Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (16): 3432-3443.doi: 10.3864/j.issn.0578-1752.2013.16.014

• STORAGE·FRESH-KEEPING·PROCESSING • Previous Articles     Next Articles

Applications of Solid Sampling Analytical Technologies of Elements for Quality and Safety of Agri-Products

 MAO  Xue-Fei-1, LIU  Ji-Xin-2, WANG  Min-1, QIAN  Yong-Zhong-1   

  1. 1.Institute of Quality Standard and Testing Technology for Agri-products, Chinese Academy of Agricultural Sciences/ Key Laboratory of Agri-food Safety and Quality, Ministry of Agriculture, Beijing 100081 
    2..Beijing Titan Instruments Company Limited, Beijing 100015
  • Received:2013-04-10 Online:2013-08-15 Published:2013-06-14

Abstract: Solid sampling technology without digestion treatments is one vigorous branch of elements analytical methods for agri-products, which is able to reduce the limit of detection (for direct solid sampling method), simplify the pretreatment, avoid loss of trace elements, and being more environmental friendly and safer. This paper covered the current developments of sample pretreatment, sample introduction and instrumental methods of the solid sampling technology, and discussed the key problems of sample homogeneity and matrix interference; the applications of direct solid sampling and slurry sampling techniques, and electrothermal vaporization, laser ablation, direct sample insertion, neutron activation analysis, X-ray fluorescence, etc. for heavy metals and other elements analysis in agri-products were reviewed.

Key words: solid sampling , agri-products , elements analysis , heavy metals , review

[1]Guo X Q, He M, Chen B B, Hu B. Phase transfer hollow fiber liquid phase microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of trace heavy metals in environmental and biological samples. Talanta, 2012, 101:516-523.

[2]邓勃. 电热原子吸收光谱分析中进样技术的进展(上) . 现代仪器, 2009, 15(5): 1-9.

Deng B. Advance of sampling technique in electrothermal atomic absorption spectrometry. Modern Instruments, 2009, 15(5): 1-9. (in Chinese)

[3]Jiang X, Wu P, Deng D. A compact electrothermal-flame tandem atomizer for highly sensitive atomic fluorescence spectrometry. Journal of Analytical Atomic Spectrometry, 2012, 27(10): 1780-1786.

[4]Kantor T. Electrothermal vaporization and laser ablation sample introduction for flame and plasma spectrometric analysis of solid and solution samples. Spectrochim Acta B, 2001, 56(9): 1523-1563.

[5]Chan G C Y, Fan M N, Chan W T. Effects of sample probe insertion on plasma conditions in direct sample insertion-inductively coupled plasma-atomic emission spectrometry. Spectrochim Acta B, 2001, 56(1): 13-25.

[6]Anderson D L. INAA study of Hg, Se, As, and Br irradiation losses from l-cysteine treated and untreated reference materials. Journal of Radioanalytical and Nuclear Chemistry, 2013, 296(1):181-185.

[7]Servin A D, Castillo-Michel H, Hernandez-Viezcas J A, Diaz B C, Peralta-Videa J R, Gardea-Torresdey J L. Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO(2) nanoparticles in cucumber (Cucumis sativus) plants. Environmental Science and Technology, 2012, 46(14): 7637-7643.

[8]Beladel B, Nedjimi B, Mansouri A, Benamar M E A. Trace elements determination in Algerian wheat by instrumental neutron activation analysis (INAA). Journal of Radioanalytical and Nuclear Chemistry, 2012, 293(2): 497-501.

[9]Matos Reyes M N, Campos R C. Determination of copper and nickel in vegetable oils by direct sampling graphite furnace atomic absorption spectrometry. Talanta, 2006, 70(5): 929-932.

[10]孙普兵, 刘建宇, 刘文丽, 康荣. 直接固体进样石墨炉原子吸收光谱法测定食品包装纸中铅镉. 检验检疫科学, 2007, 17(5):24-26.

Sun P B, Liu J Y, Liu W L, Kang R. Determination of Pb and Cd elements in paper for Food-packing by SS-GFAAS. Inspection and Quarantine Science, 2007, 17(5):24-26. (in Chinese)

[11]Török P, ?emberyová M. Comparison of chemical modifiers for direct determination of Cd, Cu and Zn in food stuffs by solid-sampling- ETAAS. Food Chemistry, 2012, 132(1): 554-560.

[12]Baysal A, Ozcan M, Akman S. A rapid method for the determination of Pb, Cu and Sn in dried tomato sauces with solid sampling electrothermal atomic absorption spectrometry. Food and Chemical Toxicology, 2011, 49(6): 1399-1403.

