Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (19): 3905-3918.doi: 10.3864/j.issn.0578-1752.2025.19.008

• PLANT PROTECTION • Previous Articles     Next Articles

Insecticidal Active Components and Mechanisms of Essential Oils from Illicium verum and Curcuma phaeocaulis Against Plutella xylostella

LIU HaoKai1(), FENG YouNa1, LI Jing1,2, LIANG Qian1,2()   

  1. 1 College of Biology and Food Engineering, Southwest Forestry University, Kunming 650224
    2 Forest Resources Exploitation and Utilization Engineering Research Center for Grand Health of Yunnan Provincial Universities, Kunming 650224
  • Received:2025-07-23 Accepted:2025-08-31 Online:2025-10-01 Published:2025-10-10
  • Contact: LIANG Qian

Abstract:

【Objective】Elucidating the active components of Illicium verum and Curcuma phaeocaulis essential oils and their effects on enzyme activities of Plutella xylostella to provide a theoretical basis for the development of botanical insecticides against this pest.【Method】Essential oils were extracted by steam distillation, and their contact and stomach toxicities against 3rd-instar larvae of P. xylostella were determined using insect immersion and leaf-dip methods. The chemical compositions of the essential oils exhibiting promising insecticidal activity were analyzed by gas chromatography-mass spectrometry (GC-MS). The effects of cinene and zederone on the activities of acetylcholinesterase, Ca2+-Mg2+-ATPase, carboxylesterase, and catalase in P. xylostella were determined using a UV-Vis spectrophotometer.【Result】The LC50 of I. verum essential oil for contact toxicity against P. xylostella on the 4th day was 54.40 μg·mL-1, while that of C. phaeocaulis essential oil for stomach toxicity on the 4th day was 71.56 μg·mL-1. GC-MS analysis revealed that the main components of I. verum essential oil were anethole (85.96%), estragole (6.23%), p-anisaldehyde (3.73%), and cinene (1.19%). The major constituents of C. phaeocaulis essential oil were epicurzerenone (50.64%), germacrone (14.10%), curcumenol (8.22%), furanodienone (3.99%), curzerene (2.27%), eucalyptol (1.99%), zederone (1.94%), β-elemene (1.40%), β-eudesmol (1.06%), and α-caryophyllene (1.02%). The main chemical components of I. verum essential oil, including cinene, estragole, p-anisaldehyde and anethole exhibited contact toxicity against P. xylostella with LC50 values of 57.99, 205.21, 111.76, and 86.48 μg·mL-1 on the 4th day, respectively. The major chemical constituents of C. phaeocaulis essential oil, including eucalyptol, β-elemene, α-caryophyllene, curzerene, epicurzerenone, β-eudesmol, germacrone, curcumenol, furanodienone, zederone showed stomach toxicity against P. xylostella with LC50 values of 54.48, 350.93, 44.75, 376.45, 497.66, 50.94, 28.58, 7.27, 28.36, and 4.34 μg·mL-1 on the 4th day, respectively. The stomach toxicity of zederone was stronger than that of the positive control, pyrethrin. With the increase in cinene treatment concentration, the activity of acetylcholinesterase in P. xylostella exhibited an initial inhibition, followed by recovery, subsequent reactivation, and eventual return to baseline levels. Ca2+-Mg2+-ATPase and carboxylesterase activities demonstrated sustained activation, while catalase activity showed an initial activation, followed by a period with no significant difference compared to the control. Under elevated zederone treatment concentration, acetylcholinesterase activity in P. xylostella displayed initial activation that subsequently normalized to control levels. Both Ca2+-Mg2+-ATPase and catalase maintained persistent activation throughout the experiment. Carboxylesterase activity showed a triphasic response: initial stimulation, intermediate suppression, and final reactivation.【Conclusion】The compounds demonstrating notable insecticidal activity against P. xylostella in I. verum and C. phaeocaulis essential oils were identified as cinene and zederone, respectively. These findings provide a theoretical foundation for the development and utilization of I. verum and C. phaeocaulis plant resources, as well as for the control of P. xylostella populations.

