Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (18): 3616-3631.doi: 10.3864/j.issn.0578-1752.2025.18.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Double-Pressing Precision Uniform Sowing and Nitrogen Fertilizer Application Rates on Population Structure, Grain Yield, and Economic Benefit of Wheat

ZHAO KaiNan1(), ZHAO XinHao2, JIANG ZongHao3, PENG KeYan4, LÜ Peng4, WANG ZongShuai1, LI HuaWei1, FENG Bo1, SI JiSheng1, ZHANG Bin1, WANG FaHong1, LI ShengDong1()   

  1. 1 Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100
    2 Weishan Irrigation District Management Service Center, Liaocheng 252000, Shandong
    3 Shandong Seed Administration Station, Jinan 250100
    4 Shandong Province Agriculture Technology Popularizing Center, Jinan 250014
  • Received:2025-03-06 Accepted:2025-06-03 Online:2025-09-18 Published:2025-09-18
  • Contact: LI ShengDong

Abstract:

【Objective】The effects of double-pressing precision uniform sowing and nitrogen (N) fertilizer interaction on wheat population construction, dry matter accumulation characteristics, and yield formation were explored, in order to provide the theoretical basis and technical support for high-yield cultivation of wheat in the Huang-Huai-Hai wheat region. 【Method】The two-factor split plot experiment was conducted in Jiyang, Shandong Province from 2021 to 2024. The conventional string sowing (S1) and double-pressing precision uniform sowing (S2) were assigned to the main plots, and the N fertilizer application rates of 0, 120, 180 and 240 kg N·hm-2 (N0, N150, N210, N240) were assigned to the subplots. The field emergence rate, tillering characteristics per plant, population dynamics, dry matter accumulation and transport, grain yield, and economic benefits of wheat under the interaction of sowing method and N application rates were systematically tested. 【Result】Compared with S1, S2 could increase the field emergence rate of wheat and enhance the tillering ability of per plant. Under the same N fertilizer application rates, the 3-year average number of tillers at seedling, wintering, jointing, and anthesis under S2 was significantly increased by 5.7%, 24.7%, 13.1% and 18.0%, respectively, and the tiller formation spikes ratio at maturity was increased by 5.5%-7.6%. Combined with N210 or N270, S2 significantly improved the aboveground dry matter accumulation at jointing, anthesis, and maturity by optimizing the aboveground dry matter accumulation rate at each growth stage, and under the same N fertilizer application rates, S2 significantly increased by 10.5%, 9.9% and 13.3% compared with S1, respectively. The translocation amount of dry matter pre-anthesis, dry matter accumulation amounts post-anthesis, and contribution rate of dry matter accumulation amount to yield post-anthesis under the two sowing methods reached a high level under N210 and N270 treatments, and S2 was significantly higher than S1, while the 3-year average increased by 7.0%-8.6%, 18.5%-27.1% and 3.5% -5.3%, respectively. The response of the harvest index to the N fertilizer application rates was different between different sowing methods. Under the S1 and S2 sowing methods, the maximum values were reached under N150 and N210 treatments for three years, and 3-year average were 2.6%-15.0% and 1.5%-16.8% higher than the other treatments, respectively, and the S2 was higher than S1 under the same N fertilizer rates. For three years, the grain yield and economic benefit of S2 were higher than those of S1 under N150, N210, and N270, and 3-year average were significantly increased by 7.6 %, 9.2 %, 16.1 % and 12.5 %, 14.0 %, 23.1 %, respectively; meantime the combination of S2 with N210 or N270 could achieve simultaneous improvement of grain yield and economic benefit. 【Conclusion】Under nitrogen-saving principles, double-pressing precision uniform sowing combined with 210 kg N·hm-2 fertilizer application rates improved sowing conditions, increased wheat field emergence rate, optimized population spatial distribution, and synergistically improved wheat yield and economic benefits, which provided the technical support for high-yield cultivation of wheat in the Huang-Huai-Hai wheat region.

Key words: wheat, double-pressing, precision uniform sowing, nitrogen fertilizer, aboveground dry matter, yield

Fig. 1

Daily precipitation and daily average temperature during the experiment"

Table 1

Total input of winter wheat production"

处理 Treatment 种子及肥料
Seed and fertilizers (yuan·kg-1)
灌溉、机械及药剂
Irrigation, machinery and herbicide (yuan·km-2)
种子价格
Seed price
尿素
Urea
过磷酸钙
Triple superphosphate
硫酸钾
Potassium sulfate
作物单价
Crop price
灌溉 Irrigation 耕作 Tillage 播种 Sowing 收获 Harvest 除草剂 Herbicide
S1N0 2.5 1.8 3.5 5 2.7 900 1200 525 900 375
S1N150 2.5 1.8 3.5 5 2.7 900 1200 525 900 375
S1N210 2.5 1.8 3.5 5 2.7 900 1200 525 900 375
S1N270 2.5 1.8 3.5 5 2.7 900 1200 525 900 375
S2N0 2.5 1.8 3.5 5 2.7 900 675 600 900 375
S2N150 2.5 1.8 3.5 5 2.7 900 675 600 900 375
S2N210 2.5 1.8 3.5 5 2.7 900 675 600 900 375
S2N270 2.5 1.8 3.5 5 2.7 900 675 600 900 375

