Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (22): 4371-4385.doi: 10.3864/j.issn.0578-1752.2023.22.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and Application of Top-Down Approaches for Estimating Measurement Uncertainty of GMO Quantitative Results

LI Jun1(), ZHAO Xin2, CHEN Hong3, LI FeiWu4, LIANG JinGang3, LI YunJing1, WANG HaoQian3, GAO HongFei1, ZHANG Hua3, CHEN ZiYan3, WU Gang1, SHEN Ping3, XU LiQun3(), WU YuHua1()   

  1. 1 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of agricultural genetically modified organism traceability, Ministry of Agriculture and Rural Affairs, Wuhan 430062
    2 Tianjin Academy of Agricultural Sciences, Tianjin 300384
    3 Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100025
    4 Jilin Academy of Agricultural Sciences, Changchun 130033
  • Received:2023-04-30 Accepted:2023-07-27 Online:2023-11-16 Published:2023-11-17

Abstract:

【Objective】The enforcement of labeling regulations on genetically modified organisms (GMOs) requires establishing a standard system for accurate quantification of GMOs that includes the standard or guide for estimating measurement uncertainty (MU). It is urgent to establish a standardized top-down approach for estimating MU of quantitative results, which is conveniently adopted by the general testing laboratories. 【Method】There are two approaches for estimating the MU introduced by precision of quantitative method, one is to establish the equation of MU estimation using data obtained on 15 routine samples based on the "uncertainty function", the other is to evaluate the MU by repeatedly measuring a certified reference material (CRM) and calculating the intermediate precision. The uncertainty introduced by bias is evaluated using a CRM or a sample prepared by laboratory as bias control. The uncertainty of the nominal value of the sample prepared by laboratory is evaluated by using a simplified program based on the preparation process. The MU contributed by method precision and bias are combined into the standard uncertainty of the quantitative results, and then multiplied by the coverage factor k to obtain the expanded uncertainty. 【Result】The event-specific PCR method of genetically modified maize DBN9936 was took as an example. The MU of method precision was evaluated to be 0.76% using simulated DBN9936 routine samples, and to be 0.33% using a CRM (GBW (E) 100901). Compared with routine samples, the MU of method precision evaluated using a CRM is significantly underestimated. The uncertainty introduced by bias was evaluated to be 0.26% using a CRM (GBW (E) 100901) as a bias control. Using a laboratory prepared powder sample and a genomic DNA sample (nominal values of 3.0%) as bias control, the bias uncertainty was evaluated to be 0.20% and 0.19%, respectively. Since the simplified program ignored some uncertainty components, the uncertainty of the nominal value of laboratory prepared samples was estimated to be smaller. By combining the MU of method precision and bias, the expanded uncertainty using routine samples was obtained to be 1.26%, 1.20%, and 1.20%, respectively, the expanded uncertainty using a CRM was 0.84%, 0.78%, and 0.76%, respectively. 【Conclusion】This study established the top-down approaches for MU estimation of quantitative results, testing laboratories should prioritize routine samples to estimate the MU contributed by the method precision, and select CRMs as bias control in principle to evaluate bias uncertainty during GMO quantification.

Key words: quantitative results of GMO content, measurement uncertainty, top-down approach, certified reference materials, bias control

Table 1

List of primers/probes of DBN9936 event and zSSIIb reference gene"

转化体(基因)
Event (gene)
引物/探针名称及序列
Sequences of primer/probe (5′-3′)
扩增片段大小
Amplicon size (bp)
DBN9936 LF51:CAGGGGCAAGAAAACATC 76
LR126:TCTTGTGTGCCCATGAGCCTA
LP79:FAM-TCTTGTGTGCCCATGAGCCTA-BHQ1
zSSIIb F:CGGTGGATGCTAAGGCTGATG 88
R:AAAGGGCCAGGTTCATTATCCTC
P:Hex-TAAGGAGCACTCGCCGCCGCATCTG-BHQ1

Table 2

Statistical analysis of quantitative data of 15 routine samples"