[13]Dos Santos L M G, Araujo R G, Welz B, Jacob Sdo C, Vale M G, Becker-Ross H. Simultaneous determination of Cd and Fe in grain products using direct solid sampling and high-resolution continuum source electrothermal atomic absorption spectrometry. Talanta, 2009, 78(2): 577-583.

[14]Virgilio A, Nóbrega J A, Rêgo J F, Neto J A G. Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012,78: 58-61.

[15]刘云. 原子吸收—石墨炉直接进样法同时测定浓缩果汁中的铅和铜. 河南科技, 2010(8): 64.

Liu Y. Determination of lead and copper elements in concentrate juice by SS-GFAAS. Journal of He’nan Science and Technology, 2010(8): 64.

[16]Gao Y, Shi Z M, Long Z, Wu P, Zheng C B, Hou X D. Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry. Microchemical Journal, 2012, 103: 1-14.

[17]Vale M G R, Oleszczuk N, Dossantos W N L. Current status of direct solid sampling for electrothermal atomic absorption spectrometry—A critical review of the development between 1995 and 2005. Applied Spectroscopy Reviews, 2006, 41(4): 377-400.

[18]Araujo R G, Oleszczuk N, Rampazzoa R T, Costa, P A, Silva M M, Vale M G R, Welz B, Ferreira S L C. Comparison of direct solid sampling and slurry sampling for the determination of cadmium in wheat flour by electrothermal atomic absorption spectrometry. Talanta, 2008, 77(1): 400-406.

[19]Brady D V, Montalvojr J G, Glowacki G, Pisciotta A. Direct determination of zinc in sea-bottom sediments by carbon tube atomic absorption spectrometry. Analytica Chimica Acta, 1974, 70(2): 448-452.

[20]Tokman N. The use of slurry sampling for the determination of manganese and copper in various samples by electrothermal atomic absorption spectrometry. Journal of Hazardous Materials, 2007, 143(1-2): 87-94.

[21]Friese K C, Huang M D, Schlemmer G, Krivan V. A two-step atomizer system using a transversely heated furnace with Zeeman background correction: Design and first solid sampling applications. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006, 61(9): 1054-1062.

[22]De Paula C E, Caldas L F, Brum D M, Cassella R J. Development of an ultrasonic slurry sampling method for the determination of Cu and Mn in antibiotic tablets by electrothermal atomic absorption spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2012, 66:197-203.

[23]Huang R J, Zhuang Z X, Tai Y, Huang R F, Wang X R, Lee F S. Direct analysis of mercury in traditional chinese medicines using thermolysis coupled with on-line atomic absorption spectrometry. Talanta, 2006, 68(3): 728-734.

[24]Bezerra M A, Castro J T, Macedo R C, da Silva D G. Use of constrained mixture design for optimization of method for determination of zinc and manganese in tea leaves employing slurry sampling. Analytica Chimica Acta, 2010, 670(1-2): 33-38.

[25]张在整, 郑基甸, 付凤富. 悬浮液进样ZAAS测定粉末试样中的Se─小麦粉、猪肝、甘兰中Se的无标准分析. 分析试验室, 1994(2): 72-74.

Zhang Z Z, Zheng J D, Fu F F. Determination of selenium in powdered samples by ZAAS using suspension sampling technique - standardless analyses of selenium in wheat flour, pork liver and wild cabbage. Analytical Laboratory, 1994(2): 72-74. (in Chinese)

[26]金晓艳, 黄正杰. 原子吸收法悬浮液直接进样测定鱼样中的铅. 中国卫生检验杂志, 2007, 17(8): 1442-1444.

Jin X Y, Huang Z J. Determination of lead in fish by direct sampling atomic absorption spectrometry. Chinese Joural of Health Labrotory Technology, 2007,17(8):1442-1444. (in Chinese)

[27]Wang L, Hu B, Jiang Z C, Li Z Q. Speciation of Cr III and Cr VI in aqueous samples by coprecipitation/slurry sampling fluorination assisted graphite furnace atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry, 2002, 82(6): 387-393.

[28]孙汉文, 苗媛媛, 刘晓莉. 悬浮液进样-氢化物发生原子荧光法直接测定面粉中三价砷和总无机砷. 中国粮油学报, 2009, 12: 138-142.

Sun H W, Miao Y Y, Liu X L. Direct determination of trivalence arsenic and total inorganic arsenic in flours by suspension sampling and hydride generation-atomic fluorescence spectrometry. Journal of Chinese Cereals and Oils Association, 2009, 12: 138-142. (in Chinese)

[29]张锂, 韩国才. 悬浮液进样-石墨炉原子吸收光谱法测定生物样品中微量铬. 理化检验-化学分册, 2008, 44(4): 361-363.