Fig. 2

Effects of different treatments on the field emergence rate in wheat"

Table 2

Effects of different treatments on tillering ability per plant and tiller formation spikes ratio of wheat"

年度
Year
处理
Treatment
单株分蘖数 Tillering number per plant 分蘖成穗率
Tiller formation spikes ratio (%)
越冬期 Wintering 拔节期 Jointing 开花期 Anthesis
2021—2022 S1N0 2.97±0.12b 4.08±0.17c 1.78±0.07d 43.6±0.20d
S1N150 3.03±0.07b 4.51±0.06a 2.03±0.07bc 45.1±1.38cd
S1N210 3.18±0.05b 4.60±0.07a 2.11±0.05abc 45.9±0.43bcd
S1N270 3.14±0.05b 4.58±0.22a 2.13±0.09abc 46.6±0.74bc
S2N0 3.59±0.11a 4.39±0.12bc 1.97±0.03c 44.9±0.64cd
S2N150 3.69±0.08a 4.57±0.01a 2.18±0.05ab 47.6±1.10abc
S2N210 3.73±0.05a 4.72±0.13a 2.28±0.01a 48.3±1.26ab
S2N270 3.61±0.02a 4.55±0.04a 2.26±0.03a 49.6±1.05a
2022—2023 S1N0 3.13±0.14d 3.57±0.10c 1.78±0.04c 50.1±1.20bc
S1N150 3.21±0.06cd 3.49±0.04c 1.69±0.04c 48.5±0.89c
S1N210 3.33±0.04bc 4.12±0.11b 2.08±0.03b 50.6±0.68bc
S1N270 3.30±0.02bc 3.95±0.10b 2.00±0.02b 50.7±1.82b
S2N0 3.44±0.10b 3.59±0.02c 1.77±0.04c 49.4±1.25c
S2N150 4.04±0.03a 3.97±0.14b 2.02±0.02b 49.7±0.32bc
S2N210 4.15±0.02a 4.59±0.10a 2.45±0.08a 53.4±1.96a
S2N270 4.04±0.11a 4.57±0.13a 2.45±0.03a 53.7±1.95a
2023—2024 S1N0 2.94±0.06e 3.30±0.13b 1.55±0.05d 47.1±1.21c
S1N150 3.17±0.03de 3.31±0.08b 1.64±0.07c 49.4±1.71bc
S1N210 3.11±0.09de 3.51±0.10b 1.74±0.04b 49.7±0.55bc
S1N270 3.12±0.05de 3.40±0.07b 1.73±0.04b 50.8±0.92b
S2N0 3.31±0.05cd 3.33±0.04b 1.58±0.09cd 47.4±2.23bc
S2N150 3.41±0.12bc 3.53±0.12b 1.70±0.09b 48.1±1.31bc
S2N210 3.62±0.05a 3.81±0.08a 2.08±0.03a 54.6±1.53a
S2N270 3.74±0.08a 3.81±0.14a 2.05±0.02a 54.0±1.91a
3年平均 3-year average S1N0 3.01±0.07d 3.65±0.13d 1.70±0.05c 46.9±0.83c
S1N150 3.14±0.01cd 3.76±0.04cd 1.78±0.05c 47.7±1.02bc
S1N210 3.21±0.02c 4.07±0.05b 1.98±0.01b 48.7±0.53bc
S1N270 3.19±0.03c 3.96±0.09bc 1.95±0.01b 49.4±1.15b
S2N0 3.44±0.04b 3.76±0.01cd 1.77±0.02c 47.2±0.54bc
S2N150 3.71±0.03a 4.06±0.06b 1.97±0.04b 48.5±0.35bc
S2N210 3.83±0.04a 4.37±0.05a 2.27±0.02a 52.1±0.56a
S2N270 3.80±0.02a 4.31±0.04a 2.25±0.02a 52.4±0.22a
变异来源
Source of
variance
(F value)
年度 Year (Y) 4.4* 56.6** 8.6** 15.8**
播种 Sowing (S) 117.5** 4.7* 6.2** 4.0**
氮肥 Nitrogen (N) 1.3 4.12** 12.7** 6.4**
播种×氮肥 S×N 1.6 0.8 3.7* 2.9*

Fig. 3

Effects of different treatments on tiller number in wheat"

