Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (21): 4467-4470.doi: 10.3864/j.issn.0578-1752.2025.21.015

• EXPLORATION OF SALT-ALKALI AND DROUGHT RESISTANT GENES FOR ALFALFA BREEDING • Previous Articles     Next Articles

Exploration of Salt-Alkali and Drought Resistant Genes for Alfalfa Breeding

LI MingNa(), LONG RuiCai, YANY QingChuan*()   

  1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2025-09-28 Accepted:2025-10-15 Online:2025-11-01 Published:2025-11-06
  • Contact: YANY QingChuan
[1]
刘志鹏, 刘文献, 杨青川, 张博, 王增裕, 郭振飞, 付春祥, 林浩, 张志强, 黄琳凯, 等. 我国牧草育种进展及存在问题. 中国科学基金, 2023, 37(4): 528-536.
LIU Z P, LIU W X, YANG Q C, ZHANG B, WANG Z Y, GUO Z F, FU C X, LIN H, ZHANG Z Q, HUANG L K, et al. Progress and existing problems of forage breeding in China. Bulletin of National Natural Science Foundation of China, 2023, 37(4): 528-536. (in Chinese)
[2]
张帆, 杨青川. 紫花苜蓿育种历史、现状与展望. 中国农业科学, 2025, 58(21): 4471-4481. doi: 10.3864/j.issn.0578-1752.2025.21.016.
ZHANG F, YANG Q C. The breeding history, current status and prospects of alfalfa. Scientia Agricultura Sinica, 2025, 58(21): 4471-4481. doi: 10.3864/j.issn.0578-1752.2025.21.016. (in Chinese)
[3]
LI X H, BRUMMER E C. Applied genetics and genomics in alfalfa breeding. Agronomy, 2012, 2(1): 40-61.
[4]
师尚礼, 南丽丽, 郭全恩. 中国苜蓿育种取得的成就及展望. 植物遗传资源学报, 2010, 11(1): 46-51.

doi: 10.13430/j.cnki.jpgr.2010.01.009
SHI S L, NAN L L, GUO Q E. Achievements and prospect of alfalfa breeding in China. Journal of Plant Genetic Resources, 2010, 11(1): 46-51. (in Chinese)