样品类型
Sample type
样品编号
Sample code
预期浓度
Expected concentration (%)
测量值 Measured value (%) ${{\bar{c}}_{j}}$(%) SD (%) RSD (%)
c1,j c2,j
低浓度样品
Low level sample
R1 0.10 0.119 0.096 0.107 0.021 19.20
R2 0.12 0.126 0.100 0.113 0.023 20.53
R3 0.15 0.135 0.142 0.139 0.006 4.13
R4 0.20 0.215 0.192 0.204 0.020 9.81
R5 0.25 0.249 0.311 0.280 0.054 19.41
R6 0.30 0.331 0.385 0.358 0.048 13.48
高浓度样品
High level sample
R7 0.35 0.439 0.330 0.385 0.097 25.28
R8 0.40 0.561 0.474 0.518 0.077 14.86
R9 0.50 0.524 0.590 0.557 0.058 10.45
R10 0.70 0.788 0.609 0.699 0.159 22.70
R11 1.00 0.978 0.946 0.962 0.028 2.88
R12 2.00 2.270 2.181 2.226 0.079 3.55
R13 2.50 2.238 2.854 2.546 0.546 21.43
R14 3.00 2.974 3.543 3.258 0.505 15.48
R15 4.00 4.320 4.151 4.236 0.150 3.55

Table 3

Calculation process and results of constant standard deviation α"

样品分类
Sample type
样品编号
Sample code
测量值 Measured value (%) 分析结果 Analytical result (%)
c1,j c2,j $\left| \text{ }{{d}_{j}} \right|$ $\left| \text{ }\bar{d} \right|$ α
低浓度样品
Low level sample
R1 0.119 0.096 0.023 0.032 0.029
R2 0.126 0.100 0.026
R3 0.135 0.142 0.006
R4 0.215 0.192 0.023
R5 0.249 0.311 0.061
R6 0.331 0.385 0.054

Table 4

Calculation process and results of constant relative standard deviation β"

样品分类
Sample type
样品编号
Sample code
测量值 Measured value (%) 数据分析结果 Analytical result
c1,j c2,j $\left| \text{ }{{d}_{j}} \right|$(%) ${{\bar{c}}_{j}}$(%) ${{\left| \text{ }{{d}_{j}} \right|}_{rel}}$ $\text{ }{{\left| \text{ }\bar{d} \right|}_{rel}}$ β
高浓度样品
High level sample
R7 0.439 0.330 0.110 0.385 0.278 0.155 0.137
R8 0.561 0.474 0.087 0.518 0.181
R9 0.524 0.590 0.066 0.557 0.128
R10 0.788 0.609 0.179 0.699 0.240
R11 0.978 0.946 0.031 0.962 0.032
R12 2.270 2.181 0.089 2.226 0.042
R13 2.238 2.854 0.616 2.546 0.260
R14 2.974 3.543 0.569 3.258 0.191
R15 4.320 4.151 0.170 4.236 0.041

Table 5

Quantitative data of the certified reference material (GBW (E) 100901)"

平行子样
Subsample
检测结果 Measured result (%) 分析结果 Analytical result (%)
第1天
Day 1
第2天
Day 2
第3天
Day 3
第4天
Day 4
第5天
Day 5
组内均方
MSw
组间均方
MSb
重复性方差
$s_{r}^{2}$
组间方差
$s_{b}^{2}$
子样1 Subsample 1 3.95 3.90 3.47 3.30 3.96 0.171 0.412 0.171 0.048
子样2 Subsample 2 3.60 3.14 4.04 3.40 3.93
子样3 Subsample 3 3.06 2.33 3.25 3.02 3.62
子样4 Subsample 4 3.85 2.87 2.87 2.58 3.14
子样5 Subsample 5 3.51 2.94 3.08 3.02 3.60

Table 6

Statistical results of quantitative data of bias control"

质控品
Control
标准值
CCRM
测量结果 Measured result (%) 分析结果Analytical result (%)
C1 C2 C3 $\bar{c}$ |bias| s $u(\bar{c})$ uCRM(uE) ubias RSD
GBW(E)100901 3.49% 3.13 3.05 3.64 3.273 0.217 0.348 0.201 0.165a 0.260 10.65
实验室配制粉末质控品
Laboratory prepared matrix control
0.03 3.21 3.35 2.81 3.123 0.123 0.319 0.184 0.060b 0.194 10.21
实验室配制基因组DNA质控品
Laboratory prepared genomic DNA control
0.03 2.90 3.30 3.40 3.200 0.200 0.295 0.171 0.070b 0.184 9.23