Fig. 4

Effects of different treatments on aboveground dry matter accumulation at different growth stages in wheat The sum of different color columns is the total amount of aboveground dry matter, the different capital letters on the long horizontal line indicate that the total amount of aboveground dry matter is significantly different at the P<0.05 level"

Fig. 5

Effects of different treatments on aboveground dry matter accumulation rate at different growth stages in wheat"

Table 3

Effects of different treatments on dry matter translocation amount pre-anthesis and dry matter accumulation amount post- anthesis in wheat"

年度
Year
处理
Treatment
花前干物质转运量Translocation
amount of dry
matter pre-anthesis
(kg·hm-2)
花前干物质转运率Translocation ratio
of dry matter pre-anthesis
(%)
花后干物质积累
Dry matter accumulation amount post-anthesis
(kg·hm-2)
花后干物质积累量贡献率
Contribution rate of dry matter accumulation amount to yield post-anthesis(%)
收获指数
Harvest
index
(%)
2021—2022 S1N0 2333.8±90.5c 20.1±0.76abc 4343.8±253.1d 65.0±2.04c 41.9±0.44d
S1N150 2995.8±93.9b 22.1±0.69a 5962.2±77.8c 66.6±0.73bc 46.0±1.13ab
S1N210 3106.7±103.4b 20.2±0.66abc 6860.9±237.2b 68.8±1.19b 44.8±0.44bc
S1N270 3004.1±90.4b 19.3±0.58bc 6691.9±100.0b 69.0±0.80b 43.7±0.48cd
S2N0 2441.4±84.2c 19.9±0.69abc 4702.2±113.4d 65.8±0.95c 42.1±0.35d
S2N150 3162.1±80.3ab 21.4±0.93ab 7027.4±230.1b 68.9±0.80b 46.7±0.52ab
S2N210 3341.9±98.7a 20.2±0.58abc 8493.1±127.9a 71.8±0.78a 47.2±0.69a
S2N270 3174.2±45.3ab 18.7±0.25c 8198.9±335.8a 72.0±1.07a 45.1±1.04ab
2022—2023 S1N0 2208.9±84.5e 20.9±0.79c 3555.8±56.4d 61.7±1.39c 40.8±0.60b
S1N150 2941.0±46.3d 24.4±0.39a 5740.3±262.6c 66.1±1.24b 48.8±0.81a
S1N210 3278.8±41.8b 23.0±0.30a 6593.0±180.3b 66.8±0.32b 47.4±0.27a
S1N270 3193.5±36.8bc 23.2±0.26a 6233.8±134.9bc 66.1±0.58b 47.1±0.67a
S2N0 2277.2±83.8e 21.2±0.76bc 3786.6±118.7d 62.5±0.87c 41.8±0.11b
S2N150 3065.3±81.5cd 23.0±0.61a 6741.8±109.5b 68.7±0.69ab 48.9±0.80a
S2N210 3441.0±51.9a 22.8±0.34ab 8023.2±257.5a 70.0±0.68a 49.6±0.42a
S2N270 3284.8±53.4ab 21.2±0.35bc 7706.7±287.1a 70.1±0.66a 47.3±0.57a
2023—2024 S1N0 1967.4±77.0d 20.3±0.79cd 3332.9±35.9e 62.9±0.71d 40.8±0.65c
S1N150 2730.4±44.4c 24.5±0.22a 4955.0±88.8d 64.5±0.62cd 47.8±0.52ab
S1N210 3073.6±63.3b 22.2±0.48b 6243.3±116.4c 67.0±0.83bc 46.4±0.33b
S1N270 3226.0±83.9b 23.1±0.58ab 5933.4±176.0c 64.8±1.16cd 46.1±0.65b
S2N0 2106.0±59.0d 20.0±0.34d 3661.2±100.4e 63.5±0.67d 40.7±0.10c
S2N150 3041.9±111.4b 24.0±0.86a 5963.9±71.5c 66.2±0.81bc 48.3±0.55ab
S2N210 3487.1±46.0a 21.8±0.17bc 8520.4±292.2a 70.9±0.61a 49.0±0.72a
S2N270 3544.2±89.1a 21.8±0.55bc 7663.0±208.5b 68.4±1.06ab 46.8±0.23b
3年平均
3-year average
S1N0 2170.0±47.7d 20.4±0.47d 3744.2±84.2g 63.2±0.81e 41.2±0.33d
S1N150 2889.0±76.4c 23.7±0.35a 5552.5±129.6e 65.7±0.67cd 47.4±0.34ab
S1N210 3153.0±61.7b 21.8±0.44b 6565.7±81.4cd 67.5±0.59b 46.2±0.14c
S1N270 3141.2±53.4b 21.9±0.37b 6286.4±67.7d 66.6±0.43bc 45.5±0.40c
S2N0 2274.9±66.2d 20.4±0.58d 4050.0±59.6f 63.9±0.74de 41.6±0.57d
S2N150 3089.8±22.0b 22.8±0.12ab 6577.7±76.1cd 68.0±0.25b 47.9±0.12a
S2N210 3423.3±66.8a 21.6±0.25bc 8345.6±70.4a 70.9±0.35a 48.6±0.31a
S2N270 3334.4±14.3a 20.5±0.03cd 7856.2±136.1b 70.2±0.41a 46.4±0.52bc
变异来源
Source of
variance
(F value)
年度 Year (Y) 4.5* 119.4** 45.7** 47.7** 21.1**
播种 Sowing (S) 55.7** 8.9* 229.0** 39.1** 30.2**
氮肥 Nitrogen (N) 238.8** 24.1** 704.5** 41.3** 102.6**
播种×氮肥 S×N 1.1 1.5 30.5** 4.6* 3.5*