Key words: Plutella xylostella, contact toxicity, stomach toxicity, Illicium verum, Curcuma phaeocaulis, cinene, zederone, enzyme

Fig. 1

Experimental flowchart"

Table 1

Contact toxicity of I. verum essential oil and stomach toxicity of C. phaeocaulis essential oil against P. xylostella"

处理
Treatment
时间
Time (d)
致死中浓度LC50 (μg·mL-1) 95%置信区间
95%CI (μg·mL-1)
斜率±标准误
Slope±standard error
卡方
χ2
P
P value
八角挥发油I. verum essential oil 1 105.40 78.36-155.13 1.73±0.09 110.81 <0.001
2 80.03 58.82-114.65 1.60±0.09 106.98 <0.001
3 61.54 45.18-84.20 1.59±0.09 99.13 <0.001
4 54.40 39.67-73.50 1.51±0.09 89.20 <0.001
莪术挥发油
C. phaeocaulis essential oil
1 238.93 187.45-304.24 1.45±0.09 50.61 <0.001
2 101.93 62.24-140.89 1.37±0.09 70.65 <0.001
3 83.11 46.42-117.97 1.48±0.10 82.51 <0.001
4 71.56 37.35-103.17 1.63±0.11 93.78 <0.001

Table 2

Main chemical components of I. verum essential oil"

序号No. 保留时间Retention time (min) 化合物Compound 相对含量Relative content (%)
1 11.83 双戊烯Cinene 1.19
2 17.33 草蒿脑Estragole 6.23
3 19.06 对茴香醛p-anisaldehyde 3.73
4 19.92 茴香脑Anethole 85.96

Table 3

Main chemical components of C. phaeocaulis essential oil"

序号No. 保留时间Retention time (min) 化合物Compound 相对含量Relative content (%)
1 12.19 桉叶油醇Eucalyptol 1.99
2 23.67 β-榄香烯β-elemene 1.40
3 25.38 α-石竹烯α-caryophyllene 1.02
4 26.50 莪术烯Curzerene 2.27
5 29.31 表蓬莪术烯酮Epicurzerenone 50.64
6 30.41 β-桉叶醇β-eudesmol 1.06
7 31.50 吉马酮Germacrone 14.10
8 32.29 莪术烯醇Curcumenol 8.22
9 33.50 莪术呋喃二烯酮Furanodienone 3.99
10 37.93 蓬莪术环氧酮Zederone 1.94

Table 4

Contact toxicity of major chemical components from I. verum against P. xylostella"

处理
Treatment
时间
Time (d)
致死中浓度
LC50 (μg·mL-1)
95%置信区间
95%CI (μg·mL-1)
斜率±标准误
Slope±standard error
卡方
χ2
P
P value
双戊烯
Cinene
1 327.90 242.44-467.85 1.68±0.09 105.58 <0.001
2 191.27 143.04-247.74 1.41±0.09 57.78 <0.001
3 100.40 62.93-137.27 1.25±0.09 53.86 <0.001
4 57.99 32.74-82.41 1.34±0.10 44.92 <0.001
草蒿脑
Estragole
1 466.68 270.18-1282.34 1.30±0.07 294.48 <0.001
2 275.69 174.86-505.37 1.14±0.07 179.59 <0.001
3 226.55 147.44-375.56 1.12±0.06 153.83 <0.001
4 205.21 134.62-327.93 1.11±0.06 141.53 <0.001
对茴香醛
p-anisaldehyde
1 1364.43 834.64-3333.10 0.63±0.08 18.72 0.132
2 372.56 290.00-504.92 0.60±0.08 12.07 0.522
3 178.96 133.53-229.48 0.60±0.08 11.14 0.599
4 111.76 89.04-134.49 0.94±0.08 9.95 0.698
茴香脑
Anethole
1 171.56 142.25-207.57 2.17±0.09 83.67 <0.001
2 148.17 119.24-183.64 1.94±0.08 92.87 <0.001
3 104.80 78.89-135.55 1.79±0.08 118.86 <0.001
4 86.48 60.34-116.16 1.60±0.08 129.24 <0.001
除虫菊酯Pyrethrin 1 27.52 14.79-55.82 0.37±0.02 51.43 <0.001
2 5.58 2.97-10.26 0.38±0.02 51.49 <0.001
3 2.22 1.20-3.85 0.34±0.02 33.96 0.019
4 1.01 0.44-1.97 0.31±0.02 38.29 0.005