Zhang L, Han G C. Direct determination of trace chromium in biological samples by graphite furnace atomic absorption spectrometry with slurry introduction. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2008, 44(4): 361-363. (in Chinese)

[30]卢桂萍, 汪正, 邱德仁. 悬浮液进样石墨炉原子吸收光谱分析进 展. 光谱学与光谱分析, 2010, 8: 2253-2259.

Lu G P, Wang Z, Qiu D R. Research advance in slurry introduction for graphite furnace atomic absorption spectrometry. Spectroscopy and Spectral Analysis, 2010, 8: 2253-2259. (in Chinese)

[31]Swain S S, Ray D K, Chand P K. ED-XRF spectrometry-based trace element composition of genetically engineered rhizoclones vis-à-vis natural roots of a multi-medicinal plant, butterfly pea (Clitoria ternatea L.). Journal of Radioanalytical and Nuclear Chemistry, 2012, 293(2): 443-453.

[32]Nomura C S, Silva C S, Nogueira A R A, Oliveira P V. Bovine liver sample preparation and micro-homogeneity study for Cu and Zn determination by solid sampling electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(5): 673-680.

[33]Figuerdo R J, Virgilio A, Nobrega J A, Gomes Neto J A. Determination of lead in medicinal plants by high-resolution continuum source graphite furnace atomic absorption spectrometry using direct solid sampling. Talanta, 2012, 100: 21-26.

[34]张岩, 吕品, 李挥, 王多, 刘敬泽. 涂钽石墨管-石墨炉原子吸收法测定食品中铝含量. 食品科学, 2008, 29(11): 498-501.

Zhang Y, Lü P, Li H, Wang D, Liu J Z. Determination of aluminum in food with tantalum-coated graphite tube-graphite furnace atomic absorption spectrometry. Food Science, 2008, 29(11): 498-501. (in Chinese)

[35]Zybin A, Koch J, WizemannI H D, Franzke J, Niemax K. Diode laser atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(1): 1-11.

[36]汪雨, 陈舜琮, 杨啸涛. 连续光源原子吸收光谱法的研究进展及应用. 冶金分析, 2011, 31(2): 38-47.

Wang Y, Chen X Z, Yang X T. Research progress and application of continunm source atomic absorption spectrometry. Mentallurgical Analysis, 2011, 31(2): 38-47. (in Chinese)

[37]Sardans J, Montes F, Peuelas J. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2010, 65(2): 97-112.

[38]De Azevedo S V, Moreira F R, Campos R C. Direct determination of tin in whole blood and urine by GF AAS. Clinical Biochemistry, 2013, 46(1-2): 123-127.

[39]Resano M, Briceno J, Belarra M A. Direct determination of phosphorus in biological samples using a solid sampling-high resolution-continuum source electrothermal spectrometer: comparison of atomic and molecular absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2009, 24(10): 1343-1354.

[40]Hu B, Li S Q, Xiang G Q, He M, Jiang Z C. Recent progress in electrothermal vaporization–inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Applied Spectroscopy Reviews, 2007, 42(2): 203-234.

[41]Masson P, Dauthieu M, Trolard F, Denaix L. Application of direct solid analysis of plant samples by electrothermal vaporization- inductively coupled plasma atomic emission spectrometry: Determination of Cd and Si for environmental purposes. Spectrochimica Acta Part B: Atomic Spectroscopy, 2007, 62(3): 224-230.

[42]Masson P. Direct determination of major elements in solid plant materials by electrothermal vaporization inductively coupled plasma atomic emission spectrometry. Talanta, 2007, 71(3): 1399-1404.

[43]Li P C, Jiang S J. Electrothermal vaporization inductively coupled plasma-mass spectrometry for the determination of Cr, Cu, Cd, Hg and Pb in rice flour. Analytica Chimica Acta, 2003, 495(1-2): 143-150.

[44]Boonen S, Vanhaecke F, Moens L, Dams R. Direct determination of Se and As in solid certified reference materials using electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochim Acta B, 1996, 51(2): 271-278.

[45]Fonseca R W, Millerihli N J. Influence of sample matrix components on the selection of calibration strategies in electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochim Acta B, 1996, 51(13): 1591-1599.

[46]Li Y C, Jiang S J. Determination of Cu, Zn, Cd and Pb in fish samples by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 1998, 359(1/2): 205-212.

[47]Li Y C, Jiang S J, Chen S F. Determination of Ge, As, Se, Cd and Pb in plant materials by slurry sampling–electrothermal vaporization– inductively coupled plasma-mass spectrometry. Analytica Chimica Acta, 1998, 372(3): 365-372.