Table 4

Effects of different treatments on grain yield and economic benefits in wheat"

处理
Treatment
籽粒产量 Grain yield (kg·hm-2) 经济效益 Economic benefits (yuan·hm-2)
2021—2022 2022—2023 2023—2024 平均 Average 2021—2022 2022—2023 2023—2024 平均 Average
S1N0 6920.1±184.4f 5756.4±41.6e 5345.5±81.3d 6007.3±75.8e 13794.3±287.4f 10652.2±112.5e 9542.9±219.4d 11329.8±204.7e
S1N150 8229.1±266.9d 8309.2±144.4d 8544.3±129.1c 8360.8±146.0d 17058.6±416.1d 17274.7±389.9d 17909.5±348.7c 17414.3±394.1c
S1N210 9068.9±167.8b 9547.4±133.6b 9106.1±141.6b 9240.7±122.6b 19217.9±261.6b 20509.4±625.1b 19318.6±382.4b 19682.0±191.1b
S1N270 8693.5±71.4c 9099.9±138.3c 9012.3±143.7b 8935.2±70.9c 18096.5±192.7c 19193.7±373.5c 18957.3±388.1bc 18749.2±192.8c
S2N0 7303.7±166.5d 5969.7±80.4e 5602.8±180.4d 6292.0±71.0e 15279.9±449.7e 11678.1±217.1e 10687.6±281.2d 12548.5±191.5d
S2N150 8920.8±153.2b 9161.1±140.6bc 8879.3±157.9bc 8998.7±53.5bc 19376.1±413.7b 20119.5±379.6bc 19264.0±426.3b 19586.5±144.4b
S2N210 9799.8±113.8a 10145.7±271.6a 10336.7±287.5a 10094.1±250.5a 21641.5±307.4a 22575.5±733.4a 23091.2±448.2a 22436.1±390.6a
S2N270 9905.3±243.2a 10542.4±242.9a 10660.3±236.8a 10369.3±191.3a 21818.3±656.6a 23538.6±655.7a 23856.9±639.4a 23071.2±516.5a
FF value
年度 Year (Y) 2.52 2.46
播种 Sowing (S) 215.6** 312.8**
氮肥 Nitrogen (N) 968.7** 893.2**
播种×氮肥 S×N 18.9** 19.1**
[1]
BARRETT C B. Measuring food insecurity. Science, 2010, 327(5967): 825-828.

doi: 10.1126/science.1182768 pmid: 20150491
[2]
韩潇杰, 任志杰, 李双静, 田培培, 卢素豪, 马耕, 王丽芳, 马冬云, 赵亚南, 王晨阳. 不同施氮量对土壤团聚体碳氮含量及小麦产量的影响. 中国农业科学, 2024, 57(9): 1766-1778. doi:10.3864/j.issn.0578-1752.2024.09.011.
HAN X J, REN Z J, LI S J, TIAN P P, LU S H, MA G, WANG L F, MA D Y, ZHAO Y N, WANG C Y. Effects of different nitrogen application rates on carbon and nitrogen content of soil aggregates and wheat yield. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778. doi:10.3864/j.issn.0578-1752.2024.09.011. (in Chinese)
[3]
张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响. 作物学报, 2024, 50(4): 981-990.

doi: 10.3724/SP.J.1006.2024.31042
ZHANG Z, ZHAO J Y, SHI Y, ZHANG Y L, YU Z W. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat. Acta Agronomica Sinica, 2024, 50(4): 981-990. (in Chinese)

doi: 10.3724/SP.J.1006.2024.31042
[4]
ZHANG G X, LIU S J, DONG Y J, LIAO Y C, HAN J. A nitrogen fertilizer strategy for simultaneously increasing wheat grain yield and protein content: Mixed application of controlled-release urea and normal urea. Field Crops Research, 2022, 277: 108405.
[5]
延飞龙, 张振, 赵俊晔, 石玉, 于振文. 宽幅精播下施氮量对冬小麦耗水特性和产量的影响. 作物学报, 2024, 50(8): 2014-2024.