Fig. 2

Structure of cinene (A) and zederone (B)"

Table 5

Stomach toxicity of major chemical components from C. phaeocaulis against P. xylostella"

处理
Treatment
时间
Time (d)
致死中浓度
LC50 (μg·mL-1)
95%置信区间
95%CI (μg·mL-1)
斜率±标准误
Slope±standard error
卡方
χ2
P
P value
桉叶油醇
Eucalyptol
1 1553.63 797.67-5671.38 0.67±0.09 19.42 0.111
2 392.34 273.88-691.57 0.52±0.08 13.00 0.448
3 98.63 77.58-122.54 0.68±0.08 15.43 0.281
4 54.48 33.01-76.00 0.74±0.08 23.81 0.033
β-榄香烯
β-elemene
1 2043.45 1073.77-6900.68 1.03±0.11 24.91 0.024
2 1264.52 616.16-6280.57 0.67±0.09 28.93 0.007
3 485.05 295.50-1278.52 0.60±0.08 24.38 0.028
4 350.93 236.07-684.94 0.58±0.08 18.50 1.139
α-石竹烯α-caryophyllene 1 7164.46 2080.49-143392.98 0.38±0.08 8.24 0.827
2 843.14 386.80-7862.66 0.29±0.08 15.13 0.299
3 125.00 67.05-233.02 0.28±0.08 10.79 0.629
4 44.75 21.49-67.93 0.59±0.08 21.58 0.062
莪术烯
Curzerene
1 2085.62 971.97-11233.87 0.96±0.11 34.52 0.001
2 3101.97 1043.95-61338.01 0.44±0.08 18.35 0.145
3 725.90 440.05-1780.71 0.48±0.08 13.33 0.423
4 376.45 248.09-777.43 0.43±0.08 12.09 0.521
表蓬莪术烯酮
Epicurzerenone
1 11791.08 2107.36-12613023.50 0.55±0.10 33.40 0.001
2 17496.95 3132.00-3664519.09 0.31±0.08 15.38 0.284
3 1837.08 625.60-78593.01 0.26±0.08 7.35 0.883
4 497.66 213.01-54204.18 0.20±0.08 8.50 0.810
β-桉叶醇
β-eudesmol
1 778.24 499.21-1633.54 0.80±0.09 20.03 0.094
2 245.92 184.19-365.84 1.01±0.08 35.51 0.001
3 109.57 93.12-128.14 0.96±0.08 10.56 0.648
4 50.94 30.45-71.34 0.68±0.08 19.31 0.114
吉马酮
Germacrone
1 3534.41 1198.69-54711.27 0.35±0.08 14.06 0.370
2 325.81 207.88-747.88 0.37±0.08 8.08 0.839
3 55.35 33.22-77.57 0.48±0.08 15.04 0.305
4 28.58 12.54-45.24 0.61±0.08 18.45 0.141
莪术烯醇
Curcumenol
1 778.48 529.15-1399.86 0.69±0.08 17.21 0.190
2 335.22 219.27-710.42 0.40±0.08 11.61 0.560
3 45.29 27.75-62.74 0.55±0.08 11.82 0.543
4 7.27 1.23-16.67 0.42±0.08 6.47 0.927
莪术呋喃二烯酮
Furanodienone
1 1129.53 634.32-3211.13 0.50±0.08 17.25 0.188
2 213.19 142.02-397.25 0.36±0.08 14.87 0.316
3 64.44 45.43-83.83 0.60±0.08 11.93 0.534
4 28.36 15.38-41.70 0.57±0.08 7.53 0.873
蓬莪术环氧酮
Zederone
1 743.92 485.81-1498.95 0.89±0.09 23.12 0.040
2 429.96 282.09-898.33 0.70±0.08 25.20 0.022
3 65.86 33.79-99.39 0.37±0.08 16.52 0.222
4 4.34 0.05-15.67 0.27±0.08 13.96 0.377
除虫菊脂
Pyrethrin
1
2 223.80 119.69-488.71 0.26±0.02 22.53 0.259
3 59.40 34.22-113.80 0.25±0.02 23.35 0.222
4 6.65 3.95-11.11 0.32±0.02 27.31 0.098

