Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (8): 1444-1455.doi: 10.3864/j.issn.0578-1752.2023.08.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427

LI Jun1(), SHAN LuYing2, XIAO Fang1, LI YunJing1, GAO HongFei1, ZHAI ShanShan1, WU Gang1, ZHANG XiuJie2(), WU YuHua1()   

  1. 1 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of agricultural genetically modified organism traceability, Ministry of Agriculture and Rural Affairs, Wuhan 430062
    2 Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100025
  • Received:2022-10-28 Accepted:2022-12-08 Online:2023-04-16 Published:2023-04-23

Abstract:

【Objective】The GMO (genetically modified organism) reference materials (RMs) are the material basis for GMO safety supervision and labeling policy implementation. During GMO detection the utilization of RMs guarantees the traceability of quantitative results within laboratory and the comparability of quantitative results between laboratories. GM (genetically modified) maize MON87427 has been approved to be imported as raw material in China, it’s urgent to develop certified reference materials (CRMs) for safety supervision and quantification. 【Method】 The GM maize MON87427 hybrid seeds and non-GM counterparts provided by the developer were used as raw materials to perform washing, drying, freeze-grinding, particle size measurement, and moisture content measurement, sequentially. The matrix RMs of MON87427a, MON87427b and MON87427c were produced by blending the seed powder of the GM maize MON87427 and a non-GM counterpart in GMO mass fractions of 60.0 mg·g-1, 99.5 mg·g-1 and 1 000.0 mg·g-1 on a dry basis. The real-time quantitative PCR was used to conduct an initial assessment of homogeneity before packing. The MON87427/zSSIIb duplex digital PCR (ddPCR) was used to evaluate the homogeneity and stability of the RMs as well as the collaborative characterization by 8 qualified laboratories. The data processing of homogeneity, stability, collaborative characterization together with uncertainty evaluation of RMs were carried out according to the standard "General and Statistical Principles for Characterization of Reference Materials" (JJF 1343). 【Result】 This batch of RMs contains three RMs of MON87427a, MON87427b, and MON87427c in different mass fractions, with more than 80% of particle size of less than 200 μm and less than 5% of moisture content. The RMs were packed in brown glass bottles, nitrogen flushed before capping, bottling amount was not less than 1.0 g/bottle, a total of 400 bottles were produced for each mass fraction RM. The calculated F values of the homogeneity test were all less than the critical value of F0.05 (14, 30) (2.04) for the three RMs, displaying good homogeneity within and between bottles, and the minimum intake was determined to be 100 mg. The RMs can be stored stably at 25℃, 37℃, and 60℃ for 14 days, the property value of the RMs does not change significantly after 14 days of transportation at room temperature; the long-term stability can reach 12 months at 4℃ and -20℃; The property value of the samples taken from the same bottle of RM after 5 opening-capping cycles, does not deviate significantly from that of the first taken sample. The collaborative characterization data by eight qualified laboratories displayed normal distribution without outliers and outlying standard deviations. The standard value and expanded uncertainty of MON87427a, MON87427b, Mon87427c were certified to be (2.92±0.44)%, (4.89±0.57)%, (52.1±3.4)%. 【Conclusion】The developed GM maize MON87427 matrix RMs in different mass fractions have good homogeneity, and can be stably transported and stored. This batch of RMs meets the requirements of qualitative and quantitative detection of MON87427 event, providing reliable CRMs for the safety supervision and implementation of quantitative labeling policy for GMO-derived products.

Key words: genetically modified maize MON87427, matrix reference material, duplex digital PCR, property value, uncertainty

Table 1

List of primer and probe of PCR and amplicon size"

PCR类型
PCR type
靶标
Target
引物/探针序列
Sequence of primer/probe (5′-3′)
扩增片段大小
Amplicon size (bp)
实时荧光定量PCR
Real-time PCR
MON87427 F: ACGGAAACGGTCGGGTCAAATG 95
R: CCATGTAGATTTCCCGGTTTTCTC
P: FAM- TCGGGACAATATGGAGAAAAAGAAAGAG -BHQ1
zSSIIb F: CGGTGGATGCTAAGGCTGATG 88
R: AAAGGGCCAGGTTCATTATCCTC
P: Hex-TAAGGAGCACTCGCCGCCGCATCTG-BHQ1
普通PCR
Conventional PCR
MON87427 F: ACGGAAACGGTCGGGTCAAATG 95
R: CCATGTAGATTTCCCGGTTTTCTC
插入位点
Insert site
87427CH-F: ATAAGTCCTCTCCCGTTTCCGT 416
87427CH-R: TCGATGGGTCGAGAAGATTC