doi: 10.3724/SP.J.1006.2024.41004
YAN F L, ZHANG Z, ZHAO J Y, SHI Y, YU Z W. Effect of nitrogen application on water consumption characteristics and grain yield of winter wheat under wide width sowing. Acta Agronomica Sinica, 2024, 50(8): 2014-2024. (in Chinese)
[6]
张金汕, 贾永红, 孙鹏, 刘冲, 王欢, 罗四维, 石书兵. 匀播和施氮量对冬小麦群体、光合及干物质积累的影响. 中国农业大学学报, 2021, 26(7): 12-24.
ZHANG J S, JIA Y H, SUN P, LIU C, WANG H, LUO S W, SHI S B. Effect of uniform pattern and N application rate on colony, photosynthesis and dry matter accumulation of winter wheat. Journal of China Agricultural University, 2021, 26(7): 12-24. (in Chinese)
[7]
王晨, 唐江华, 徐文修, 李珊珊, 邱琳, 文一鸿, 葛松豪. 宽窄行播种对滴灌冬小麦干物质积累及产量的影响. 麦类作物学报, 2024, 44(10): 1287-1293.
WANG C, TANG J H, XU W X, LI S S, QIU L, WEN Y H, GE S H. Effect of row width on dry matter accumulation and yield of winter wheat under drip irrigation. Journal of Triticeae Crops, 2024, 44(10): 1287-1293. (in Chinese)
[8]
丁豪, 高海涛, 毕香君, 李升东. 不同播种方式对冬小麦产量构成和旗叶光合特性的影响. 中国农学通报, 2024, 40(9): 9-19.

doi: 10.11924/j.issn.1000-6850.casb2023-0329
DING H, GAO H T, BI X J, LI S D. Effects of different sowing methods on yield components and flag leaf photosynthetic characteristics of winter wheat. Chinese Agricultural Science Bulletin, 2024, 40(9): 9-19. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2023-0329
[9]
卜明娜, 杨习文, 滕政凯, 胡乃月, 张烁, 王春艳, 杨键, 梁文宪, 马文奇, 贺德先, 周苏玫. 不同灌水条件下分层施肥对土壤养分垂直分布与小麦根系生长和功能的影响. 中国农业科学, 2024, 57(11): 2125-2142. doi:10.3864/j.issn.0578-1752.2024.11.007.
BU M N, YANG X W, TENG Z K, HU N Y, ZHANG S, WANG C Y, YANG J, LIANG W X, MA W Q, HE D X, ZHOU S M. Effects of layered fertilization under different irrigation conditions on vertical distribution of soil nutrients and root growth and function of wheat. Scientia Agricultura Sinica, 2024, 57(11): 2125-2142. doi:10.3864/j.issn.0578-1752.2024.11.007. (in Chinese)
[10]
ZHAO K N, WANG H T, WU J Z, LIU A K, HUANG X L, LI G Q, WU S W, ZHANG J, ZHANG Z W, HOU Y Q, et al. One-off irrigation improves water and nitrogen use efficiency and productivity of wheat as mediated by nitrogen rate and tillage in drought-prone areas. Field Crops Research, 2023, 295: 108898.
[11]
赵凯男, 张保军, 王德梅, 陶志强, 王艳杰, 杨玉双, 常旭虹, 赵广才. 提高立体匀播冬小麦光合效能和产量的最佳追氮时期. 植物营养与肥料学报, 2019, 25(8): 1354-1361.
ZHAO K N, ZHANG B J, WANG D M, TAO Z Q, WANG Y J, YANG Y S, CHANG X H, ZHAO G C. Optimum nitrogen topdressing time for improving photosynthetic efficiency and yield of tridimensional uniform sowing winter wheat. Journal of Plant Nutrition and Fertilizers, 2019, 25(8): 1354-1361. (in Chinese)
[12]
邓丽娟, 焦小强. 氮管理对冬小麦产量和品质影响的整合分析. 中国农业科学, 2021, 54(11): 2355-2365. doi:10.3864/j.issn.0578-1752.2021.11.009.
DENG L J, JIAO X Q. A meta-analysis of effects of nitrogen management on winter wheat yield and quality. Scientia Agricultura Sinica, 2021, 54(11): 2355-2365. doi:10.3864/j.issn.0578-1752.2021.11.009. (in Chinese)
[13]
韩守威, 司纪升, 余维宝, 孔令安, 张宾, 王法宏, 张海林, 赵鑫, 李华伟, 孟鈺. 山东省冬小麦产量差与氮肥利用效率差形成机理解析. 中国农业科学, 2022, 55(16): 3110-3122. doi:10.3864/j.issn.0578-1752.2022.16.004.
HAN S W, SI J S, YU W B, KONG L A, ZHANG B, WANG F H, ZHANG H L, ZHAO X, LI H W, MENG Y. Mechanisms analysis on yield gap and nitrogen use efficiency gap of winter wheat in Shandong Province. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122. doi:10.3864/j.issn.0578-1752.2022.16.004. (in Chinese)
[14]
刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 何明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响. 作物学报, 2022, 48(3): 716-725.