Fig. 3

Effects of cinene on the activities of four enzymes in P. xylostella"

Fig. 4

Effects of zederone on the activities of four enzymes in P. xylostella"

[1]
FAN Q Q, LI Y F, LIU J Y, ZHANG Y L. Toxicity of (S)-(-)-palasonin on various life stages of Plutella xylostella (Lepidoptera: Plutellidae). Industrial Crops and Products, 2023, 201: 116902.
[2]
英君伍, 李雪松, 宋玉泉, 王刚, 李斌, 杨辉斌. 氯虫苯甲酰胺类似物的设计、合成及杀虫活性. 农药, 2024, 63(7): 483-487, 493.
YING J W, LI X S, SONG Y Q, WANG G, LI B, YANG H B. Design, synthesis and insecticidal activity of chlorantraniliprole analogs. Agrochemicals, 2024, 63(7): 483-487, 493. (in Chinese)
[3]
薛晨蒙. LC20甲氨基阿维菌素苯甲酸盐激活JNK介导小菜蛾生殖刺激机制初探[D]. 泰安: 山东农业大学, 2025.
XUE C M. Study of the mechanism by which LC20 emamectin benzoate activates JNK to induce reproductive stimulation in Plutella xylostella[D]. Taian: Shandong Agricultural University, 2025. (in Chinese)
[4]
FURLONG M J, WRIGHT D J, DOSDALL L M. Diamondback moth ecology and management: Problems, progress and prospects. Annual Review of Entomology, 2013, 58: 517-541.
[5]
罗雁婕, 吴文伟, 杨祚斌, 浦恩堂, 郭志祥, 尹可锁, 何成兴. 小菜蛾抗药性及治理的研究进展. 云南大学学报(自然科学版), 2008, 30(S1): 178-182.
LUO Y J, WU W W, YANG Z B, PU E T, GUO Z X, YIN K S, HE C X. Advances in insecticide resistance of diamondback moth (Plutella xylostella L.) in Yunnan. Journal of Yunnan University (Natural Sciences Edition), 2008, 30(S1): 178-182. (in Chinese)
[6]
郭勇. 吡虫啉对非靶标害虫小菜蛾的亚致死效应[D]. 泰安: 山东农业大学, 2024.
GUO Y. Sublethal effects of imidacloprid on non-target insect Plutella xylostella[D]. Taian: Shandong Agricultural University, 2024. (in Chinese)
[7]
张玉, 陈永明, 王苹, 刘媛, 孙晓明, 刘贤金. 我国小菜蛾登记防治杀虫剂产品现状与展望. 农药, 2021, 60(12): 866-871.
ZHANG Y, CHEN Y M, WANG P, LIU Y, SUN X M, LIU X J. Current situation and prospect of registered insecticides against Plutella xylostella in China. Agrochemicals, 2021, 60(12): 866-871. (in Chinese)
[8]
徐巨龙, 李静静, 王念猛, 薛超彬. 我国部分地区田间小菜蛾种群对8种常用杀虫剂的抗性检测. 植物保护, 2021, 47(2): 239-242.
XU J L, LI J J, WANG N M, XUE C B. Resistance detection of diamondback moth from different field populations to eight insecticides in some areas of China. Plant Protection, 2021, 47(2): 239-242. (in Chinese)
[9]
胡虓, 王晓辉, 孙刚忠, 周莉, 潘渝, 刘守德, 李青, 金海燕, 尹飞, 李振宇, 谌爱东, 谢圣华, 刘华梅. 氯虫苯甲酰胺、阿维菌素与苏云金芽胞杆菌桶混对不同地区抗性小菜蛾的防治效果. 中国生物防治学报, 2017, 33(6): 732-738.

