Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (12): 2460-2476.doi: 10.3864/j.issn.0578-1752.2020.12.013

• HORTICULTURE • Previous Articles     Next Articles

Cloning and Functional Analysis of CsWRKYIIcs Transcription Factors in Tea Plant

XIAO LuoDan1,TANG Lei1,WANG WeiDong1,GAO YueFang1,HUANG YiFan1,MENG Yang1,YANG YaJun1,2(),XIAO Bin1()   

  1. 1 College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi;
    2 Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008
  • Received:2019-12-13 Online:2020-06-16 Published:2020-06-25
  • Contact: YaJun YANG,Bin XIAO E-mail:yjyang@mail.tricaas.com;1647785720@qq.com

Abstract:

【Objective】 The objective of this study was to clone CsWRKYIIcs transcription factors from the tea plant (Camellia sinensis) ‘Shaancha No.1’ and analyze their sequence characteristics, to investigate the expression patterns in different tissues and under abiotic stresses, and to verify the transcription activity, thus providing a basis for further exploring the functions of tea plants under abiotic stresses. 【Method】 Specific primers were designed based on the annotated WRKY sequences released in tea genome database. RT-PCR was used to amplify the cDNA sequences of CsWRKYIIcs from the tea plant ‘Shaancha No.1’, the bioinformatical tools were carried out to analyze the sequence characteristics, and the real-time fluorescence quantification PCR (qRT-PCR) was employed to investigate the expression patterns. Y2H assay was applied to verify the transcription activity. 【Result】 Nine cDNA sequences of the CsWRKYIIcs were obtained with the open reading frame length of 561, 960, 936, 978, 897, 912, 720, 1008 and 969 bp, encoding 186, 319, 311, 325, 298, 303, 239, 239, 335 and 322 amino acids, respectively. Except for the CsWRKYIIc7 which lacked zinc finger sequences, each of all the other CsWRKYIIcs contained one conserved WRKY domain and a typical C2H2-type zinc finger motif. WRKYIIcs had similar conserved motifs in different species, and CsWRKYIIcs from the tea plant showed higher identity at the amino acids level with those from dicotyledonous Arabidopsis thaliana and Vitis vinifera. Furthermore, multiple cis-elements related to abiotic stresses were predicted in the promoter regions, implying that the CsWRKYIIcs might involve in response to various abiotic stresses. qRT-PCR test results suggested that the expression patterns of nine CsWRKYIIcs in different tissues were quite specific, with higher expression level in roots and flowers than that in stems and leaves. Meanwhile, the nine CsWRKYIIcs showed different expression patterns when induced by drought, ABA, high temperature and high salinity stress; the expression of CsWRKYIIc1 and CsWRKYIIc7 changed most significantly, which were consistent with the result of putative cis-elements. In addition, the Y2H assay results indicated that all the nine CsWRKYIIcs had transcriptional activation activity. 【Conclusion】 Nine CsWRKYIIcs transcription factors cloned from the tea plant were involved in response to ABA, drought, high temperature and high salinity stress, and they might play a regulatory role of transcriptional activators. CsWRKYIIc1 and CsWRKYIIc7 might be used as candidate genes for further research into the anti-adversity function of tea plants.

Key words: Camellia sinensis, CsWRKYIIcs, cloning, expression patterns, transcription activity

Table 1

Primers of cloning, qRT-PCR and constructing yeast vectors"