Table 7

Analytical results of measured values of GM and non-GM genomic DNA solution"

DNA 测量浓度(拷贝(μL)) 平均值
$\bar{c}$
平均值标准差
${{u}_{{\bar{c}}}}$
平均值相对标准差
${{u}_{\bar{c}1}}$
1 2 2
转基因DNA GM DNA 34000 33100 33700 33600 307 0.0091
非转基因DNA Non-GM DNA 33300 33400 34700 33800 477 0.0141

Table 8

The estimation and expression of measurement uncertainty of the test sample"

试样检测平均值
Mean of test sample
精密度不确定度评定
Estimation of precision uncertainty
偏倚不确定度评定
Estimation of bias uncertainty
合成不确定度
Combined uncertainty (%)
扩展不确定度
Expanded uncertainty (%)
定量结果
Expression of quantitative result (%)
评定方法
Method
精密度不确定度
Precision uncertainty (%)
质控品类型
Control type
偏倚不确定度
Bias uncertainty (%)
4.15% 常规样品
Routine sample
0.57 有证标准物质CRM 0.260 0.63 1.26 4.15±1.26
实验室配制粉末样品
Laboratory prepared matrix sample
0.194 0.60 1.20 4.15±1.20
实验室配制基因组DNA样品
Laboratory prepared genomic DNA sample
0.184 0.60 1.20 4.15±1.20
有证标准物质
CRM
0.33 有证标准物质CRM 0.260 0.42 0.84 4.15±0.84
实验室配制粉末样品
Laboratory prepared matrix sample
0.194 0.39 0.78 4.15±0.78
实验室配制基因组DNA样品
Laboratory prepared genomic DNA sample
0.184 0.38 0.76 4.15±0.76
[1]
焦悦, 王智, 张振民, 彭萱子, 付海滨, 朱鹏宇, 黄春蒙, 张永江, 付伟. 基于转基因产品成分低水平混杂问题探究我国转基因阈值制度. 中国农业科技导报, 2022, 24(3): 20-27.

doi: 10.13304/j.nykjdb.2020.0984
JIAO Y, WANG Z, ZHANG Z M, PENG X Z, FU H B, ZHU P Y, HUANG C M, ZHANG Y J, FU W. Research on the transgenic threshold system in China based on low-level presence of genetically modified products. Journal of Agricultural Science and Technology, 2022, 24(3): 20-27. (in Chinese)

doi: 10.13304/j.nykjdb.2020.0984
[2]
TRANBERG J. Developing a policy for low-level presence (LLP): A Canadian case study. AgBioForum, 2013, 16: 37-45.
[3]
徐丽丽, 李宁, 田志宏. 转基因产品低水平混杂问题研究. 中国农业大学学报(社会科学版), 2012, 29(2): 125-132.
XU L L, LI N, TIAN Z H. Analysis on the low level presence of genetically modified product. Journal of China Agricultural University (Social Sciences), 2012, 29(2): 125-132. (in Chinese)
[4]
International Organization for Standardization ISO, International Electrotechnical Commission (IEC). International vocabulary of metrology—Basic and general concepts and associated terms (VIM), ISO/IEC Guide 99:2007, https://www.iso.org/standard/45324.html2022-04-07].
[5]
INFUSINO I, PANTEGHINI M. Measurement uncertainty: Friend or foe? Clinical Biochemistry, 2018, 57: 3-6.

