Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (19): 3964-3974.doi: 10.3864/j.issn.0578-1752.2020.19.010

• PLANT PROTECTION • Previous Articles     Next Articles

Secondary Metabolites from a Marine-Derived Fungus Aspergillus versicolor and Their Anti-Phytopathogenic Bacterial Activity

FU Bing1,2(),WANG Mei1,LIU JianYang2,LIN Wei2,ZHANG ChengSheng1,ZHAO DongLin1()   

  1. 1Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong
    2Nanping Branch, Fujian Tobacco Company, Nanping 353000, Fujian
  • Received:2020-02-29 Accepted:2020-05-08 Online:2020-10-01 Published:2020-10-19
  • Contact: DongLin ZHAO E-mail:fb1501@163.com;zhaodonglin@caas.cn

Abstract:

【Objective】 Plant bacterial diseases are becoming more and more serious, and lack of control pesticides. The objective of this study is to isolate bioactive compounds from the previously obtained marine-derived fungus Aspergillus versicolor D5 with antibacterial activity and abundant secondary metabolites, identify their chemical structures, evaluate their anti-phytopathogenic bacterial activity, so that to clarify the antibacterial components of the target fungus. This research will provide lead compounds for the discovery of new antibacterial pesticides.【Method】The compounds were isolated by silica gel column chromatography (CC), octadecylsilyl silica gel CC, Sephadex LH-20 CC, and semipreparative HPLC, and were identified by modern spectral analysis methods including NMR and MS spectra. In addition, the actibacterial activity of the isolated compounds towards six phytopathogenic bacteria, including Acidovorax avenae, Erwinia carotovora, Clavibater michiganensis, Pseudomonas syringae, Ralstonia solanacearum and Xanthomonas campestris, was evaluated by double dilution method to obtain the minimum inhibitory concentration (MIC).【Result】Twelve compounds were isolated and identified from the ethyl acetate extract of the marine-derived fungus A. versicolor D5 fermented by potato dextrose water media, including four 4-aryl-quinolin-2-one alkaloids, viridicatin (1), 3-O-methylviridicatin (2), 3,6-O-dimethylviridicatin (3), and 3-O-methylviridicatol (4), two dioxopiperazine alkaloids, (+)-cyclopenol (5) and (-)-cyclopenol (6), three fumiquinazolines alkaloids and their derivatives, versicoloid A (7), chrysopiperazine C (8), and cottoquinazoline A (9), and three anthraquinone derivatives, versiconol (10), averufin (11), and noraverufanin (12). Among them, a 4-aryl-quinolin-2-one alkaloid, 3,6-O-dimethylviridicatin (3) exhibited an obvious antibacterial activity against R. solanacearum and X. campestris with MIC values of 50 and 100 μg·mL-1, respectively. The structure activity relationship analysis revealed that the methoxy group at C-6 might play an important role in anti-phytopathogenic bacterial activity.【Conclusion】The metabolites of A. versicolor D5 are abundant, which can produce alkaloids and anthraquinones with various structures. Among them, nine alkaloids and three anthraquinones were obtained from cultures of D5. 3,6-O-dimethylviridicatin (3) exhibited clear antibacterial activities towards R. solanacearum and X. campestris.

Key words: marine-derived fungus, Aspergillus versicolor, alkaloid, anthraquinone, structural identification, phytopathogenic bacteria

Fig. 1

The chemical structure of compounds 1-12"

Table 1

Antibacterial activity of compound 3 towards R. solanacearum and X. campestris"