引物
Primer
上游序列(5′-3′)
Upstream primer
下游序列(5′-3′)
Downstream primer
作用
Function
CsWRKYIIc1 ATC CTT CCA AAC GAT GAC ATT ACCATTGTAAGTTGTACACATGG 克隆
Cloning
CsWRKYIIc2 TGAAGAAGAATCTGTGCTCCT TCTAAAGATAACCCAACAAACCTC
CsWRKYIIc3 AGAAACTGCACTTGAAGGAGCT CTCAACCTCAAGACCAGTCAGT
CsWRKYIIc4 TGATGTAGAAGAAATTGGAGTTGTG ACATACCAGTAATTGGGTTTCCA
CsWRKYIIc5 TGAGATAACGCGTAGTCCCAATAG CTGTGGTGAATTAGTTTAGTGCAT
CsWRKYIIc6 CGTGGTGGCTACAGAGACAT GTACTTACGTGAGACTGGTTAGCC
CsWRKYIIc7 TTCATACTTTGCTCTCTCCCTT TGAGTTGTTCTTGTACAAAGAGGT
CsWRKYIIc8 AGAGACCTTAGACAAATCTTCCTGT ATAAAATTAGCAATTGAAAGGGGCT
CsWRKYIIc9 TGACCTTAGAGTCAAACCTATCT TATGAATTGTCCCATACCTGACT
qRT- CsWRKYIIc1 GAGGAAATATGGACAGAAAGCTG GCATTCCTTCGTAAGTTGTCAC 荧光定量qRT-PCR
qRT- CsWRKYIIc2 GAATCATGCCAGAAAGTGCC GGTGTTGGGTTGTGAAAATAGG
qRT- CsWRKYIIc3 TCCACAACCTCAATTCCAACCG AGCAAAGACGATGACAGTGA
qRT- CsWRKYIIc4 ACCACAATCTCAACCTCAACC CGACACAATGACAGAGCAAAAG
qRT- CsWRKYIIc5 CAGCATTGTCACCATACAGTTG AGGCAGCTTCATGATTGACTAG
qRT- CsWRKYIIc6 AAGCCACTTGACTCCTTCAG TGGGAAGTTGAGGATTTGGC
qRT- CsWRKYIIc7 TTCGGGTTCATGGACTTACTG AGTCATGGGCTGGTTATTCAAG
qRT- CsWRKYIIc8 AGGTCGTTTGAAGATCCATCAG CCACATTACCCCTCAGAGTTG
qRT- CsWRKYIIc6 TCGATCTCTTCCTCGTCTACTG CCTCCATCTTCCACCTCTTTT
qRT- CsWRKYIIc7 GCCATCTTTGATTGGAATGG GGTGCCACAACCTTGATCTT
qRT- CsWRKYIIc8 AGGTCGTTTGAAGATCCATCAG CCACATTACCCCTCAGAGTTG
qRT- CsWRKYIIc9 TCGATCTCTTCCTCGTCTACTG CCTCCATCTTCCACCTCTTTT
qRT- Csβ-actin GCCATCTTTGATTGGAATGG GGTGCCACAACCTTGATCTT
pGBKT7-CsWRKYIIc1 TCAGAGGAGGACCTGCATATGATGGACAACTACTCATCAAT CGGCCTCCATGGCCATATGAAATGCCGTGTAAATTTG 构建酵母载体
Constructing yeast vectors
pGBKT7-CsWRKYIIc2 TCAGAGGAGGACCTGCATATGATGGAGAAGAAGAAACAGGA CGGCCTCCATGGCCATATGCTCTTCTTTTGGCTCCTT
pGBKT7-CsWRKYIIc3 TCAGAGGAGGACCTGCATATGATGCTTGTTGTTGTGAGTGA CGGCCTCCATGGCCATATGCTCGGGTTTTGCCTCCTT
pGBKT7-CsWRKYIIc4 TCAGAGGAGGACCTGCATATGATGGAGAGTAAAGAAGCTGT CGGCCTCCATGGCCATATGGTCATCCTTTGTAACAAG
pGBKT7-CsWRKYIIc5 TCAGAGGAGGACCTGCATATGATGGATGAGAACGACAGAGT CGGCCTCCATGGCCATATGTTGATTGCGCATTCCAGG
pGBKT7-CsWRKYIIc6 TCAGAGGAGGACCTGCATATGATGGATGATGATGATAAGGA CGGCCTCCATGGCCATATGCTGATTGCGCATTCCAGG
pGBKT7-CsWRKYIIc7 TCAGAGGAGGACCTGCATATGATGGAGAGGAAACAAGCTGT CGGCCTCCATGGCCATATGTTTGATGAGCCAAATTTC
pGBKT7-CsWRKYIIc8 TCAGAGGAGGACCTGCATATGATGTCTGATGAACACAGAGA CGGCCTCCATGGCCATATGTGGCTCTTGTTTAAGAAA
pGBKT7-CsWRKYIIc9 TCAGAGGAGGACCTGCATATGATGTCTGATGAACCAGGAGG CGGCCTCCATGGCCATATGTGGCTCTTGTTTAAAAAA