doi: 10.16409/j.cnki.2095-039x.2017.06.003
HU X, WANG X H, SUN G Z, ZHOU L, PAN Y, LIU S D, LI Q, JIN H Y, YIN F, LI Z Y, CHEN A D, XIE S H, LIU H M. Control effects of tank mixtures of chlorantraniliprole, avermectin and Bacillus thuringiensis against Plutella xylostella in different areas. Chinese Journal of Biological Control, 2017, 33(6): 732-738. (in Chinese)
[10]
TRAN D H, TAKAGI M, TAKASU K. Effects of selective insecticides on host searching and oviposition behavior of Neochrysocharis formosa (Westwood) (Hymenoptera: Eulophidae), a larval parasitoid of the American serpentine leafminer. Applied Entomology and Zoology, 2004, 39(3): 435-441.
[11]
马卫宾. 植物精油对淡色库蚊的生物活性及天然蚊虫防控剂研发[D]. 杨凌: 西北农林科技大学, 2014: 12-13.
MA W B. Studies on bioactivity of essential oils against Culex pipiens pallens and development of natural mosquito control agents[D]. Yangling: Northwest Agriculture and Forestry University, 2014: 12-13. (in Chinese)
[12]
MATOS A P, OLIVEIRA G, CUNHA S. Insecticidal activity of essential oils from Asteraceae species against Lepidopteras: A review. Acta Brasiliensis, 2023, 7(2): 53-58.
[13]
PABELA R. Possibilities of botanical insecticide exploitation in plant protection. Pest Technology, 2007, 1(1): 47-52.
[14]
殷丽娜, 王丽婷, 杨敏丽. 野西瓜苗挥发油对小菜蛾的活性作用方式. 农药, 2009, 48(8): 617-619.
YIN L N, WANG L T, YANG M L. Action mode of volatile oil of Hibiscus trionum against Plutella xylostella. Agrochemicals, 2009, 48(8): 617-619. (in Chinese)
[15]
VIVEKANANDHAN P, ALHARBI S A, ANSARI M J. Toxicity, biochemical and molecular docking studies of Acacia nilotica L., essential oils against insect pests. Toxicon, 2024, 243: 107737.
[16]
URVASHI, REDDY S G. Chemical profiling, insecticidal and enzyme inhibition activities of Rosmarinus officinalis and Ocimum sanctum against aphid, mealy bug and diamondback moth. Chemistry and Biodiversity, 2025, 22(5): e202402647.
[17]
MAYANGLAMBAM S, RAGHAVENDRA A, RAJASHEKAR Y. Use of Ageratina adenophora (Spreng.) essential oil as insecticidal and antifeedant agents against diamondback moth, Plutella xylostella (L.). Journal of Plant Diseases and Protection, 2022, 129(2): 439-448.
[18]
SILVA M M, CAMARA C A, MORAES M M, MELO J P, SANTOS R B, NEVES R. Insecticidal and acaricidal activity of essential oils rich in (E)-nerolidol from Melaleuca leucadendra occurring in the state of Pernambuco (Brazil) and effects on two important agricultural pests. Journal of the Brazilian Chemical Society, 2020, 31(4): 813-820.
[19]
HUANG X, GE S Y, LIU J H, WANG Y, LIANG X Y, YUAN H B. Chemical composition and bioactivity of the essential oil from Artemisia lavandulaefolia (Asteraceae) on Plutella xylostella (Lepidoptera: Plutellidae). Florida Entomologist, 2018, 101(1): 44-48.
[20]
陈雨婷, 彭财英, 马圆媛, 梁永红, 舒积成. 云南地产10种凤尾蕨属植物挥发油成分分析及其杀虫活性探讨. 中国野生植物资源, 2025, 44(7): 8-14, 36.