化合物浓度
Concentration
(μg·mL-1)
加药Dose青枯雷尔氏菌
R. solanacearum
OD600值OD600 value
加药Dose野油菜黄单胞菌
X. campestris
OD600值OD600 value
200 0.0917
0.0885
0.0835
100 0.0902 0.0891
0.0947 0.0790
0.0958 0.0788
50 0.1364 1.0253
0.1504 1.0450
0.1448 1.0277
25 0.2496 1.0800
0.2457 1.0953
0.2458 1.0898
12.5 0.4333 1.0911
0.4246 1.0891
0.4340 1.1001
6.25 1.1058
1.0913
1.0943
[1] GODFRAY H C J, BEDDINGTON J R, CRUTE I R, HADDAD L, LAWRENCE D, MUIR J F, PRETTY J, ROBINSON S, THOMAS S M, TOULMIN C. Food security: The challenge of feeding 9 billion people. Science, 2010, 327(5967): 812-818.
doi: 10.1126/science.1185383 pmid: 20110467
[2] LAMBERTH C, JEANMART S, LUKSCH T, PLANT A. Current challenges and trends in the discovery of agrochemicals. Science, 2013, 341(6147): 742-746.
pmid: 23950530
[3] 钱韦. 《微生物学通报》与中国植物相关细菌研究40年. 微生物学通报, 2014, 41(3): 445-449
QIAN W. Microbiology China and 40 years study on plant-associated bacteria. Microbiology China, 2014, 41(3): 445-449. (in Chinese)
[4] SUNDIN G W, CASTIBLANCO L F, YUAN X, ZENG Q, YANG C H. Bacterial disease management: Challenges, experience, innovation and future prospects. Molecular Plant Pathology, 2016, 17(9): 1506-1518.
doi: 10.1111/mpp.12436 pmid: 27238249
[5] BUTTIMER C, MCAULIFFE O, ROSS R P, HILL C, O’MAHONY J, COFFEY A. Bacteriophages and bacterial plant diseases. Frontiers in Microbiology, 2017, 8: 34.
doi: 10.3389/fmicb.2017.00034 pmid: 28163700
[6] 冯洁. 植物病原细菌分类最新进展. 中国农业科学, 2017, 50(12): 2305-2314.
doi: 10.3864/j.issn.0578-1752.2017.12.011
FENG J. Recent advances in taxonomy of plant pathogenic bacteria. Scientia Agricultura Sinica, 2017, 50(12): 2305-2314. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.12.011
[7] GUAN A, LIU C, YANG X, DEKEYSER M. Application of the intermediate derivatization approach in agrochemical discovery. Chemical Reviews, 2014, 114(14): 7079-7107.
doi: 10.1021/cr4005605 pmid: 24869800
[8] CARROLL A R, COPP B R, DAVIS R A, KEYZERS R A, PRINSEP M R. Marine natural products. Natural Product Reports, 2020, 37(2): 175-223.
doi: 10.1039/c9np00069k pmid: 32025684
[9] WIESE J, IMHOFF J F. Marine bacteria and fungi as promising source for new antibiotics. Drug Development Research, 2019, 80(1): 24-27.
doi: 10.1002/ddr.21482 pmid: 30370576
[10] UCHIDA R, TOMODA H, ARAI M, OMURA S. Chlorogentisylquinone, a new neutral sphingomyelinase inhibitor, produced by a marine fungus. The Journal of Antibiotics, 2001, 54(11): 882-889.
doi: 10.7164/antibiotics.54.882 pmid: 11827029
[11] SWATHI J, SOWJANYA K M, NARENDRA K, REDDY K V N R, SATYA A K. Isolation, identification & production of bioactive metabolites from marine fungi collected from coastal area of Andhra Pradesh, India. Journal of Pharmacy Research, 2013, 6(6): 663-666.
doi: 10.1016/j.jopr.2013.04.052
[12] SILBER J, OHLENDORF B, LABES A, ERHARD A, IMHOFF J F. Calcarides A-E, antibacterial macrocyclic and linear polyesters from a Calcarisporium strain. Marine Drugs, 2013, 11(9): 3309-3323.
doi: 10.3390/md11093309
[13] WU B, WIESE J, LABES A, KRAMER A, SCHMALJOHANN R, IMHOFF J F. Lindgomycin, an unusual antibiotic polyketide from a marine fungus of the Lindgomycetaceae. Marine Drugs, 2015, 13(8): 4617-4632.
doi: 10.3390/md13084617 pmid: 26225984
[14] HENRIQUEZ M, VERGARA K, NORAMBUENA J, BEIZA A, MAZA F, UBILLA P, ARAYA I, CHAVEZ R, SAN-MARTIN A, DARIAS J, DARIAS M J, VACA I. Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World Journal of Microbiology and Biotechnology, 2014, 30(1): 65-76.