Fig. 1

RT-PCR amplification of CsWRKYIIcs M: Marker; W1: CsWRKYIIc1; W2: CsWRKYIIc2; W3: CsWRKYIIc3; W4: CsWRKYIIc4; W5: CsWRKYIIc5; W6: CsWRKYIIc6; W7: CsWRKYIIc7; W8: CsWRKYIIc8; W9: CsWRKYIIc9"

Table 2

Physicochemical analysis of CsWRKYIIcs"

转录因子
Transcription factor
基因ID
Gene ID
开放阅读框
Open Reading Frame
氨基酸数量Amino acids number 相对分子质量
Molecular weight
理论等电点
Isoelectric point
平均疏水性Grand average of hydropathy 核定位预测值
NLSs prediction score
亚细胞定位预测Subcellular
localization prediction
CsWRKYIIc1 TEA006586.1 561 186 21.098 9.28 -0.854 5.6 细胞核 Nucleus
CsWRKYIIc2 TEA028473.1 960 319 35.606 6.83 -0.872 4.6 细胞核 Nucleus
CsWRKYIIc3 TEA008513.1 936 311 34.324 6.54 -0.692 7.7 细胞核 Nucleus
CsWRKYIIc4 TEA017544.1 978 325 36.203 8.21 -0.602 4.4 细胞核 Nucleus
CsWRKYIIc5 TEA001162.1 897 298 32.070 5.79 -0.790 4.3 细胞核 Nucleus
CsWRKYIIc6 TEA022377.1 912 303 33.502 5.49 -0.894 4.3 细胞核 Nucleus
CsWRKYIIc7 TEA007197.1 720 239 27.123 8.06 -0.789 4.5 细胞核 Nucleus
CsWRKYIIc8 TEA023233.1 1008 335 36.952 6.00 -0.840 7.9 细胞核 Nucleus
CsWRKYIIc9 TEA001873.1 969 322 35.717 6.31 -0.762 5.5 细胞核 Nucleus

Fig. 2

Amino acid sequence alignment of CsWRKYIIcs The red box represents WRKYGQK sequence and the orange box represents the C2H2 zinc finger structure and the blue underline indicates the missing part of the zinc finger structure The vertical coordinate represents the conservatism of amino acids and the letter height represents the frequency of occurrence (measured in bits); The horizontal coordinate represents the position of the amino acids in the sequences"

Fig. 3

Phylogenetic analysis of CsWRKYIIcs and AtWRKYs"

Fig. 4

Analysis of phylogenetic tree and motifs of WRKYIIcs from different species"

Fig. 5

Structure analysis of CsWRKYIIcs"

Table. 3

Cis-elements prediction"

顺式作用元件
Cis-element
元件数量 Cis-element number 功能
Function
W1 W2 W3 W4 W5 W6 W7 W8 W9
ABRE 4 3 3 7 4 10 2 3 2 参与脱落酸反应性的顺式作用元件
Cis-acting elements involved in abscisic acid reactivity
ARE 5 2 3 1 1 2 3 2 8 厌氧诱导所必需的顺式调节元件
Cis-regulating elements necessary for anaerobic Induction
Box 4 4 5 2 1 4 7 5 4 光响应DNA模块部分 Optical response DNA module part
CGTCA-motif 1 1 1 3 4 4 5 参与MEJA反应的顺式调节元件
Cis-regulating elements involved in MEJA reaction
ERE 4 1 3 1 4 2 参与乙烯反应的顺式调节元件
Cis-regulating elements involved in ethylene reaction
G-box 3 2 1 4 2 4 1 3 光应答元件Cis-regulating elements involved in light reaction
MBS 2 1 1 2 1 1 1 干旱诱导MYB结合位点Drought-induced MYB binding site
MYB 2 6 3 1 2 1 3 2 4 参与干旱、高盐和低温诱导Drought/high salt/low temperature-induced
MYC 2 7 3 2 5 2 4 2 干旱应答元件 Cis-regulating elements involved in drought reaction
STRE 3 4 4 5 1 2 参与热响应 Heat stress responsiveness
TGACG-motif 1 1 1 3 1 4 4 5 参与MEJA反应的顺式调节元件
Cis-regulating elements involved in MEJA reaction
W box 4 2 3 防卫和胁迫应答元件
Cis-acting elements involved in defense and stress response