doi: S0009-9120(18)30002-X pmid: 29410277
[6]
International Organization for Standardization ISO, International Electrotechnical Commission (IEC). Uncertainty of measurement— Part 4:Role of measurement uncertainty in conformity assessment. ISO/IEC Guide 98-4:2012. https://www.iso.org/standard/50465.html
[7]
International Organization for Standardization ISO, International Electrotechnical Commission (IEC). Uncertainty of measurement— Part 3: Guide to the expression of uncertainty in measurement (GUM:1995), ISO/IEC Guide 98-3:2008. https://www.iso.org/standard/50461.html2022-04-07].
[8]
GB/T 27418—2017. 测量不确定度评定和表示. 北京: 中国标准出版社, 2017: 1-77.
GB/T 27418—2017. Guide to the evaluation and expression of uncertainty in measurement. Beijing: China Standards Press, 2017: 1-77. (in Chinese)
[9]
叶培德, 赵峰, 施昌彦, 原遵东, 沙定国, 周桃庚, 陈红. 测量不确定度评定与表示, JJF1059.1-2012. 北京: 中国质检出版社, 2012: 1-56.
YE P D, ZHAO F, SHI C Y, YUAN Z D, SHA D G, ZHOU T G, CHEN H. Evaluation and expression of uncertainty in measurement, JJF1059.1-2012. Beijing: China Quality Inspection Press, 2012: 1-56. (in Chinese)
[10]
FARRANCE I, BADRICK T, FRENKEL R. Uncertainty in measurement and total error: Different roads to the same quality destination? Clinical Chemistry and Laboratory Medicine, 2018, 56(12): 2010-2014.

doi: 10.1515/cclm-2018-0421 pmid: 29949508
[11]
DABALUS ISLAM M, SCHWEIKERT TURCU M, CANNAVAN A. Comparison of methods for the estimation of measurement uncertainty for an analytical method for sulphonamides. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2008, 25(12): 1439-1450.
[12]
RIGO-BONNIN R, BLANCO-FONT A, CANALIAS F. Different top-down approaches to estimate measurement uncertainty of whole blood tacrolimus mass concentration values. Clinical Biochemistry, 2018, 57: 56-61.

doi: 10.1016/j.clinbiochem.2018.05.005
[13]
MORGADO V, PALMA C, BETTENCOURT DA SILVA R J N. Bottom-up evaluation of the uncertainty of the quantification of microplastics contamination in sediment samples. Environmental Science & Technology, 2022, 56(15): 11080-11090.

doi: 10.1021/acs.est.2c01828
[14]
FARRANCE I, FRENKEL R. Uncertainty of measurement: A review of the rules for calculating uncertainty components through functional relationships. The Clinical Biochemist Reviews, 2012, 33(2): 49-75.
[15]
WHITE G H, FARRANCE I, AACB Uncertainty of Measurement Working Group. Uncertainty of measurement in quantitative medical testing: A laboratory implementation guide. The Clinical Biochemist Reviews, 2004, 25(4): S1-S24.
[16]
FRENKEL R B, FARRANCE I. Uncertainty in measurement: Procedures for determining uncertainty with application to clinical laboratory calculations. Advances in Clinical Chemistry, 2018, 85: 149-211.

doi: S0065-2423(18)30003-9 pmid: 29655460
[17]
SOUSA J A, BATISTA E, DEMEYER S, FISCHER N, PELLEGRINO O, RIBEIRO A S, MARTINS L L. Uncertainty calculation methodologies in microflow measurements: Comparison of GUM, GUM-S1 and Bayesian approach. Measurement, 2021, 181: 109589.

doi: 10.1016/j.measurement.2021.109589
[18]
GIECHASKIEL B, LÄHDE T, MELAS A D, VALVERDE V, CLAIROTTE M. Uncertainty of laboratory and portable solid particle number systems for regulatory measurements of vehicle emissions. Environmental Research, 2021, 197: 111068.

doi: 10.1016/j.envres.2021.111068
[19]
FARRANCE I, BADRICK T, FRENKEL R. Uncertainty in measurement: A review of the procedures for determining uncertainty in measurement and its use in deriving the biological variation of the estimated glomerular filtration rate. Practical Laboratory Medicine, 2018, 12: e00097.