doi: 10.1007/s11274-013-1418-x pmid: 23824664
[15] NIU S, LIU D, PROKSCH P, SHAO Z, LIN W. New polyphenols from a deep sea Spiromastix sp. fungus, and their antibacterial activities. Marine Drugs, 2015, 13(4): 2526-2540.
pmid: 25913707
[16] WANG R, GUO Z K, LI X M, CHEN F X, ZHAN X F, SHEN M H. Spiculisporic acid analogues of the marine-derived fungus, Aspergillus candidus strain HDf2, and their antibacterial activity. Antonie van Leeuwenhoek, 2015, 108(1): 215-219.
doi: 10.1007/s10482-015-0462-y pmid: 25912731
[17] CHEN C J, ZHOU Y Q, LIU X X, ZHANG W J, HU S S, LIN L P, HUO G M, JIAO R H, TAN R X, GE H M. Antimicrobial and anti-inflammatory compounds from a marine fungus, Pleosporales sp. Tetrahedron Letters, 2015, 56(45): 6183-6189.
[18] ZHAO D L, WANG D, TIAN X Y, CAO F, LI Y Q, ZHANG C S. Anti-phytopathogenic and cytotoxic activities of crude extracts and secondary metabolites of marine-derived fungi. Marine Drugs, 2018, 16(1): 36.
[19] HUANG R H, GOU J Y, ZHAO D L, WANG D, LIU J, MA G Y, LI Y Q, ZHANG C S. Phytotoxicity and anti-phytopathogenic activities of marine-derived fungi and their secondary metabolites. RSC Advances, 2018, 8(66): 37573-37580.
doi: 10.1039/C8RA08047J
[20] OPPONG-DANQUAH E, BUDNICKA P, BLUMEL M, TASDEMIR D, TASDEMIR D. Design of fungal co-cultivation based on comparative metabolomics and bioactivity for discovery of marine fungal agrochemicals. Marine Drugs, 2020, 18(2): 73.
doi: 10.3390/md18020073
[21] WEI M Y, YANG R Y, SHAO C L, WANG C Y, DENG D S, SHE Z G, LIN Y C. Isolation, structure elucidation, crystal structure, and biological activity of a marine natural alkaloid, viridicatol. Chemistry of Natural Compounds, 2011, 47(2): 322-325.
[22] HODGR R P, HARRIS C M, HARRIS T M. Verrucofortine, a major metabolite of Penicillium verrucosum var. cyclopium, the fungus that produces the mycotoxin verrucosidin. Journal of Natural Products, 1988, 51(1): 66-73.
doi: 10.1021/np50055a008 pmid: 3373229
[23] WANG J, HE W, HUANG X, TIAN X, LIAO S, YANG B, WANG F, ZHOU X, LIU Y. Antifungal new oxepine-containing alkaloids and xanthones from the deep-sea-derived fungus Aspergillus versicolor SCSIO 05879. Journal of Agricultural and Food Chemistry, 2016, 64(14): 2910-2916.
doi: 10.1021/acs.jafc.6b00527 pmid: 26998701
[24] LI J, WANG J, JIANG C S, LI G, GUO Y W. (+)-Cyclopenol, a new naturally occurring 7-membered 2,5-dioxopiperazine alkaloid from the fungus Penicillium sclerotiorum endogenous with the Chinese mangrove Bruguiera gymnorrhiza. Journal of Asian Natural Products Research, 2014, 16(5): 542-548.
doi: 10.1080/10286020.2014.911290 pmid: 24773150
[25] XU W F, MAO N, XUE X J, QI Y X, WEI M Y, WANG C Y, SHAO C L. Structures and absolute configurations of diketopiperazine alkaloids chrysopiperazines A-C from the gorgonian-derived Penicillium chrysogenum fungus. Marine Drugs, 2019, 17(5): 250.
[26] FREMLIN L J, PIGGOTT A M, LACEY E, CAPON R J. Cottoquinazoline A and cotteslosins A and B, metabolites from an Australian marine-derived strain of Aspergillus versicolor. Journal of Natural Products, 2009, 72(4): 666-670.
doi: 10.1021/np800777f pmid: 19245260
[27] FREDENHAGEN A, HUG P, SAUTER H, PETER H H. Paeciloquinones A, B, C, D, E, and F: New potent inhibitors of protein tyrosine kinase produced by Paecilomyces carneus. II. Characterization and structure determination. The Journal of Antibiotics, 1995, 48(3): 199-204.