Fig. 6

Expression analysis of CsWRKYIIcs in different tissues Different lowercase letters indicate significant difference (P<0.05)"

Fig. 7

Expression analysis of CsWRKYIIcs under drought stress *shows significant difference (P<0.05), **indicates extremely significant difference (P<0.01). The same as below"

Fig. 8

Expression analysis of CsWRKYIIcs under ABA-induced"

Fig. 9

Expression analysis of CsWRKYIIcs under NaCl stress"

Fig. 10

Expression analysis of CsWRKYIIcs under heat stress"

Fig. 11

Transcription activity analysis of CsWRKYIIcs"

[1] 陈宗懋, 杨亚军. 中国茶经(2011年修订版). 上海: 上海文化出版社, 2011.
CHEN Z M, YANG Y J. Chinese Tea Classics (revised in 2011). Shanghai: Shanghai Culture Press, 2011. (in Chinese)
[2] 王伟东. 高温和干旱胁迫下茶树转录组分析及Histone H1基因的功能鉴定[D]. 南京: 南京农业大学, 2016.
WANG W D. Transcriptome analysis of (Camellia sinensis) under heat and drought stress and functional characterization of Histone H1 gene[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese)
[3] EULGEM T, RUSHTON P J, ROBATZEK S, SOMSSICH I E. The WRKY superfamily of plant transcription factors. Trends in Plant Science, 2000,5(5): 199-206.
doi: 10.1016/s1360-1385(00)01600-9 pmid: 10785665
[4] BAKSHI M, OELMULLER R. WRKY transcription factors: Jack of many trades in plants. Plant Signal & Behavior, 2014,9(1):e27700.
[5] WANG Y Y, LIN F, ZHU Y X, LI Y, YAN H W, XIANG Y. Comparative genomic analysis of the WRKY III gene family inpopulus, grape, arabidopsis and rice. Biology Direct, 2015,10(1):48.
doi: 10.1186/s13062-015-0076-3
[6] 彭喜旭, 唐新科, 周平兰, 胡耀军, 邓小波, 王海华. 水稻WRKY80转录调节蛋白基因的分离与表达模式. 中国农业科学, 2013,46(19):4035-4043.
doi: 10.3864/j.issn.0578-1752.2013.19.009
PENG X X, TANG X K, ZHOU P L, HU Y J, DENG X B, WANG H H. Isolation and expression patterns of rice WRKY80 transcription regulatory protein gene. Scientia Agricultura Sinica, 2013,46(19):4035-4043. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.19.009
[7] JIANG Y J, YU D Q. The WRKY57 transcription factor affects the expression of jasmonate ZIM-Domain genes transcriptionally to compromise botrytis cinerea resistance. Plant Physiology, 2016,171(4):2771-2782.
doi: 10.1104/pp.16.00747 pmid: 27268959
[8] ALI M A, AZEEM F, NAWAZ M A, ACET T, ABBAS A, IMRAN Q M, SHAH K H, REHMAN H M, CHUNG G, YANG S H, BOHLMANN H. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis. Journal of Plant Physiology, 2018,226:12-21.
doi: 10.1016/j.jplph.2018.04.007 pmid: 29689430
[9] WANG C T, RU J N, LIU Y W, LI M, ZHAO D, YANG J F, FU J D, XU Z S. Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants. International Journal of Molecular Sciences, 2018,19(10):30-46.
doi: 10.3390/ijms19010030
[10] 陈悦, 王田幸子, 杨烁, 张彤, 马金姣, 燕高伟, 刘玉晴, 周艳, 史佳楠, 兰金苹, 魏健, 窦世娟, 刘丽娟, 杨明, 李莉云, 刘国振. 水稻转录因子OsWRKY68蛋白质的表达特征及其功能特性. 中国农业科学, 2019,52(12):2021-2032.
doi: 10.3864/j.issn.0578-1752.2019.12.001