[48]Martin-Estsban A, Slowikowski B, Grobecker K H. Correcting sensitivity drift during long-term multi-element signal measurements by solid sampling-ETV-ICP-MS. Talanta, 2004, 63(3): 667-673.

[49]Tormen L, Gil R A, Frescura V L, Martinez L D, Curtius A J. The use of electrothermal vaporizer coupled to the inductively coupled plasma mass spectrometry for the determination of arsenic, selenium and transition metals in biological samples treated with formic acid. Analytica Chimica Acta, 2012, 717: 21-27.

[50]Chen S. ETV in ICP-AES for direct multielement analysis of food samples with slurry sampling. Joural of Analytical Chemistry, 2005, 60(3): 254-258.

[51]Feng L, Liu J X. Solid sampling graphite fibre felt electrothermal atomic fluorescence spectrometry with tungsten coil atomic trap for the determination of cadmium in food samples. Journal of Analytical Atomic Spectrometry, 2010, 25(7): 1072-1078.

[52]Hou X D, Jones B T. Tungsten devices in analytical atomic spectrometry. Spectrochim Acta B, 2002, 57(4): 659-688.

[53]Zhong G P, Luo H, Zhou Z D, Hou X D. Molybdenum, platinum, and tantalum metal atomizers or vaporizers in analytical atomic spectrometry. Applied Spectroscopy Reviews, 2004, 39(4): 475-507.

[54]Karanassios V, Drouin P, Reynolds G G. Electrically heated wire-loop, in-torch vaporization (ITV) sample introduction system for ICP-AES with photomultiplier tube detection and ICP-MS. Spectrochim Acta B, 1995, 50(4-7): 415-423.

[55]Hou X D, Levine K E, Salido A, Jones B T, Ezer M, Elwood S, Simeonsson J B. Tungsten coil devices in atomic spectrometry: absorption, fluorescence, and emission. Analytical Sciences, 2001, 17(1): 175-180.

[56]吴鹏, 温晓东, 吕弋, 侯贤灯. 钨丝在原子吸收光谱分析中的应用. 分析化学, 2006, 34(增):278-282.

Wu P, Wen X D, Lyu Y, Hou X D. Recent advances in the application of tungsten coil in atomic absorption spectrometry. Chinese Journal of Analytical Chemistry, 2006, 34(Uppl.): 278-282. (in Chinese)

[57]Wen X D, Wu P, Chen L, Hou X D. Determination of cadmium in rice and water by tungsten coil electrothermal vaporization-atomic fluorescence spectrometry and tungsten coil electrothermal atomic absorption spectrometry after cloud point extraction. Analytica Chimica Acta, 2009, 650(1): 33-38.

[58]Wen X D, Deng Q W, Wang J W, Yang S C, Zhao X. A new coupling of ionic liquid based-single drop microextraction with tungsten coil electrothermal atomic absorption spectrometry. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2012, 12(40): 320-325.

[59]Santos L N, Gonzalez M H, Moura M F, Donati G L, Nóbrega J A. In situ digestion for the determination of Ca in beverages by tungsten coil atomic emission spectrometry. Talanta, 2012, 97: 285-290.

[60]Bruhn C G, Huerta V N, Neira J Y. Chemical modifiers in arsenic determination in biological materials by tungsten coil electrothermal atomic absorption spectrometry. Analytical and Bioanalytical Chemistry, 2004, 378(2): 447-455.

[61]Wagner K A, Levine K E, Jones B T. A simple, low cost, multielement atomic absorption spectrometer with a tungsten coil atomizer. Spectrochim Acta B, 1998, 53(11): 1507-1516.

[62]Santos L N, Donati G L, Calloway C P, Jones B T, Nóbrega J A. Enzymatic proteolysis and in situ digestion as strategies to determine Cs and Sr in fish by tungsten coil atomic emission spectrometr. Journal of Analytical Atomic Spectrometry, 2012, 27(12): 2082-2087.

[63]Mei E W, Jiang Z C, Liao Z H. Determination of trace amounts of rare-earth[s]and other elements in rice samples by ICP AES with sample introduction by tungsten-coil electrothermal vaporization. Fresenius' Journal of Analytical Chemistry, 1993, 344(1/2): 54-58.

[64]梅二文, 江祖成, 廖振环. 钨丝电热蒸发进样-电感耦合等离子体—光谱分析法测定痕量元素的研究. 分析化学, 1992, 20(3): 348-361.