Table 2

Mass of GM powder and non-GM powder weighed for preparation MON87427a and MON87427b"

标准物质
Reference materials
拟称取质量 Proposed weighing mass (g) 实际称取质量 Practical weighing mass (g) 含水量 Water content (g) 转基因含量
GMO content (mg·g-1)
总重量
Total mass
转基因粉末
GM powder
非转基因粉末
Non-GM powder
总重量
Total mass
转基因粉末
GM powder
非转基因粉末
Non-GM powder
转基因粉末
GM powder
非转基因粉末
Non-GM powder
MON87427a 450 26.995 423.005 450.002 27.005 422.997 0.292 4.653 60.02
MON87427b 450 44.992 405.008 450.000 44.778 405.222 0.484 4.457 99.52

Table 3

Initial test of MON87427 reference materials homogeneity"

标准物质
Reference materials
MON87427a MON87427b MON87427c
12 h 18 h 24 h 12 h 18 h 24 h 12 h 18 h 24 h
平均值 Mean 3.31 3.25 3.33 5.44 5.23 5.24 51.22 51.84 52.20
标准差 SD 0.21 0.12 0.08 0.63 0.35 0.17 1.77 1.34 2.09
相对标准差 Relative SD 6.40 3.54 2.51 11.55 6.68 3.26 3.45 2.59 4.01
统计量F Statistic F 1.60 1.73 2.18 2.17 0.56 0.74 1.31 2.32 1.89
临界值 F0.05(8,18) 2.51 2.51 2.51 2.51 2.51 2.51 2.51 2.51 2.51
结论 Conclusion 均匀 Homogeneous 均匀 Homogeneous 均匀 Homogeneous

Table 4

ANOVA results of MON87427 RM homogeneity"

标准物质
<BOLD>R</BOLD>eference
materials
差来源
Variance source
差方和(Q)
Sum of squares of deviation
自由度(f)
Degree of freedom
方差(S)
Variance
统计量(F
Statistic F
F0.05 (14,30) 比较结果
Comparison
结论
Conclusion
MON87427a 瓶间 Between-vial 0.25 14 0.018 1.70 2.04 F<F0.05 (14,30) 均匀
Homogeneous
瓶内 Within-vial 0.31 30 0.010
MON87427b 瓶间 Between-vial 0.56 14 0.040 1.40 F<F0.05 (14,30) 均匀
Homogeneous
瓶内 Within-vial 0.85 30 0.028
MON87427c 瓶间 Between-vial 11.97 14 0.855 1.63 F<F0.05 (14,30) 均匀
Homogeneous
瓶内 Within-vial 15.75 30 0.525

Table 5

Evaluation of short-term stability of MON87427 reference materials (copy/copy)"

标准物质
<BOLD>R</BOLD>eference materials
MON87427a MON87427b MON87427c
25℃ 37℃ 60℃ 25℃ 37℃ 60℃ 25℃ 37℃ 60℃
平均值Mean 2.77 2.76 2.87 4.80 4.63 4.63 49.73 50.53 50.14
斜率(β1)Slope -0.0122 0.0085 0.0031 -0.0095 -0.0127 -0.0045 -0.0666 0.0650 -0.0443
与斜率相关的不确定度s(β1) 0.0092 0.0026 0.0129 0.0062 0.0051 0.0069 0.0284 0.0656 0.0882
t0.95,n-2 4.3027 4.3027 4.3027 4.3027 4.3027 4.3027 4.3027 4.3027 4.3027
t0.95,n-2* s(β1) 0.0397 0.0111 0.0556 0.0268 0.0218 0.0297 0.1224 0.2823 0.3793
稳定性判断 Comparison |β1| <t0.95n-2·s(β1)
判断结果
Conclusion
稳定
Stable
稳定
Stable
稳定
Stable
稳定
Stable
稳定
Stable
稳定
Stable
稳定
Stable
稳定
Stable
稳定
Stable