CHEN Y, WANG T X Z, YANG S, ZHANG T, MA J J, YAN G W, LIU Y Q, ZHOU Y, SHI J N, LAN J P, WEI J, LIU S J, CHEN L J, YANG M, LI L Y, LIU G Z. Expression profiling and functional characterization of rice transcription factor OsWRKY68. Scientia Agricultura Sinica, 2019,52(12):2021-2032. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.12.001
[11] TANG J, WANG F, WANG Z, HUANG Z N, XIONG A S, HOU X L. Characterization and co-expression analysis of WRKY orthologs involved in responses to multiple abiotic stresses in Pak-choi (Brassica campestris ssp. chinensis). BMC Plant Biology, 2013,13:188.
doi: 10.1186/1471-2229-13-188 pmid: 24267479
[12] DOU L L, ZHANG X H, PANG C Y, SONG M Z, WEI H L, FAN S L, YU S X. Genome-wide analysis of the WRKY gene family in cotton. Molecular Genetics & Genomics, 2014,289(6):1103.
doi: 10.1007/s00438-014-0872-y pmid: 24942461
[13] WU Z J, LI X H, LIU Z W, LI H, WANG Y X, ZHUANG J. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress. Molecular Genetics and Genomics, 2016,291(1):255-269.
doi: 10.1007/s00438-015-1107-6 pmid: 26308611
[14] 罗勇, 陈丝, 欧淑琼, 石玉兰, 郑楚楚, 刘仲华, 王坤波, 黄建安. 茶树WRKY转录因子的鉴定与分析. 分子植物育种, 2017,15(10):3932-3940.
LUO Y, CHEN S, OU S Q, SHI Y L, ZHENG C C, LIU Z H, WANG K B, HUANG J A. Identification and analysis of the WRKY transcription factor in tea plant. Molecular Plant Breeding, 2017,15(10):3932-3940. (in Chinese)
[15] WANG P J, YUE C, CHEN D, ZHENG Y C, ZHANG Q, YANG J F, YE N X. Genome-wide identification of WRKY family genes and their response to abiotic stresses in tea plant (Camellia sinensis). Genes & Genomics, 2019,41(1):17-33.
doi: 10.1007/s13258-018-0734-9 pmid: 30238224
[16] WANG Y, SHU Z, WANG W, JIANG X, LI D, PAN J, LI X. CsWRKY2, a novel WRKY gene from Camellia sinensis, is involved in cold and drought stress responses. Biologia Plantarum, 2016,60(3):443-451.
doi: 10.1007/s10535-016-0618-2
[17] 郭俊红, 王伟东, 谷星, 郭莎莎, 高岳芳, 杨亚军, 肖斌. 茶树WRKY转录因子基因CsWRKY57的克隆及表达分析. 茶叶科学, 2017,37(4):411-419.
GUO J H, WANG W D, GU X, GUO S S, GAO Y F, YANG Y J, XIAO B. Cloning and expression analysis of WRKY transcription factor gene CsWRKY57 in tea plant (Camellia sinensis). Journal of Tea Science, 2017,37(4):411-419. (in Chinese)
[18] 戈林刚, 叶保华, 辛肇军, 孙晓玲. 茶树CsWRKY3基因的克隆及表达分析. 山东农业科学, 2018,50(1):1-8.
GE L G, YE B H, XIN Z J, SUN X L. Cloning and expression analysis of CsWRKY3 gene in Camellia sinensis. Shandong Agricultural Sciences, 2018,50(1):1-8. (in Chinese)
[19] LUO Y, YU S S, LI J, LI Q, WANG K B, HUANG J N, LIU Z H. Molecular characterization of WRKY transcription factors that actas negative regulators of O‑Methylated Catechin Biosynthesis in tea plants (Camellia sinensis L.). Journal of Agricultural and Food Chemistry. 2018,66:11234-11243.
doi: 10.1021/acs.jafc.8b02175 pmid: 30350966
[20] 王鹏杰, 陈笛, 林浥, 郑知临, 郑玉成, 杨江帆, 岳川, 叶乃兴. 8个茶树WRKY转录因子基因的克隆与表达分析. 中草药, 2019,2(3):685-693.
WANG P J, CHEN D, LIN Y, ZHENG Z L, ZHENG Y C, YANG J F, YUE C, YE N X. Cloning and expression analysis of eight WRKY genes in Camellia sinensis. Chinese Traditional and Herbal Drugs, 2019,2(3):685-693. (in Chinese)