doi: 10.1016/j.PLABM.2018.e00097
[20]
International Organization for Standardization ISO. Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation. ISO/TS 21748:2004. https://www.iso.org/standard/34686.html2022-04-07]
[21]
王斗文, 陈玉忠, 于振凡, 张帆, 杨军, 王海鹰, 丁文兴, 宋桂兰, 曾泽. 利用重复性、再现性和正确度的估计值评估测量不确定度的指南. GB/Z 22553-2010. 北京: 中国标准出版社, 2010: 1-20.
WANG D W, CHEN Y Z, YU Z F, ZHAGN F, YANG J, WANG H Y, DING W X, SONG G L, ZENG Z. Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation. GB/Z 22553-2010. Beijing: Standards Press of China, 2010:1-20. (in Chinese)
[22]
TRAPMANN S, BURNS M, CORBISIER P, GATTO F, ROBOUCH P, SOWA S, EMONS H. Guidance document on Measurement Uncertainty for GMO Testing Laboratories 3rd Edition, EUR 30248 EN, Publications Office of the European Union, Luxembourg, 2020, ISBN 978-92-76-19432-3, doi:10.2760/738565, JRC120898.
[23]
MARTINELLO F, SNOJ N, SKITEK M, JERIN A. The top-down approach to measurement uncertainty: Which formula should we use in laboratory medicine? Biochemia Medica, 2020, 30(2): 020101.
[24]
LEE J H, CHOI J H, YOUN J S, CHA Y J, SONG W, PARK A J. Comparison between bottom-up and top-down approaches in the estimation of measurement uncertainty. Clinical Chemistry and Laboratory Medicine, 2015, 53(7): 1025-1032.

doi: 10.1515/cclm-2014-0801 pmid: 25539513
[25]
国家市场监督管理总局认可与检验检测监督管理局. 检验检测机构资质评审准则. https://www.samr.gov.cn/rkjcs/tzgg/202201/t20220128_339457.html2023-01-11].
State Administration for Market Regulation, Administration for Accreditation, Inspection and Testing Supervision. Qualification evaluation criteria for inspection and testing institutions. https://www.samr.gov.cn/rkjcs/tzgg/202201/t20220128_339457.html2023-01-11]. (in Chinese)
[26]
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ISO. General requirements for the competence of testing and calibration laboratories, ISO17025-2017. https://www.iso.org/standard/66912.html2022-04-07].
[27]
梁新苗, 蔡颖, 郭铮蕾, 李宏, 饶红, 骆卫峰, 周广彪, 韩玥, 马丹, 徐姗, 刘若思. 转基因检测实验室测量不确定度评估指南, SN/T 4562-2016. 北京: 中国标准出版社, 2016: 1-22.
LIANG X M, CAI Y, GUO Z L, LI H, RAO H, LUO W F, ZHOU G B, HAN Y, MA D, XU S, LIU R S. Guidance on measurement uncertainty for GMO testing laboratories, SN/T 4562-2016. Beijing: Standards Press of China, 2016:1-22. (in Chinese)
[28]
高运华, 张秀杰, 李亮, 李夏莹, 金芜军, 刘卫晓, 王迪, 梅英婷. 转基因植物及其产品成分检测转基因成分定量检测结果不确定度评定与表示, 农业农村部公告第423号—10—2021. 北京: 中国农业出版社, 2021: 1-9.
GAO Y H, ZHANG X J, LI L, LI X Y, JIN W J, LIU W X, WANG D, MEI Y T. Detection of genetically modified plants and derived products— Guidance on measurement uncertainty for GMO testing results, Announcement of Ministry of Agriculture and Rural Affairs 423-10-2021. Beijing: Agriculture press of China, 2021: 1-9. (in Chinese)
[29]
LI J, GAO H F, LI Y J, XIAO F, ZHAI S S, WU G, WU Y H. Event-specific PCR methods to quantify the genetically modified DBN9936 maize. Journal of Food Composition and Analysis, 2022, 105: 104236.

doi: 10.1016/j.jfca.2021.104236
[30]
THOMPSON M, MATHIESON K, DAMANT A P, WOOD R. A general model for interlaboratory precision accounts for statistics from proficiency testing in food analysis. Accreditation and Quality Assurance, 2008, 13(4/5): 223-230.

doi: 10.1007/s00769-008-0356-z
[31]
BURNS M, VALDIVIA H. A procedural approach for the identification of sources of uncertainty associated with GM quantification and real-time quantitative PCR measurements. European Food Research and Technology, 2007, 226(1/2): 7-18.

doi: 10.1007/s00217-006-0502-y
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!