Fig. 1

The change trend of GMO content of GM maize reference materials MON874277a, MON87427b, MON87427c stored at 4℃, -20℃ for 0, 1, 2, 4, 6 and 12 months, respectively"

Table 6

Evaluation of opening-closing stability of MON87427 reference materials"

标准物质
<BOLD>R</BOLD>eference materials
MON87427a MON87427b MON87427c
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
平均值Mean 2.68 2.66 2.71 2.68 2.67 4.52 4.43 4.43 4.52 4.35 51.6 51.1 52.56 51.9 52.14
tt value 0.43 -0.54 -0.08 0.28 0.84 0.90 -0.04 2.04 0.51 -0.96 -0.27 -0.49
t(0.05,6) 2.45 2.45 2.45
结论 Conclusion 一致 Consistent 一致 Consistent 一致 Consistent

Statistical analysis of characterization data of MON87427 reference materials"

参数Parameter MON87427a MON87427b MON87427c
标准值 Certified value (copy/copy, %) 2.92 4.89 52.14
组间标准差(A类不确定度)SD(A type uncertainty) 0.06 0.11 0.68
组间相对标准差(A类相对不确定度)RSD (%) (A type relative uncertainty) 2.20 2.34 1.30

Table 8

Property values and related uncertainty components of MON87427 matrix reference materials"

标准物质
<BOLD>R</BOLD>eference materials
标准值
y
(%)
定值相对
不确定度
urel,c
均匀性相
对不确定度
urel,bb
短期稳定性
相对不确定度urel,ss
长期稳定性
相对不确定度urel,ls
相对标准
不确定度urel,CRM
相对扩展
不确定度Urel,CRM
扩展不确定度
UCRM (k=2)
(%)
MON87427a 2.92 0.0237 0.0176 0.0465 0.0508 0.0749 0.1499 0.44
MON87427b 4.89 0.0250 0.0132 0.0181 0.0471 0.0578 0.1157 0.57
MON87427c 52.14 0.0157 0.0065 0.0082 0.0264 0.0324 0.0649 3.40

Fig. 2

Flow chart of the development of mass fraction reference materials"

[1]
周云龙, 吴刚, 宋贵文. 转基因生物标准物质研制与应用. 北京: 中国质检出版社. 2014: 39-61.
ZHOU Y L, WU G, SONG G W. Development and Application of Reference Materials for Genetically Modified Organisms. Beijing: China Quality Inspection Press, 2014: 39-61. (in Chinese)
[2]
WU Y, LI J, LI X, ZHAI S, GAO H, LI Y, ZHANG X, WU G. Development and strategy of reference materials for the DNA-based detection of genetically modified organisms. Analytical and Bioanalytical Chemistry, 2019, 411(9): 1729-1744.