Mei E W, Jiang Z C, Liao Z H. Determination of, trace copper in pure sodium chloride by direct current arc with tungsten-spiral electrothermal vaporization for sample introduction. Chinese Joural of Analytical Chemistry, 1992, 20(3): 348-361. (in Chinese)

[65]Matsumoto A, Osaki S, Kobata T, Hashimoto B, Uchihara H, Nakahara T. Determination of cadmium by an improved double chamber electrothermal vaporization inductively coupled plasma atomic emission spectrometry. Microchemical Journal, 2010, 95(1): 85-89.

[66]Kataoka H, Tanaka S, Konishi C, Okamoto Y, Fujiwara T, Ito K. Sensitive determination of bromine and iodine in aqueous and biological samples by electrothermal vaporization inductively coupled plasma mass spectrometry using tetramethylammonium hydroxide as a chemical modifier. Rapid Communications in Mass Spectrometry: RCM, 2008, 22(12): 1792-1798.

[67]Amin M N, Kaneco S, Nakano Y, Katsumata H, Suzuki T, Ohta K. Preconcentration technique for manganese by adsorption onto a tantalum wire for tungsten tube atomizer electrothermal atomization atomic absorption spectrometry. Microchimica Acta, 2007, 162(1/2): 73-79.

[68]Badiei H R, Lai B, Karanassios V. Micro- and nano-volume samples by electrothermal, near-torch vaporization sample introduction using removable, interchangeable and portable rhenium coiled-filament assemblies and axially-viewed inductively coupled plasma-atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 77:19-30.

[69]Badiei H R, Liu C, Karanassios V. Taking part of the lab to the sample: On-site electrodeposition of Pb followed by measurement in a lab using electrothermal, near-torch vaporization sample introduction and inductively coupled plasma-atomic emission spectrometry. Microchemical Journal, 2013, 108:131-136.

[70]Badiei H R, Mcenaney J, Karanassios V. Bringing part of the lab to the field: On-site chromium speciation in seawater by electrodeposition of Cr(III)/Cr(VI) on portable coiled-filament assemblies and measurement in the lab by electrothermal, near-torch vaporization sample introduction and inductively coupled plasma-atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 78:42-49.

[71]Salin E D, Ren J M. Direct filter vaporization with induction heating-electrothermal vaporization (IH-ETV) and a foam carbon surface. Journal of Analytical Atomic Spectrometry, 2003, 18(8): 953-954.

[72]Lafleur J P, Lam R, Chan M H, Salin E D. Induction heating-electrothermal vaporization for direct mercury analysis of a single human hair strand by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2005, 20(12): 1315-1317.

[73]Duford D A, Lafleur J P, Lam R, Skinner C D, Salin E D. Induction heating-electrothermal vaporization for direct mercury determination in a single human hair by atomic fluorescence and atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2007, 22(3): 326-329.

[74]王琳琳, 林立, 周谙非. 固体进样法测定食品中的汞含量. 农业机械, 2012(9):137-138.

Wang L L, Lin L, Zhou A F. Solid sample method for determination of mercury in food. Farm Machinery, 2012(9): 137-138. (in Chinese)

[75]薛长一, 陈明岩, 徐立明, 李玲. 固体进样-冷原子吸收法测定食用明胶中的微量汞. 化学分析计量, 2011, 20(3): 65-66.

Xue C Y, Chen Y M, Xu L M, Li L. Determination of trace mercury in edibie gelatin by cold vapour atomic absorption spectroscopy with solid sampling. Chemical Analysis and Meterage, 2011, 20(3): 65-66. (in Chinese)

[76]Rivaro P, Ianni C, Soggia F, Frache R. Mercury speciation in environmental samples by cold vapour atomic absorption spectrometry with in situ preconcentration on a gold trap. Microchimica Acta, 2007, 158(3/4): 345-352.

[77]Mao X F, Liu J X, Huang Y T, Feng L, Zhang L H, Tang X Y, Zhou J, Qian Y Z, Wang M. Assessment of homogeneity and minimum sample mass for cadmium analysis in powdered certified reference materials and real rice samples by solid sampling electrothermal vaporization atomic fluorescence spectrometry. Journal of Agricultural And Food Chemistry, 2013, 61(4): 848-853.

[78]Kula ?, Arslan Y, Bakirdere S, Ataman O Y. A novel analytical system involving hydride generation and gold-coated W-coil trapping atomic absorption spectrometry for selenium determination at ng•L-1 level. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, 63(8): 856-860.

[79]Xi M Y, Liu R, Wu P, Xu K L, Hou X D, Lü Y. Atomic absorption spectrometric determination of trace tellurium after hydride trapping on platinum-coated tungsten coil. Microchemical Journal, 2010, 95(2): 320-325.