[21] 王鹏杰, 岳川, 陈笛, 郑玉成, 郑知临, 林浥, 杨江帆, 叶乃兴. 茶树CsWRKY6CsWRKY31CsWRKY48基因的分离及表达分析. 浙江大学学报(农业与生命科学版), 2019,45(1):30-38.
WANG P J, YUE C, CHEN D, ZHENG Y C, ZHENG Z L, LIN Y, YANG J F, YE N X. Isolation and expression analysis of CsWRKY6, CsWRKY31 and CsWRKY48 genes in tea plant. Journal of Zhejiang University (Agriculture and Life Sciences), 2019,45(1):30-38. (in Chinese)
[22] CHEN W, HAO W J, XU Y X, ZHENG C, NI D J, YAO M Z, CHEN L. Isolation and characterization of CsWRKY7, a subgroup IId WRKY transcription factor from Camellia sinensis, linked to development in Arabidopsis. International Journal of Molecular Sciences, 2019,20:2815.
doi: 10.3390/ijms20112815
[23] ZHANG Y H, WAN S Q, WANG W D, CHEN J F, HUANG L L, DUAN M S, YU Y B. Genome-wide identification and characterization of the CsSnRK2 family in Camellia sinensis. Plant Physiology and Biochemistry, 2018,132:287-296.
doi: 10.1016/j.plaphy.2018.09.021 pmid: 30245342
[24] 陈江飞, 高童, 万思卿, 张永恒, 周天山, 余有本, 杨亚军, 肖斌, 王伟东. 茶树小分子热激蛋白基CsHSP22.4, CsHSP27.4, CsHSP17.5CsHSP25.2的克隆与表达分析. 园艺学报, 2018,45(6):1160-1172.
CHEN J F, GAO T, WAN S Q, ZHANG Y H, ZHOU T S, YU Y B, YANG Y J, XIAO B, WANG W D. Cloning and expression analysis of small heat shock protein genes CsHSP22.4, CsHSP27.4, CsHSP17.5 and CsHSP25.2 in Camellia sinensis. Acta Horticulturae Sinica, 2018,45(6):1160-1172. (in Chinese)
[25] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[26] XIE T, CHEN C J, LI C H, LIU J R, LIU C Y, HE Y H. Genome-wide investigation of WRKY gene family in pineapple: Evolution and expression profiles during development and stress. BMC Genomics, 2018,19(1):490.
doi: 10.1186/s12864-018-4880-x pmid: 29940851
[27] 谷彦冰, 冀志蕊, 迟福梅, 乔壮, 徐成楠, 张俊祥, 董庆龙, 周宗山. 苹果WRKY基因家族生物信息学及表达分析. 中国农业科学, 2015,48(16):3221-3238.
doi: 10.3864/j.issn.0578-1752.2015.16.012
GU Y B, JI Z R, CHI F M, QIAO Z, XU C N, ZHANG J X, DONG Q L, ZHOU Z S. Bioinformatics and expression analysis of the WRKY gene family in apple. Scientia Agricultura Sinica, 2015,48(16):3221-3238. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.16.012
[28] CAI R H, ZHAO Y, WANG Y F, LIN Y X, PENG X J, LI Q, CHANG Y W, JIANG H Y, XIANG Y, CHENG B J. Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell Tissue & Organ Culture, 2014,119(3):565-577.
[29] GU L J, WEI H L, WANG H T, SU J J, YU S X. Characterization and functional analysis of GhWRKY42, a group IId WRKY gene, in upland cotton (Gossypium hirsutum L.). BMC Genetics, 2018,19(1):48.
doi: 10.1186/s12863-018-0653-4 pmid: 30060731
[30] LI P L, SONG A P, GAO C Y, JIANG J F, CHEN S M, FANG W M, ZHANG F, CHEN F D. The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance. Plant Physiology & Biochemistry, 2015a,95:26-34.
doi: 10.1016/j.plaphy.2015.07.002 pmid: 26184088
[31] DONG X S, YANG Y N, ZHANG Z Y, XIAO Z W, BAI X H, GAO J, HUR Y K, HAO S M, HE F F. Genome-wide identification of WRKY genes and their response to cold stress in Coffea canephora. Forests, 2019,10(4):335.
doi: 10.3390/f10040335