doi: 10.1007/s00216-019-01576-w pmid: 30707265
[3]
EUROPEAN COMMISSION. Certification report, the certification of different mass fractions of DAS-81419-2 in soya seed powder, certified reference materials ERM®-BF437a, ERM®-BF437b, ERM®-BF437c, ERM®-BF437d and ERM®-BF437e. EUR 26869 EN. Luxembourg: Publications Office of the European Union, 2014.
[4]
EUROPEAN COMMISSION. Certification report, certification of H7-1 Fraction and identity of non-modified and genetically modified sugar beet powder, certified reference materials ERM®-BF419a and ERM®-BF419b. EUR Report 22528 EN. Luxembourg: Office for Official Publications of the European Communities, 2006.
[5]
EUROPEAN COMMISSION. Certification report, certification of EH92-527-1 fraction and identity of non-modified and genetically modified potato powder, certified reference materials ERM®-BF421a and ERM®-BF421b. EUR Report 22291 EN. Luxembourg: Office for Official Publications of the European Communities, 2006.
[6]
DIRECTORATE F - HEALTH, CONSUMERS AND REFERENCE MATERIALS. Certified reference materials 2022, Version 12.07. 2022, https://crm.jrc.ec.europa.eu/graphics/cms_docs/rm_catalogue.pdf. [2022-07-04].
[7]
AOCS. Certified Reference Materials (CRMs). https://www.aocs.org/crm?SSO=True. [2022-07-04].
[8]
国家市场监督管理总局中国计量科学研究院. 国家标准物质资源共享平台. https://www.ncrm.org.cn/Web/Material/List?fenleiAutoID=14&pageIndex=1. [2022-07-04].
STATE MARKET REGULATORY ADMINISTRATION, CHINA ACADEMY OF METROLOGY. National reference material resource sharing platform. https://www.ncrm.org.cn/Web/Material/List?fenleiAutoID=14&pageIndex=1. [2022-07-04]. (in Chinese)
[9]
LI J, ZHANG L, LI L, LI X, ZHANG X, ZHAI S, GAO H, LI Y, WU G, WU Y. Development of genomic DNA certified reference materials for genetically modified rice Kefeng 6. ACS Omega, 2020, 5(34): 21602-21609.
[10]
LI J, LI L, ZHANG L, ZHANG X, LI X, ZHAI S, GAO H, LI Y, WU G, WU Y. Development of a certified genomic DNA reference material for detection and quantification of genetically modified rice KMD. Analytical and Bioanalytical Chemistry, 2020, 412(25): 7007-7016.
[11]
李俊, 李夏莹, 李亮, 宋贵文, 沈平, 张丽, 翟杉杉, 柳方方, 吴刚, 张秀杰, 武玉花. 转基因大豆MON89788纯品粉末标准物质的研制及定值. 农业生物技术学报, 2020, 28(6): 1084-1095.
LI J, LI X Y, LI L, SONG G W, SHEN P, ZHANG L, ZHAI S S, LIU F F, WU G, ZHANG X J, WU Y H. Development and characterization of pure matrix reference materials for detection of transgenic soybean (Glycine max) MON89788. Journal of Agricultural Biotechnology, 2020, 28(6): 1084-1095. (in Chinese)
[12]
李俊, 李亮, 李夏莹, 宋贵文, 沈平, 张丽, 翟杉杉, 柳芳芳, 吴刚, 张秀杰, 武玉花. 转基因玉米MIR604基体标准物质研制. 作物学报, 2020, 46(4): 473-483.

doi: 10.3724/SP.J.1006.2020.93047
LI J, LI L, LI X Y, SONG G W, SHEN P, ZHANG L, ZHAI S S, LIU F F, WU G, ZHANG X J, WU Y H. Development of genetically modified maize MIR604 matrix reference materials. Acta Agronomica Sinica, 2020, 46(4): 473-483. (in Chinese)

doi: 10.3724/SP.J.1006.2020.93047
[13]
李夏莹, 武玉花, 李俊, 肖晓琳, 张飞燕, 梁晋刚, 王顥潜, 张旭冬, 张秀杰. 转基因玉米T25数字PCR方法的建立与验证. 中国农业科技导报, 2020, 22(2): 173-178.

doi: 10.13304/j.nykjdb.2019.0154
LI X Y, WU Y H, LI J, XIAO X L, ZHANG F Y, LIANG J G, WANG H Q, ZHANG X D, ZHANG X J. Establishment and testing of genetically modified T25 maize digital PCR method. Journal of Agricultural Science and Technology, 2020, 22(2): 173-178. (in Chinese)

doi: 10.13304/j.nykjdb.2019.0154
[14]
International Organization for Standardization. Biotechnology requirements for evaluating the performance of quantification methods for nucleic acid target sequence-qPCR and dPCR , ISO 20395:2019 (E). https://www.iso.org/obp/ui/#iso:std:iso:20395:ed-1:v1:en.[2021-08-21].
[15]
EUROPEAN COMMISSION, JOINT RESEARCH CENTER. Guidance document on measurement uncertainty for GMO testing laboratories-3rd edition . 2020 https://gmo-crl.jrc.ec.europa.eu/doc/MU-guidance-document-3rd-edition.pdf.[2021-02-16].
[16]
HUGGETT J F, FOY C A, BENES V, EMSLIE K, GARSON J A, HAYNES R, HELLEMANS J, KUBISTA M, MUELLER R D, NOLAN T, PFAFFL M W, SHIPLEY G L, VANDESOMPELE J, WITTWER C T, BUSTIN S A. The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clinical Chemistry, 2013, 59(6): 892-902.