[80]Liu R, Wu P, Xi M Y, Xu K L, Lü Y. Inorganic arsenic speciation analysis of water samples by trapping arsine on tungsten coil for atomic fluorescence spectrometric determinationc. Talanta, 2009, 78(3):885-890.

[81]谭靖, 郭冬发, 张彦辉. 激光烧蚀光谱-电感耦合等离子体质谱联用技术应用进展. 中国无机分析化学, 2011, 1(3):16-22.

Tan J, Guo D F, Zhang Y H. Review on application of laser ablation spectroscopy(LAS) coupled with inductively coupled plasma mass spectrometry(ICP-MS). Chinese Joural of Inorganic Chemistry, 2011, 1(3):16-22. (in Chinese)

[82]Kaiser J, Galiov M, Novotn K, ?ervenka R, Reale L, Novotný J, Liška M, Samek O, Kanický V, Hrdli?ka A, Stejskal K, Adam V, Kizek R. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(1): 67-73.

[83]Bu K, Cizdziel J V, Reidy L. Analysis of herbal supplements for selected dietary minerals and trace elements by laser ablation- and solution-based ICPMS. Microchemical Journal, 2013, 106: 244-249.

[84]Skinner C D, Salin E D. Preconcentration and adsorption of metal chelates with analysis by direct sample insertion inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 2003, 18(5): 495-500.

[85]Flores E M D, da Costa A B, Barin J S, Dressler V L, Paniz J N G, Martins A F. Direct flame solid sampling for atomic absorption spectrometry: determination of copper in bovine liver. Spectrochim Acta B, 2001, 56(10): 1875-1882.

[86]Flores E M D, Paniz J N G, Martins A F, Dressler V L, M?ller E I, da Costa A B. Cadmium determination in biological samples by direct solid sampling flame atomic absorption spectrometry. Spectrochim Acta B, 2002, 57(12): 2187-2193.

[87]林建原, 刘青梅. 非完全消化-悬浮液进样-FAAS测定饲料中钾、钠. 中国粮油学报, 2009, 24(12): 143-145.

Lin J Y, Liu Q M. Determinatioin kalium and sodium in feed by nocomplete digestion, suspension sampling and flame atomic absorption spectrometry. Journal of the Chinese Cereals and Oils Association, 2009, 24(12): 143-145. (in Chinese)

[88]孙汉文, 苗媛媛, 刘晓莉. 悬浮液进样-氢化物发生原子荧光法直接测定面粉中三价砷和总无机砷. 中国粮油学报, 2009, 24(12): 138-142.

Sun H W, Miao Y Y, Liu X L. Direct determination of trivalence arsenic and total inorganic arsenic in flours by suspension sampling and hydride generatioin - atomic fluorescence spectrometry. Journal of the Chinese Cereals and Oils Association, 2009, 24(12): 138-142. (in Chinese)

[89]陈江, 周李, 姚恩亲. 悬浮液进样石墨炉原子吸收法测定茶叶中镍含量. 光散射学报, 2011, 23(1): 70-745.

Chen J, Zhou L, Yao E Q. Determination of concentration of nickel in tea by graphite furnace atomic absorption spectrometry with slurry sampling. The Journal of Light Scattering, 2011, 23(1): 70-745. (in Chinese)

[90]Nunes L S, Barbosa J T, Fernandes A P, Lemos V A, dos Santos W N L, Korn M G A, Teixeira L S G. Multi-element determination of Cu, Fe, Ni and Zn content in vegetable oils samples by high-resolution continuum source atomic absorption spectrometry and microemulsion sample preparation. Food Chemistry, 2011, 127(2): 780-783.

[91]Anderson D L, Cunningham W C. Analysis of FDA in-house food reference materials with anticoincidence INAA. Journal of Radioanalytical and Nuclear Chemistry, 2013, 296(1): 175-180.

[92]Anderson D L. Anticoincidence INAA capabilities for analysis of FDA total diet study seafoods. Journal of Radioanalytical and Nuclear Chemistry, 2012, 296:175-180.

[93]Waheed S, Rahman S, Husnain S M, Siddique N. Hazardous and other element characterization of new and used domestic plastic food containers using INAA and AAS. Journal of Radioanalytical and Nuclear Chemistry, 2011, 292(3): 937-945.

[94]Pereira G R, Rocha H S, Calza C, Anjos M J, Pérez C A, Lopes R T. Biological tissues analysis by XRF microtomography. Applied Radiation and Isotopes, 2010, 68(4-5): 704-708.