doi: 10.3724/SP.J.1006.2022.11012
LIU Y J, ZHENG F N, ZHANG X, CHU J P, YU H T, DAI X L, HE M R. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat. Acta Agronomica Sinica, 2022, 48(3): 716-725. (in Chinese)
[15]
申冠宇, 杨习文, 周苏玫, 梅晶晶, 陈旭, 彭宏扬, 蒋向, 贺德先. 土壤耕作技术对小麦出苗质量、根系功能及粒重的影响. 中国农业科学, 2019, 52(12): 2042-2055. doi:10.3864/j.issn.0578-1752.2019.12.003.
SHEN G Y, YANG X W, ZHOU S M, MEI J J, CHEN X, PENG H Y, JIANG X, HE D X. Impacts of soil tillage techniques on seedling quality, root function and grain weight in wheat. Scientia Agricultura Sinica, 2019, 52(12): 2042-2055. doi:10.3864/j.issn.0578-1752.2019.12.003. (in Chinese)
[16]
周琦, 李岚涛, 张露露, 苗玉红, 王宜伦. 氮肥和播种量互作对冬小麦产量、生长发育和生态场特性的影响. 作物学报, 2023, 49(11): 3100-3109.

doi: 10.3724/SP.J.1006.2023.21070
ZHOU Q, LI L T, ZHANG L L, MIAO Y H, WANG Y L. Effects of interaction of nitrogen level and sowing rate on yield, growth, and ecological field characteristics of winter wheat. Acta Agronomica Sinica, 2023, 49(11): 3100-3109. (in Chinese)