[32] ZHANG L L, CHENG J, SUN X M, ZHAO T T, LI M J, WANG Q F, LI S H, XIN H P. Overexpression of VaWRKY14 increases drought tolerance in Arabidopsis by modulating the expression of stress- related genes. Plant Cell Reports, 2018,37(8):1159-1172.
doi: 10.1007/s00299-018-2302-9 pmid: 29796948
[33] 王岩岩, 张永兴, 郭葳, 代文君, 周新安, 矫永庆, 沈欣杰. 野生大豆转录因子GsWRKY57基因的克隆与抗旱性功能分析. 中国油料作物学报, 2019,41(4):524-530.
WANG Y Y, ZHANG Y X, GUO W, DAI W J, ZHOU X A, JIAO Y Q, SHEN X J. Cloning and function of GsWRKY57 transcription factor gene response to drought stress. Chinese Journal of Oil Crop Sciences, 2019,41(4):524-530. (in Chinese)
[34] JIANG Y J, LIANG G, YU D Q. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Molecular Plant, 2012,5(6):1375-1388.
doi: 10.1093/mp/sss080
[35] MA Q B, XIA Z L, CAI Z D, LI L, CHENG Y B, LIU J, NIAN H. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana. Frontiers in Plant Science, 2019,9:1979.
doi: 10.3389/fpls.2018.01979 pmid: 30740122
[36] 李蕾, 谢丙炎, 戴小枫, 杨宇红. WRKY转录因子及其在植物防御反应中的作用. 分子植物育种, 2005,3(3):401-408.
LI L, XIE B Y, DAI X F, YANG Y H. WRKY transcription factors and their roles in plant defense responses. Molecular Plant Breeding, 2005,3(3):401-408. (in Chinese)
[37] CAI R H, DAI W, ZHANG C S, WANG Y, WU M, ZHAO Y, MA Q, XIANG Y, CHENG B J. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. Planta, 2017,246(6):1215-1231.
doi: 10.1007/s00425-017-2766-9 pmid: 28861611
[38] ZHU D, HOU L X, XIAO P L, GUO Y, DEYHOLOS M K, LIU X. VvWRKY30, a grape WRKY transcription factor, plays a positive regulatory role under salinity stress. Plant Science, 2018,280:132-142.
doi: 10.1016/j.plantsci.2018.03.018 pmid: 30823991
[39] WU X L, SHIROTO Y, KISHITANI S, ITO Y, TORIYAMA K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Reports, 2009,28:21-30.
doi: 10.1007/s00299-008-0614-x
[40] 龚小庆. 金柑(Fortunella crassifolia)三个抗逆基因克隆、功能鉴定及作用机制解析[D]. 武汉: 华中农业大学, 2014.
GONG X Q. Isolation functional charaterization and mechansm analysis of three stress respinsive genes of Fortunella crassifolia [D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese)
[41] LI P L, SONG A P, GAO C Y, WANG L, WANG Y, SUN J, JIANG J F, CHEN F D, CHEN S M. Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants. Plant Cell Reports, 2015,34(8):1365-1378.
doi: 10.1007/s00299-015-1793-x pmid: 25893877
[42] DONG Q L, ZHAO S, DUAN D Y, TIAN Y, WANG Y, MAO K, ZHOU Z S, MA F W. Structural and functional analyses of genes encoding VQ proteins in apple. Plant Science, 2018,272:208-219.
doi: 10.1016/j.plantsci.2018.04.029 pmid: 29807593
[1] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[2] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[3] FAN XiaoJing, YU WenTao, CAI ChunPing, LIN Yi, WANG ZeHan, FANG WanPing, ZHANG JianMing, YE NaiXing. Construction of Molecular ID for Tea Cultivars by Using of Single- nucleotide Polymorphism (SNP) Markers [J]. Scientia Agricultura Sinica, 2021, 54(8): 1751-1760.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!