[95]中华人民共和国卫生部. GB 5009.12—2010 食品安全国家标准 食品中铅的测定[S]. 北京:中国标准出版社, 2010.

Ministry of Health of the People’s Republic of China. GB 5009.12—2010 National food safety standard Determination of lead in foods. Beijing: China Standard Press, 2010. (in Chinese)

[96]AOAC Official Method 999.10. Lead, cadmium, zinc, copper, and iron in foods atomic absorption sepctrophotometry after microwave digestion; AOAC International: Gaithersburg, MD, 2011.

[97]徐建平,胡晓燕, 薛楠. 用标准样品的均匀性研究估计最小取样量. 冶金标准化与质量, 2012(2): 25-27.

Xu J P, Hu X Y, Xue N. Estimation for minimum count of sampling based researching the uniformity of RM. Mentallurgical Standardization & Quality, 2012(2): 25-27. (in Chinese)

[98]Kurf?rst U, Pauwels J, Grobecker K H G, Stoeppler M, Muntau H. Micro-heterogeneity of trace elements in reference materials - determination and statistical evaluation. Fresenius' Journal of Analytical Chemistry, 1993, 345: 112-120.

[99]Pauwels J, Vandecasteele C. Determination of the minimum sample mass of a solid CRM to be used in chemical analysis. Fresenius' Journal of Analytical Chemistry, 1993, 345(2-10):121-123.

[100]冯松林, 徐清, 雷勇, 程琳, 冯向前, 范东宇, 沙因, 黄宇营, 何伟. 微分析标准物质最小取样量的SRXRF研究. 高能物理与核物理, 2003, 27:105-108.

Feng S L, Xu Q, Lei Y, Cheng L, Feng X Q, Fan D Y, Sha Y, Hang Y Y, He W. Study on minimum analytic mass of microanalysis reference material with SRXRF. High Energy Physics and Nuclear Physics, 2003, 27: 105-108. (in Chinese)

[101]Rossbach M, Grobecker K H. Homogeneity studies of reference materials by solid sampling AAS and INAA. Accreditation and Quality Assurance, 1999, 4(12): 498-503.

[102]Friese K C, Grobecker K H, Watjen U. Development of an electrothermal vaporization ICP-MS method and assessment of its applicability to studies of the homogeneity of reference materials. Fresenius' Journal of Analytical Chemistry, 2001, 370(5): 499-507.

[103]吴少尉, 吴青菊. 电感耦合等离子体光-质谱中的进样技术. 湖北民族学院学报: 自然科学版, 2009, 27(4): 427-433.

Wu S W, Wu Q J. Introduction technique in inductively coupled plasma optical emission spectrometry/mass spectrometry. Journal of Hubei University for Nationalities: Nature Science Edition,  2009, 27(4):427-433. (in Chinese)

[104]Yi Y Z, Jiang S J, Sahayam A C. Palladium nanoparticles as the modifier for the determination of Zn, As, Cd, Sb, Hg and Pb in biological samples by ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2012, 27(3): 426-431.

[105]Savio M, Cerutti S, Martinez L D, Smichowski, Gil R A. Study of matrix effects and spectral interferences in the determination of lead in sediments, sludges and soils by SR-ETAAS using slurry sampling. Talanta, 2010, 82(2): 523-527.

[106]Kataoka H, Okamoto Y, Tsukahara S, Fujiwara T, Ito K. Separate vaporisation of boric acid and inorganic boron from tungsten sample cuvette-tungsten boat furnace followed by the detection of boron species by inductively coupled plasma mass spectrometry and atomic emission spectrometry (ICP-MS and ICP-AES). Analytica Chimica Acta, 2008, 610(2): 179-185.

[107]Karanassios V, Abdullah M, Horlick G. The application of chemical modification in direct sample insertion inductively coupled plasma-atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 1990, 45(1/2): 119-129.

[108]Hu B, Jiang Z C, Peng T Y, Qin Y C. The application of chemical modification in electrothermal vaporization-inductively coupled plasma atomic emission spectrometry. Talanta, 1999, 49(2): 357-365.

[109]朱霞石, 胡斌, 何蔓, 江祖成. 8-羟基喹啉在ETAAS和ETV-ICP-AES测定铬形态中基体改进作用的比较研究. 分析科学学报, 2006, 21(1): 1-4.

Zhu X S, Hu B, He M, Jiang Z C. Comparative study on chemical modification of 8-Ox in determination of Cr(Ⅲ) and Cr(Ⅵ) by ETAAS and ETV-ICP-AES. Journal of Analytical Science, 2006, 21(1): 1-4. (in Chinese)

[110]Tseng Y J, Liu C C, Jiang S J. Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of As and Se in soil and sludge. Analytica Chimica Acta, 2007, 588(2): 173-178.