doi: 10.3724/SP.J.1006.2023.21070
[17]
ZHAO K N, WANG H T, WU J Z, LIU A K, HUANG X L, LI G Q, WU S W, ZHANG J, ZHANG Z W, HOU Y Q, et al. One-off irrigation improves water and nitrogen use efficiency and productivity of wheat as mediated by nitrogen rate and tillage in drought-prone areas. Field Crops Research, 2023, 295: 108898.
[18]
史桂清, 白倩倩, 郭程瑾, 肖凯. 节水条件下供氮水平对冬小麦氮素吸收利用特性的影响. 麦类作物学报, 2018, 38(5): 608-614.
SHI G Q, BAI Q Q, GUO C J, XIAO K. Effect of nitrogen application level on acquisition and utilization of N under the water-saving cultivation conditions in winter wheat. Journal of Triticeae Crops, 2018, 38(5): 608-614. (in Chinese)
[19]
张敏, 戴廷波, 姜东, 荆奇, 曹卫星. 6-BA对小麦花后C/N物质运转和籽粒品质的影响. 南京农业大学学报, 2006, 29(4): 6-10.
ZHANG M, DAI T B, JIANG D, JING Q, CAO W X. Effects of 6-BA on carbon and nitrogen assimilate translocation after anthesis and quality formation in wheat. Journal of Nanjing Agricultural University, 2006, 29(4): 6-10. (in Chinese)
[20]
刘甘霖, 王晨阳, 刘卫星, 马耕, 王强, 岳鹏莉, 谢旭东. 不同施肥模式对冬小麦干物质转运及产量的影响. 西北农业学报, 2016, 25(8): 1158-1164.
LIU G L, WANG C Y, LIU W X, MA G, WANG Q, YUE P L, XIE X D. Effects of different fertilization regimes on dry matter translocation and grain yield of winter wheat. Acta Agriculturae Boreali-occidentalis Sinica, 2016, 25(8): 1158-1164. (in Chinese)
[21]
高仁才, 陈松鹤, 马宏亮, 莫飘, 肖云, 张雪, 樊高琼. 秋闲期秸秆覆盖与氮肥减施对旱地冬小麦干物质积累、结实特性和产量的影响. 植物营养与肥料学报, 2022, 28(3): 426-439.
GAO R C, CHEN S H, MA H L, MO P, XIAO Y, ZHANG X, FAN G Q. Effects of straw mulching in autumn and reducing nitrogen application on dry matter accumulation, seed-setting characteristics and yield of dryland winter wheat. Journal of Plant Nutrition and Fertilizers, 2022, 28(3): 426-439. (in Chinese)
[22]
赵凯男, 丁豪, 刘阿康, 姜宗昊, 陈广周, 冯波, 王宗帅, 李华伟, 司纪升, 张宾, 等. 氮肥减量后移改善植株光合特性提高麦-玉周年产量及经济效益. 中国农业科学, 2024, 57(5): 868-884. doi:10.3864/j.issn.0578-1752.2024.05.004.
ZHAO K N, DING H, LIU A K, JIANG Z H, CHEN G Z, FENG B, WANG Z S, LI H W, SI J S, ZHANG B, et al. Nitrogen fertilizer reduction and postponing for improving plant photosynthetic physiological characteristics to increase wheat-maize and annual yield and economic return. Scientia Agricultura Sinica, 2024, 57(5): 868-884. doi:10.3864/j.issn.0578-1752.2024.05.004. (in Chinese)
[23]
雷锦雯. 不同播种方式与播量对冬小麦群体质量与产量构成的调控效应[D]. 郑州: 河南农业大学, 2017.
LEI J W. Effects of Different sowing methods and planting densities on group quality and yield components of winter wheat[D]. Zhengzhou: Henan Agricultural University, 2017.. (in Chinese)
[24]
ZHANG L, HE X M, LIANG Z Y, ZHANG W, ZOU C Q, CHEN X P. Tiller development affected by nitrogen fertilization in a high-yielding wheat production system. Crop Science, 2020, 60(2): 1034-1047.
[25]
赵广才. 小麦立体匀播技术绿色节本高产高效. 农民科技培训, 2016(1): 42-44.
ZHAO G C. Three-dimensional uniform sowing technology of wheat: Green cost saving, high yield and high efficiency. Farmer Technology Training, 2016(1): 42-44. (in Chinese)
[26]
常旭虹, 王艳杰, 陶志强, 王德梅, 马少康, 杨玉双, 徐哲莉, 张燕, 赵广才. 小麦立体匀播栽培技术体系. 作物杂志, 2019(2): 168-172.
CHANG X H, WANG Y J, TAO Z Q, WANG D M, MA S K, YANG Y S, XU Z L, ZHANG Y, ZHAO G C. Tridimensional uniform sowing cultivation system of wheat. Crops, 2019(2): 168-172. (in Chinese)
[27]
肖宇, 冯珺珩, 滕霄, 王秀领, 卢相义. 镇压强度和镇压次数对旱作冬小麦生长发育的影响. 作物研究, 2024, 38(6): 458-463.
XIAO Y, FENG J H, TENG X, WANG X L, LU X Y. Effects of suppression intensity and frequency on the growth and development of winter wheat under dry cultivation. Crop Research, 2024, 38(6): 458-463. (in Chinese)
[28]
TAO Z Q, WANG D M, MA S K, YANG Y S, ZHAO G C, CHANG X H. Light interception and radiation use efficiency response to tridimensional uniform sowing in winter wheat. Journal of Integrative Agriculture, 2018, 17(3): 566-578.
[29]
QIN S H, ZHANG J L, DAI H L, WANG D, LI D M. Effect of ridge-furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area. Agricultural Water Management, 2014, 131: 87-94.
[30]
ZHANG G X, LIU S J, DONG Y J, LIAO Y C, HAN J. A nitrogen fertilizer strategy for simultaneously increasing wheat grain yield and protein content: Mixed application of controlled-release urea and normal urea. Field Crops Research, 2022, 277: 108405.
[31]
于慧玲, 阚茗溪, 徐哲莉, 马瑞琦, 刘阿康, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 匀播和条播小麦产量及干物质积累对春季灌水量的响应. 作物学报, 2023, 49(10): 2833-2844.
YU H L, KAN M X, XU Z L, MA R Q, LIU A K, WANG D M, WANG Y J, YANG Y S, ZHAO G C, CHANG X H. Yield and dry matter accumulation of wheat in response to spring irrigation water in uniform sowing and strip sowing. Acta Agronomica Sinica, 2023, 49(10): 2833-2844. (in Chinese)