doi: 10.1373/clinchem.2013.206375 pmid: 23570709
[17]
史宗勇, 宋贵文, 尹海燕, 王金胜, 章秋燕, 高建华, 王文斌, 乔永刚, 袁建琴, 许冬梅, 李丽, 李飞武, 路超. 转基因植物及其产品成分检测耐除草剂玉米MON87427及其衍生品种定性PCR方法, 农业部2630号公告-6-2017. 北京: 中国农业出版社, 2017.
SHI Z Y, SONG G W, YIN H Y, WANG J S, ZHANG Q Y, GAO J H, WANG W B, QIAO Y G, YUAN J Q, XU D M, LI L, LI F W, LU C. Detection of Genetically Modified Plants and Derived Products- Qualitative PCR Method for Herbicide-Tolerant Maize MON87427 and Its Derivates, Announcement No. 2630-6-2017 of the Ministry of Agriculture. Beijing: China Agricultural Press, 2017. (in Chinese)
[18]
EUROPEAN UNION REFERENCE LABORATORY FOR GENETICALLY MODIFIED FOOD AND FEED EURL GMFF. Event-specific method for the quantification of maize MON 87427 using real-time PCR, validated method. 2015. https://gmo-crl.jrc.ec.europa.eu/summaries/EURL-VL-03-12-VM.pdf. [2020-11-21].
[19]
杨立桃, 刘信, 张大兵, 沈平, 郭金超, 金芜军. 转基因植物及其产品成分检测玉米内标准基因定性PCR方法, 农业部1861号公告-3-2012. 北京: 中国农业出版社, 2012.
YANG L T, LIU X, ZHANG D B, SHEN P, GUO J C, JIN W J. Detection of Genetically Modified Plants and Derived Products- Qualitative PCR Method for Maize Reference Gene, Announcement No. 1861-3-2012 of the Ministry of Agriculture, Beijing: China Agricultural Press, 2012. (in Chinese)
[20]
阚莹, 李红梅, 孟凡敏, 卢晓华, 郭敬, 胡晓燕, 王亚平. 标准物质定值的通用原则及统计学原理, JJF 1343-2012. 北京: 中国标准出版社, 2012: 1-66.
KAN Y, LI H M, MENG F M, LU X H, GUO J, HU X Y, WANG Y P. General and Statistical Principles for Characterization of Reference Materials, JJF 1343-2012. Beijing: Standard Press of China, 2012: 1-66. (in Chinese)
[21]
肖芳, 张秀杰, 李俊, 王颢潜, 李允静, 单露英, 翟杉杉, 高鸿飞, 吴刚, 武玉花. 转基因玉米MON87427/zSSIIb 二重微滴数字PCR方法建立及应用. 中国油料作物学报, 2021, 43(1): 90-98.
XIAO F, ZHANG X J, LI J, WANG H Q, LI Y J, SHAN L Y, ZHAI S S, GAO H F, WU G, WU Y H. Development and application of MON87427/zSSIIb duplex droplet digital PCR method. Chinese Journal of Oil Crop Sciences, 2021, 43(1): 90-98. (in Chinese)
[22]
周云龙, 卢长明, 刘信, 曹应龙, 宋贵文, 沈平, 吴刚, 杨立桃, 王晶, 王江, 李允静, 李飞武, 赵欣. 转基因植物及其产品成分检测基体标准物质制备技术规范, 农业部1782号公告-8-2012. 北京: 中国农业出版社, 2012.
ZHOU Y L, LU C M, LIU X, CAO Y L, SONG G W, SHEN P, WU G, YAGN L T, WAGN J, WANG J, LI Y J, LI F W, ZHAO X. Detection of Genetically Modified Plants and Derived Products-Technical Specification for Manufacture of Matrix Reference Material, Announcement No. 1782-8-2012 of the Ministry of Agriculture. Beijing: China Agricultural Press, 2012. (in Chinese)
[23]
高宏伟, 相大鹏, 覃文, 朱水芳, 陈长法, 蔡颖, 许业莉, 庄逸林, 梁希扬, 甄宇江, 金芜军, 路兴波. 转基因产品检测核酸提取纯化方法, GB/T 19495. 3-2004. 北京: 中国标准出版社, 2004: 1-25.
GAO H W, XIANG D P, QIN W, ZHU S F, CHEN C F, CAI Y, XU Y L, ZHUANG Y L, LIANG X Y, ZHEN Y J, JIN W J, LU X B. Detection of Genetically Modified Organisms and Derived Products- Nucleic Acid Extraction, GB/T 19495.3-2004. Beijing: China Standards Press 2004: 1-25. (in Chinese)
[24]
金芜军, 沈平, 张秀杰, 彭于发, 宋贵文, 黄昆仑, 张大兵, 宛煜嵩. 转基因植物及其产品成分检测DNA提取和纯化农业部, 1485号公告-4-2010. 北京: 中国农业出版社, 2010.
JIN W J, SHEN P, ZHANGX J, PENG Y F, SONG G W, HUANG K L, ZHANG D B, WAN Y S. Detection of Genetically Modified Plants and Derived Products-DNA Extraction and Purification, Announcement No. 1485-4-2010 of the Ministry of Agriculture. Beijing: China Agricultural Press, 2010. (in Chinese)
[25]
DEPREZ L, CORBISIER P, KORTEKAAS A, MAZOUA S, HIDALGO R B, TRAPMANN S, EMONS H. Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material. Biomolecular Detection and Quantification, 2016, 9: 29-39.