doi: 10.7164/antibiotics.48.199 pmid: 7730152
[28] BRAUERS G, EDRADA R A, EBEL R, PROKSCH P, WRAY V, BERG A, GRAEFE U, SCHAECHTELE C, TOTZKE F, FINKENZELLER G, MARME D, KRAUS J, MUENCHBACH M, MICHEL M, BRINGMANN G, SCHAUMANN K. Anthraquinones and betaenone derivatives from the sponge-associated fungus Microsphaeropsis species: Novel inhibitors of protein kinases. Journal of Natural Products, 2000, 63(6): 739-745.
doi: 10.1021/np9905259 pmid: 10869191
[29] NUMATA A, TAKAHASHI C, MATSUSHITA T, MIYAMOTO T, KAWAI K, USAMI Y, MATSUMURA E, INOUE M, OHISHI H, SHINGU T. Fumiquinazolines, novel metabolites of a fungus isolated from a saltfish. Tetrahedron Letters, 1992, 33(12): 1621-1624.
doi: 10.1016/S0040-4039(00)91690-3
[30] CARROLL A R, COPP B R, DAVIS R A, KEYZERS R A, PRINSEP M R. Marine natural products. Natural Product Reports, 2019, 36(1): 122-173.
doi: 10.1039/c8np00092a pmid: 30663727
[31] BLUNT J W, CARROLL A R, COPP B R, DAVIS R A, KEYZERS R A, PRINSEP M R. Marine natural products. Natural Product Reports, 2018, 35(1): 8-53.
doi: 10.1039/c7np00052a pmid: 29335692
[32] BLUNT J W, COPP B R, KEYZERS R A, MUNRO M H G, PRINSEP M R. Marine natural products. Natural Product Reports, 2017, 34(3): 235-294.
doi: 10.1039/c6np00124f pmid: 28290569
[33] MICHAEL J P. Quinoline, quinazoline, and acridone alkaloids. Natural Product Reports, 2008, 25(1): 166-187.
doi: 10.1039/b612168n pmid: 18250901
[34] HE J, LION U, SATTLER I, GOLLMICK F A, GRABLEY S, CAI J, MEINERS M, SCHUENKE H, SCHAUMANN K, DECHERT U, KROHN M. Diastereomeric quinolinone alkaloids from the marine-derived fungus Penicillium janczewskii. Journal of Natural Products, 2005, 68(9): 1397-1399.
doi: 10.1021/np058018g pmid: 16180822
[35] PAN C, SHI Y, CHEN X, CHEN C T A, TAO X, WU B. New compounds from a hydrothermal vent crab-associated fungus Aspergillus versicolor XZ-4. Organic and Biomolecular Chemistry, 2017, 15(5): 1155-1163.
doi: 10.1039/c6ob02374f pmid: 28074949
[36] RESENDE D I S P, BOONPOTHONG P, SOUSA E, KIJJOA A, PINTO M M M. Chemistry of the fumiquinazolines and structurally related alkaloids. Natural Product Reports, 2019, 36(1): 7-34.
doi: 10.1039/c8np00043c pmid: 30091435
[1] XU XiaoYu,LI AiPing,WU SiFeng,LI ChengXun,ZHENG KaiBin. Composition Analysis of Gas Phase and Liquid Phase of Fresh Floral Water Extract and Fresh Flowers Cell Sap from Gardenia jasminoides [J]. Scientia Agricultura Sinica, 2020, 53(22): 4710-4726.
[2] LIU YuFei,JIN JiQiang,YAO MingZhe,CHEN Liang. Screening, Cloning and Functional Research of the Rare Allelic Variation of Caffeine Synthase Gene (TCS1g) in Tea Plants [J]. Scientia Agricultura Sinica, 2019, 52(10): 1772-1783.
[3] XIONG Xin, GUO Shu-qi, LI Lin, MA Zhi-qing, ZHANG Xing. Effect of Sophora alopecuroides Alkaloids on Tomato Growth and Fruit Quality [J]. Scientia Agricultura Sinica, 2015, 48(9): 1737-1746.
[4] ZHANG Liang, ZHANG Jing-ze. Isolation and Purification of Active Compound from Trichoderma viridescens and Its Inhibitory Activities Against Phytopathogens [J]. Scientia Agricultura Sinica, 2015, 48(5): 882-888.
[5] . Identification of chemicals from enzymatic-browning reacation of Chestnut (Castanea Mollissina) kernel [J]. Scientia Agricultura Sinica, 2011, 44(8): 1678-1687 .
[6] ,,,,,. Study on decreasing nicotine conversion in Chinese burley hybrid through genetic improvement [J]. Scientia Agricultura Sinica, 2007, 40(1): 153-160 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!