CHEN Y T, PENG C Y, MA Y Y, LIANG Y H, SHU J C. Analysis of volatile oil components from 10 Pteris species native to Yunnan and their insecticidal activity investigation. Chinese Wild Plant Resources, 2025, 44(7): 8-14, 36. (in Chinese)
[21]
MATOS L F, BARBOSA D R, DA CRUZ LIMA E, DE ANDRADE DUTRA K, NAVARRO D M, ALVES J L R, SILVA G N. Chemical composition and insecticidal effect of essential oils from Illicium verum and Eugenia caryophyllus on Callosobruchus maculatus in cowpea. Industrial Crops and Products, 2020, 145: 112088.
[22]
CHAUBEY M K. Insecticidal activities of Anethum graveolens L. and Illicium verum Hook. f. essential oils against Sitophilus zeamais Motschulsky. Revista de Ciencias Agrícolas, 2021, 38(1): 38-49.
[23]
WANG G W, HU W T, HUANG B K, QIN L P. Illicium verum: A review on its botany, traditional use, chemistry and pharmacology. Journal of Ethnopharmacology, 2011, 136(1): 10-20.
[24]
PANDIYAN G N, MATHEW N, MUNUSAMY S. Larvicidal activity of selected essential oil in synergized combinations against Aedes aegypti. Ecotoxicology and Environmental Safety, 2019, 174: 549-556.
[25]
PARK C G, SHIN E, KIM J. Insecticidal activities of essential oils, Gaultheria fragrantissima and Illicium verum, their components and analogs against Callosobruchus chinensis adults. Journal of Asia- Pacific Entomology, 2016, 19(2): 269-273.
[26]
FREITAS J P, DE JESUS I L R, CHAVES J K O, GIJSEN I S, CAMPOS D R, BAPTISTA D P, FERREIRA T P, ALVES M C C, COUMENDOUROS K, CID Y P, CHAVES D S A. Efficacy and residual effect of Illicium verum (star anise) and Pelargonium graveolens (rose geranium) essential oil on cat fleas Ctenocephalides felis felis. Revista Brasileira de Parasitologia Veterinária, 2021, 30(4): e009321.
[27]
BRESSANIN G G, DE OLIVEIRA MONTEIRO C M, MARCHESINI P, NOVATO T P, JÚNIOR F E, REZENDE S R, PONTES E G, DE CARVALHO M G, TOMÉ MELO A L, DE SOUZA PERINOTTO W M. Acaricidal activity of essential oils from Curcuma zedoaria and Alpinia zerumbet rhizomes against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). International Journal of Acarology, 2022, 48(1): 61-66.
[28]
LUNA F D, DE SOUZA B A, CAMPOS D R, CAMARGO N S, RIGER C J, CID Y P, SIMAS N K, DE SA BARRETO A, DE OLIVEIRA D G, DE ALMEIDA CHAVES D S. Evaluation of the pulicidal potential of the essential oil of Curcuma zedoaria. Phytochemistry Letters, 2024, 61: 280-285.
[29]
SUTTHANONT N, ATTRAPADUNG S, NUCHPRAYOON S. Larvicidal activity of synthesized silver nanoparticles from Curcuma zedoaria essential oil against Culex quinquefasciatus. Insects, 2019, 10(1): 27.
[30]
PITASAWAT B, CHAMPAKAEW D, CHOOCHOTE W, JITPAKDI A, CHAITHONG U, KANJANAPOTHI D, RATTANACHANPICHAI E, TIPPAWANGKOSOL P, RIYONG D, TUETUN B, CHAIYASIT D. Aromatic plant-derived essential oil: An alternative larvicide for mosquito control. Fitoterapia, 2007, 78(3): 205-210.