doi: 10.13430/j.cnki.jpgr.2010.01.009
[5]
YE Q Y, ZHOU C E, LIN H, LUO D, JAIN D, CHAI M F, LU Z C, LIU Z P, ROY S, DONG J L, WANG Z Y, WANG T. Medicago2035: Genomes, functional genomics, and molecular breeding. Molecular Plant, 2025, 18(2): 219-244.
[6]
SHI M M, WANG C L, WANG P, ZHANG M L, LIAO W B. Methylation in DNA, histone, and RNA during flowering under stress condition: A review. Plant Science, 2022, 324: 111431.
[7]
SUN M H, YANG Z, LIU L, DUAN L. DNA methylation in plant responses and adaption to abiotic stresses. International Journal of Molecular Sciences, 2022, 23(13): 6910.
[8]
高荣, 李恒宇, 陈丽娟, 马晖玲. 紫花苜蓿DNA甲基化酶基因鉴定及其在盐碱胁迫响应中的调控作用. 中国农业科学, 2025, 58(21): 4482-4496. doi: 10.3864/j.issn.0578-1752.2025.21.017.
GAO R, LI H Y, CHEN L J, MA H L. Physiological effects of 5-azac on alleviating salt-alkali stress in alfalfa and its impact on the expression of DNA methylation enzyme genes. Scientia Agricultura Sinica, 2025, 58(21): 4482-4496. doi: 10.3864/j.issn.0578-1752.2025.21.017. (in Chinese)
[9]
吕缓缓, 李如月, 刘青松, 许蕾, 徐嫣然, 于浩洁, 郭长虹, 龙瑞才. 紫花苜蓿MsKTI3基因克隆及耐盐功能分析. 中国农业科学, 2025, 58(21): 4497-4511. doi: 10.3864/j.issn.0578-1752.2025.21.018.
H H, LI R Y, LIU Q S, XU L, XU Y R, YU H J, GUO C H, LONG R C. Cloning and salt tolerance function analysis of MsKTI3 gene in alfalfa. Scientia Agricultura Sinica, 2025, 58(21): 4497-4511. doi: 10.3864/j.issn.0578-1752.2025.21.018. (in Chinese)
[10]
缑绪卓, 严子成, 况玉, 曹锐, 陈巧灵, 杨雅丽, 周嘉裕, 廖海. 大豆与蒺藜苜蓿Kunitz蛋白酶抑制剂的全基因组分析. 河南农业科学, 2019, 48(7): 38-47.
GOU X Z, YAN Z C, KUANG Y, CAO R, CHEN Q L, YANG Y L, ZHOU J Y, LIAO H. Genome-wide analysis of kunitz protease inhibitors from Glycine max and Medicago truncatula. Journal of Henan Agricultural Sciences, 2019, 48(7): 38-47. (in Chinese)
[11]
ZHANG Y X, GUO W, CAO D, CHEN L M, YANG H L, CHEN H F, CHEN S L, HAO Q N, QIU D Z, SHAN Z H, et al. Heterologous expression of the Glycine soja Kunitz-type protease inhibitor GsKTI improves resistance to drought stress and Helicoverpa armigera in transgenic Arabidopsis lines. Plant Physiology and Biochemistry, 2023, 202: 107915.
[12]
SU K Q, MU L, ZHOU T, KAMRAN M, YANG H M. Intercropped alfalfa and spring wheat reduces soil alkali-salinity in the arid area of northwestern China. Plant and Soil, 2024, 499(1): 275-292.
[13]
杨永念, 曾祥翠, 刘青松, 李如月, 龙瑞才, 陈林, 王雪, 何飞, 康俊梅, 李明娜. 盐碱胁迫下的紫花苜蓿幼苗蛋白组差异分析. 中国农业科学, 2025, 58(21): 4512-4527. doi: 10.3864/j.issn.0578-1752.2025.21.019.
YANG Y N, ZENG X C, LIU Q S, LI R Y, LONG R C, CHEN L, WANG X, HE F, KANG J M, LI M N. Differential proteomic analysis of alfalfa seedlings under salt-alkaline stress. Scientia Agricultura Sinica, 2025, 58(21): 4512-4527. doi: 10.3864/j.issn.0578-1752.2025.21.019. (in Chinese)
[14]
吴征镒. 中国植物志. 北京: 科学出版社, 1998: 318-320.
WU Z Y. Flora of China. Beijing: Science Press, 1998: 318-320. (in Chinese)
[15]
YANG J Y, ZHENG W, TIAN Y, WU Y, ZHOU D W. Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica, 2011, 49(2): 275-284.
[16]
穆赢通, 路景诗, 张雨桐, 石凤翎. 基于转录组和WGCNA的直立型花苜蓿(Medicago ruthenica Sojak cv.Zhilixing)抗旱关键基因识别. 中国农业科学, 2025, 58(21): 4528-4543. doi: 10.3864/j.issn.0578-1752.2025.21.020.
MU Y T, LU J S, ZHANG Y T, SHI F L. Identification of key drought-responsive genes in upright Medicago ruthenica Sojak cv. Zhilixing based on transcriptome sequencing and WGCNA. Scientia Agricultura Sinica, 2025, 58(21): 4528-4543. doi: 10.3864/j.issn.0578-1752.2025.21.020. (in Chinese)
[17]
LI Z Y, HU J Y, WU Y, WANG J X, SONG H, CHAI M F, CONG L L, MIAO F H, MA L C, TANG W, et al. Integrative analysis of the metabolome and transcriptome reveal the phosphate deficiency response pathways of alfalfa. Plant Physiology and Biochemistry, 2022, 170: 49-63.
[18]
LI Z Y, XU H Y, LI Y, WAN X F, MA Z, CAO J, LI Z S, HE F, WANG Y F, WAN L Q, et al. Analysis of physiological and miRNA responses to Pi deficiency in alfalfa (Medicago sativa L.). Plant Molecular Biology, 2018, 96(4): 473-492.
[19]
黄红梅, 王思琦, 杨青川, 郭长虹, 王雪. 磷转运蛋白MsPT5调控紫花苜蓿磷吸收利用. 中国农业科学, 2025, 58(21): 4544-4556. doi: 10.3864/j.issn.0578-1752.2025.21.021.
HUANG H M, WANG S Q, YANG Q C, GUO C H, WANG X. Phosphate transporter MsPT5 regulates phosphate uptake and utilization in Alfalfa. Scientia Agricultura Sinica, 2025, 58(21): 4544-4556. doi: 10.3864/j.issn.0578-1752.2025.21.021. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!