doi: 10.3724/SP.J.1006.2023.21069
[32]
张迪, 王红光, 贾彬, 李东晓, 李瑞奇, 李雁鸣. 播后镇压和冬前灌溉对冬小麦干物质转移和氮素利用效率的影响. 麦类作物学报, 2017, 37(4):535-542.
ZHANG D, WANG H G, JIA B, LI D X, LI R Q, LI Y M. Effect of post-sowing soil compaction and pre-winter irrigation on dry matter translocation and nitrogen use efficiency of winter wheat. Journal of Triticeae Crops, 2017, 37(4):535-542. (in Chinese)
[33]
谢旭东, 周国勤, 陈真真, 徐宏, 张玉博, 张波, 李刚, 李宇峰. 氮肥和播种方式对信麦9号产量和氮素利用效率的影响. 湖北农业科学, 2020, 59(2):20-23.
XIE X D, ZHOU G Q, CHEN Z Z, XU H, ZHANG Y B, ZHANG B, LI G, LI Y F. Effects of nitrogen fertilizer and sowing methods on yield and nitrogen use efficiency of Xinmai No.9. Hubei Agricultural Sciences, 2020, 59(2):20-23. (in Chinese)
[34]
HU C L, SADRAS V O, LU G Y, ZHANG P X, HAN Y, LIU L, XIE J Y, YANG X Y, ZHANG S L. A global meta-analysis of split nitrogen application for improved wheat yield and grain protein content. Soil and Tillage Research, 2021, 213: 105111.
[35]
常旭虹, 王艳杰, 陶志强, 王德梅, 马少康, 杨玉双, 徐哲莉, 张燕, 赵广才. 小麦立体匀播栽培技术体系. 作物杂志, 2019(2): 168-172.
CHANG X H, WANG Y J, TAO Z Q, WANG D M, MA S K, YANG Y S, XU Z L, ZHANG Y, ZHAO G C. Tridimensional uniform sowing cultivation system of wheat. Crops, 2019(2): 168-172. (in Chinese)
[36]
张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响. 作物学报, 2024, 50(9): 2396-2407.

doi: 10.3724/SP.J.1006.2024.31071
ZHANG Z, HE J N, SHI Y, YU Z W, ZHANG Y L. Effects of row spacing and planting patterns on photosynthetic characteristics and yield of wheat. Acta Agronomica Sinica, 2024, 50(9): 2396-2407. (in Chinese)

doi: 10.3724/SP.J.1006.2024.31071
[37]
刘强, 比拉力·艾力, 王冀川, 高振, 李同蕊, 党旭伟, 张利庭. 不同播种方式与密度对滴灌冬小麦干物质积累及光合特性的影响. 塔里木大学学报, 2021, 33(1): 66-76.
LIU Q, BI LA LI A L, WANG J C, GAO Z, LI T R, DANG X W, ZHANG L T. Effects of different sowing methods and densities on dry matter accumulation and photosynthetic characteristics of winter wheat under drip irrigation. Journal of Tarim University, 2021, 33(1): 66-76. (in Chinese)
[38]
曲文凯, 徐学欣, 郝天佳, 赵金科, 孟繁港, 赵长星. 施氮量对滴灌冬小麦-夏玉米周年产量及氮素利用效率的影响. 植物营养与肥料学报, 2022, 28(7): 1271-1282.
QU W K, XU X X, HAO T J, ZHAO J K, MENG F G, ZHAO C X. Effects of nitrogen application rate on annual yield and N-use efficiency of winter wheat-summer maize rotation under drip irrigation. Journal of Plant Nutrition and Fertilizers, 2022, 28(7): 1271-1282. (in Chinese)
[1] LI YunLi, DIAO DengChao, LIU YaRui, SUN YuChen, MENG XiangYu, WU ChenFang, WANG Yu, WU JianHui, LI ChunLian, ZENG QingDong, HAN DeJun, ZHENG WeiJun. Genome-Wide Association Study of Heat Tolerance at Seedling Stage in A Wheat Natural Population [J]. Scientia Agricultura Sinica, 2025, 58(9): 1663-1683.
[2] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[3] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[4] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[5] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[6] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[7] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[8] WU Yu, QU XiangRu, YANG Dan, WU Qin, CHEN GuoYue, JIANG QianTao, WEI YuMing, XU Qiang. Widespread Non-Targeted Metabolomics Reveals Metabolites of Chloroplasts in Wheat Responses to Stripe Rust [J]. Scientia Agricultura Sinica, 2025, 58(7): 1333-1343.
[9] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[10] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[11] PAN LiYuan, WANG YongJun, LI HaiJun, HOU Fu, LI Jing, LI LiLi, SUN SuYang. Screening Regulatory Genes Related to Wheat Grain Protein Accumulation Based on Transcriptome and WGCNA Analysis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1065-1082.
[12] TANG Yu, LEI BiXin, WANG ChuanWei, YAN XuanTao, WANG Hao, ZHENG Jie, ZHANG WenJing, MA ShangYu, HUANG ZhengLai, FAN YongHui. Response Mechanism of Anthocyanin Accumulation in Colored Wheat to Post-Anthesis High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(6): 1083-1101.
[13] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[14] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[15] ZHANG Ling, CAO Lei, CAI Cheng, YAN XinYi, XIANG BoCai, AI Jia, ZHAN XinYang, SONG YouHong, ZHU YuLei. Changes in Seed Vigor and Physiological Index of Winter Wheat Under Natural Aging Condition [J]. Scientia Agricultura Sinica, 2025, 58(5): 877-889.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!