm), effective photochemical quantum yield (Y(II)), and non-photochemical quenching (NPQ) between the biotypes increased over time. Values for Fv/Fm and Y(II) differed between the two biotypes 24 h after treatment (HAT). Differentiated activities and energy dissipation processes of photosystem II (PSII) and energy dissipation processes of photosystem I (PSI) were manifested in the two biotypes 24 HAT with 20 mmol L–1 glyphosate. Differentiated energy dissipation processes of PSI were still apparent 24 HAT with 200 mmol L–1 glyphosate. These results indicate that the Fluo parameters related to PSII activity and energy dissipation and the P700 parameters related to energy dissipation are suitable indicators that enable rapid detection of glyphosate resistance in goosegrass.
参考文献 | 相关文章 | 多维度评价
23. Identification of microRNAs in two species of tomato, Solanum lycopersicum and Solanum habrochaites, by deep sequencing
FAN Shan-shan, LI Qian-nan, GUO Guang-jun, GAO Jian-chang, WANG Xiao-xuan, GUO Yanmei, John C. Snyder, DU Yong-chen
Journal of Integrative Agriculture    2015, 14 (1): 42-49.   DOI: 10.1016/S2095-3119(14)60821-2
摘要2166)      PDF    收藏
MicroRNAs (miRNAs) are ~21 nucleotide (nt), endogenous RNAs that regulate gene expression in plants. Increasing evidence suggests that miRNAs play an important role in species-specific development in plants. However, the detailed miRNA profile divergence has not been performed among tomato species. In this study, the small RNA (sRNA) profiles of Solanum lycopersicum cultivar 9706 and Solanum habrochaites species PI 134417 were obtained by deep sequencing. Sixty-three known miRNA families were identified from these two species, of which 39 were common. Further miRNA profile comparison showed that 24 known non-conserved miRNA families were species-specific between these two tomato species. In addition, six conserved miRNA families displayed an apparent divergent expression pattern between the two tomato species. Our results suggested that species-specific, non-conserved miRNAs and divergent expression of conserved miRNAs might contribute to developmental changes and phenotypic variation between the two tomato species. Twenty new miRNAs were also identified in S. lycopersicum. This research significantly increases the number of known miRNA families in tomato and provides the first set of small RNAs in S. habrochaites. It also suggests that miRNAs have an important role in species-specific plant developmental regulation.
参考文献 | 相关文章 | 多维度评价
24. Haploid Induction via In vitro Gynogenesis in Tomato (Solanum lycopersicum L.)
ZHAO He, WANG Xiao-xuan, DU Yong-chen, ZHU De-wei, GUO Yan-mei, GAO Jian-chang, LI Fei , John C Snyder
Journal of Integrative Agriculture    2014, 13 (10): 2122-2131.   DOI: 10.1016/S2095-3119(13)60672-3
摘要1433)      PDF    收藏
In order to determine the potential for haploid induction via in vitro gynogenesis in tomato, the ovules and protoplasts of embryo sacs from the hybrids Zhongza 101 and Zhongza 105 were cultured. An efficient method of ovule isolation was established in this study. Using this method, 100-150 ovules could be isolated from one ovary. Isolated ovules were cultured on three induction media to induce gynogenesis in vitro. During culture, ovules were enlarged markedly, with opaque white color. When observed microscopically, there were cell divisions and cell clumps in embryo sacs. Subsequently, the cell clumps in embryo sacs ceased growth, likely because the integument grew faster than embryo sacs did and hindered the further development of embryo sacs. Therefore, subsequent callus morphogenesis might be originated from the integument. Thousands of calli from the two tomato varieties were obtained. Five diploid plants were regenerated after 15 months of subculturing. To eliminate the hindering effect of integument on embryo sac cells, the protoplasts of embryo sacs were prepared and cultured. After 48 hours of culture, the protoplasts of embryo sacs doubled in size and gradually formed clusters of cells. These results suggested that gynogenesis might be a potential way for haploid induction in tomato.
参考文献 | 相关文章 | 多维度评价
25. Relations Between Photosynthetic Parameters and Seed Yields of Adzuki Bean Cultivars (Vigna angularis)
SONG Hui, GAO Jin-feng, GAO Xiao-li, DAI Hui-ping, ZHANG Pan-an, FENG Bai-li, WANG Peng-ke
Journal of Integrative Agriculture    2012, 12 (9): 1453-1461.   DOI: 10.1016/S1671-2927(00)8677
摘要1472)      PDF    收藏
The study comparatively examined the leaf photosynthetic capacities of different adzuki bean cultivars, high-yield 2000-75 and Jihong 9218, and low-yield Hongbao 1 and Wanxuan 1 from flowering to ripening. It showed that after flowering, the leaves of the cultivars gradually aged, the leaf chlorophyll (Chl.), soluble protein (SP) contents, net photosynthetic rates (Pn), transpiration rates (Tr) and stomatal conductance (Gs) of the cultivars tended to decline, but the leaf intercellular CO2 concentration (Ci) of the cultivars tended to rise. The leaf photosynthetic capacities of the cultivars decreased gradually from the lower to the upper nodes. The dry seed yields of the cultivars were positively correlated with their leaf Chl., SP, Pn, and Tr and Gs, and negatively associated with their leaf Ci. At the late growth stages, the high-yield cultivars maintained higher leaf Chl. contents, SP contents, Pn, Tr, and Gs than the low-yield cultivars, indicating that leaf photosynthetic capacity was one of important yield-affecting factors of adzuki bean. Therefore, it was important for a crop at the crucial stage of yield formation to maintain a high leaf chlorophyll content and a high leaf photosynthetic capacity and delay leaf aging.
参考文献 | 相关文章 | 多维度评价