[111]Oleszczuk N, Castro J T, da Silva M M, Korn M G A, Welz B, Vale M G R. Method development for the determination of manganese, cobalt and copper in green coffee comparing direct solid sampling electrothermal atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry. Talanta, 2007, 73(5): 862-869.
[1] WANG XiaoBin, YAN Xiang, LI XiuYing. Environmental Safety Risk for Application of Anaerobic Fermentation Biogas Slurry from Livestock Manure in Agricultural Land in China [J]. Scientia Agricultura Sinica, 2021, 54(1): 110-139.
[2] XueFei MAO,JiXin LIU,YongZhong QIAN. Technical Review of Fast Detection of Heavy Metals in Soil [J]. Scientia Agricultura Sinica, 2019, 52(24): 4555-4566.
[3] WANG XiaoBin,YAN Xiang,LI XiuYing,JI HongJie. Environmental Risks for Application of Phosphogysum in Agricultural Soils in China [J]. Scientia Agricultura Sinica, 2019, 52(2): 293-311.
[4] WANG XiaoBin, YAN Xiang, LI XiuYing, CAI DianXiong, LEI Mei. Environment Risk for Application of Flue Gas Desulfurization Gypsum in Soils in China [J]. Scientia Agricultura Sinica, 2018, 51(5): 926-939.
[5] LI ShaoKun, ZHAO JiuRan, DONG ShuTing, ZHAO Ming, LI ChaoHai, CUI YanHong, LIU YongHong, GAO JuLin, XUE JiQuan, WANG LiChun, WANG Pu, LU WeiPing, WANG JunHe, YANG QiFeng, WANG ZiMing. Advances and Prospects of Maize Cultivation in China [J]. Scientia Agricultura Sinica, 2017, 50(11): 1941-1959.
[6] YANG Zhen-xing, ZHOU Huai-ping, XIE Wen-yan, GUAN Chun-lin, CHE Li. Effect of Long-Term Fertilization on Pb, As Contents of Soil and Maize Grain [J]. Scientia Agricultura Sinica, 2015, 48(23): 4827-4836.
[7] LI Yu, LI Ying-hui, YANG Qing-wen, ZHANG Jin-peng, ZHANG Jin-mei, QIU Li-juan, WANG Tian-yu. Genomics-Based Crop Germplasm Research: Advances and Perspectives [J]. Scientia Agricultura Sinica, 2015, 48(17): 3333-3353.
[8] LIU Kai-Lou, LI Da-Ming, HUANG Qing-Hai, YU Xi-Chu, YE Hui-Cai, XU Xiao-Lin, HU Hui-Wen, WANG Sai-Lian. Ecological Benefits and Environmental Carrying Capacities of Red Paddy Field Subjected to Long-Term Pig Manure Amendments [J]. Scientia Agricultura Sinica, 2014, 47(2): 303-313.
[9] QIN Fu, WANG Dong-yang, LI Suo-ping, Lü Kai-yu. Analysis of Agricultural Policies and Decision Support System in China-Review and Expectation [J]. Scientia Agricultura Sinica, 2007, 40(增刊): 2956-2961.
[10] XU Shang-zhong, CHEN You-chun, LI Jun-ya, WANG Ya-chun, REN Hong-yan, GAO Xue. Review of Breeding and High-Performance Production of Chinese Simmental [J]. Scientia Agricultura Sinica, 2007, 40(增刊): 3316-3319.
[11] ZHAO Ke-bin, WANG Li-xian, CHENG Du-xue. Review and Prospect of Research Achievements of Chinese New Meat Type Pig Line Breeding and Selection Technology [J]. Scientia Agricultura Sinica, 2007, 40(增刊): 3304-3308.
[12] ,,,,,,,,. Hitchhiking Effect Mapping: A New Approach for Discovering Agronomic Important Genes [J]. Scientia Agricultura Sinica, 2006, 39(8): 1526-1535 .
[13] ,,,,. Progress and Problems of Commercial Production to Transgenic Plants in China [J]. Scientia Agricultura Sinica, 2006, 39(7): 1328-1335 .
[14] ,,,,,,,,,,,,. Establishment of Quality Evaluation System and Utilization of Molecular Methods for the Improvement of Chinese Wheat Quality [J]. Scientia Agricultura Sinica, 2006, 39(06): 1091-1101 .
[15] . An Interpretation of the Intellectual Property Aspects of the Golden Rice and Its Implications [J]. Scientia Agricultura Sinica, 2006, 39(05): 895-901 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!