doi: 10.1016/j.bdq.2016.08.002 pmid: 27617230
[26]
KLINE M C, ROMSOS E L, DUEWER D L. Evaluating digital PCR for the quantification of human genomic DNA: Accessible amplifiable targets. Analytical Chemistry, 2016, 88(4): 2132-2139.

doi: 10.1021/acs.analchem.5b03692 pmid: 26751276
[27]
YOO H B, PARK S R, DONG L, WANG J, SUI Z, PAVŠIČ J, MILAVEC M, AKGOZ M, MOZIOĞLU E, CORBISIER P, JANKA M, COSME B, DE V CAVALCANTE J J, FLATSHART R B, BURKE D, FORBES-SMITH M, MCLAUGHLIN J, EMSLIE K, WHALE A S, HUGGETT J F, PARKES H, KLINE M C, HARENZA J L, VALLONE P M. International comparison of enumeration-based quantification of DNA copy concentration using flow cytometric counting and digital polymerase chain reaction. Analytical Chemistry, 2016, 88(24): 12169-12176.

doi: 10.1021/acs.analchem.6b03076
[28]
LI J, ZHAI S, GAO H, XIAO F, LI Y, WU G, WU Y. Development and assessment of a duplex droplet digital PCR method for quantification of GM rice Kemingdao. Analytical and Bioanalytical Chemistry, 2021, 413(16): 4341-4351.

doi: 10.1007/s00216-021-03390-9 pmid: 34023912
[1] ZHANG Qiao,WANG Ke. The Uncertainty of Agricultural Yield Risk Assessment and Agricultural Insurance Pricing: Literature Review and Wayforward [J]. Scientia Agricultura Sinica, 2021, 54(22): 4778-4786.
[2] LI Ying,LEI QiuLiang,QIN LiHuan,ZHU AXing,LI XiaoHong,ZHAI LiMei,WANG HongYuan,WU ShuXia,YAN TieZhu,LI WenChao,HU WanLi,REN TianZhi,LIU HongBin. Impact of Soil Data with Different Precision on Water Quality and Flow Simulation [J]. Scientia Agricultura Sinica, 2020, 53(16): 3319-3332.
[3] JING Xia-1, 2 , WEI Man-3, WANG Ji-Hua-1, SONG Xiao-Yu-1, HU Rong-Ming-2. Uncertainty Research of Remote Sensing Image Classification Using the Boundary Region-Based Modified Rough Entropy Model [J]. Scientia Agricultura Sinica, 2014, 47(11): 2135-2141.
[4] 吕Zun-Fu , LIU Xiao-Jun, TANG Liang, LIU Lei-Lei, CAO Wei-Xing, ZHU Yan. Regional Prediction and Evaluation of Wheat Phenology Based on the Wheat Grow and CERES Models [J]. Scientia Agricultura Sinica, 2013, 46(6): 1136-1148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!