pmid: 17337133
[31]
SUTHISUT D, FIELDS P G, CHANDRAPATYA A. Fumigant toxicity of essential oils from three Thai plants (Zingiberaceae) and their major compounds against Sitophilus zeamais, Tribolium castaneum and two parasitoids. Journal of Stored Products Research, 2011, 47(3): 222-230.
[32]
DING C Y, MA Y M, LI B, WANG Y, ZHAO L, PENG J N, LI M Y, LIU S, LI S G. Identification and functional analysis of differentially expressed genes in Myzus persicae (Hemiptera: Aphididae) in response to trans-anethole. Journal of Insect Science, 2022, 22(1): 3.
[33]
王谆静. 储粮害虫植物源熏蒸剂的开发与应用技术研究[D]. 杭州: 浙江农林大学, 2021.
WANG Z J. Research on development and application technology of botanical fumigants of stored grain pests[D]. Hangzhou: Zhejiang A & F University, 2021. (in Chinese)
[34]
DE SOUZA L, CARDOSO M D G, KONIG I F M, FERREIRA V R F, CAETANO A R S, CAMPOLINA G A, HADDI K. Toxicity, histopathological alterations and acetylcholinesterase inhibition of Illicium verum essential oil in Drosophila suzukii. Agriculture, 2022, 12(10): 1667.
[35]
OLIVEIRA H D, BORTOLUCCI W D, SILVA E S, CAMPOS C D, GONCALVES J E, PIAU R, LINDE G A, GAZIM Z C. Bioinsecticide potential of Curcuma zedoaria rhizome essential oil. Bioscience Journal, 2019, 35(4): 1198-1212.
[36]
王荣, 郑瑞瑞, 马力, 郄杏桃, 闫喜中, 郝赤. 5种植物提取物对小菜蛾的生物活性. 山西农业科学, 2024, 52(1): 115-123.
WANG R, ZHENG R R, MA L, QIE X T, YAN X Z, HAO C. Insecticidal activity of five plant extracts against Plutella xylostella. Journal of Shanxi Agricultural Sciences, 2024, 52(1): 115-123. (in Chinese)
[37]
许丽月, 吴忠华, 朱国渊, 张永科, 王进强, 贺熙勇. 杀虫剂对脊胸露尾甲生物活性的测定方法筛选. 农药, 2024, 63(4): 300-303.
XU L Y, WU Z H, ZHU G Y, ZHANG Y K, WANG J Q, HE X Y. Screening of methods for determining bioactivity of insecticides against Carpophilus dimidiatus. Agrochemicals, 2024, 63(4): 300-303. (in Chinese)
[38]
詹丽, 梁宗锁, 于靖, 卢俊, 梁倩. 油茶壳杀黏虫活性成分鉴定及其作用机制. 中国农业科学, 2025, 58(13): 2591-2603. doi: 10.3864/j.issn.0578-1752.2025.13.008.
ZHAN L, LIANG Z S, YU J, LU J, LIANG Q. Insecticidal active component identification of Camellia oleifera shell against Mythimna separata and its action mechanism. Scientia Agricultura Sinica, 2025, 58(13): 2591-2603. doi: 10.3864/j.issn.0578-1752.2025.13.008. (in Chinese)
[39]
SANTANA M L, MELO J P, CAMARA C A, MORAES M M, ARAUJO C A, VASCONCELOS G J, PEREIRA M R, ZARTMAN C E. Lethal and sublethal effects of essential oils from Piper capitarianum Yunck and Piper krukoffii Yunck on Plutella xylostella L. Anais da Academia Brasileira de Ciências, 2022, 94: e20200072.
[40]
REDDY S G, DOLMA S K, KOUNDAL R, SINGH B. Chemical composition and insecticidal activities of essential oils against diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Natural Product Research, 2016, 30(16): 1834-1838.
[41]
王熠, 张利军, 陆俊姣, 闫喜中. 中药白头翁提取物对粘虫和小菜蛾的杀虫活性. 山西农业大学学报(自然科学版), doi: 10.13842/j.cnki.issn1671-8151.202503046.
WANG Y, ZHANG L J, LU J J, YAN X Z. Insecticidal activity of the traditional Chinese medicine Pulsatilla chinensis (Bge.) Regel against Mythimna separata (Walker) and Plutella xylostella (Linnaeus). Journal of Shanxi Agricultural University (Natural Science Edition), doi: 10.13842/j.cnki.issn1671-8151.202503046. (in Chinese)
[42]
HUANG X, DU L J, LIU T T, MA R, LIU X, YUAN H B, LIU S. Insecticidal activity of a component, (-)-4-terpineol, isolated from the essential oil of Artemisia lavandulaefolia DC. against Plutella xylostella (L.). Insects, 2022, 13(12): 1126.
[43]
HUANG X, HUANG Y L, YANG C Y, LIU T T, LIU X, YUAN H B. Isolation and insecticidal activity of essential oil from Artemisia lavandulaefolia DC. against Plutella xylostella. Toxins, 2021, 13(12): 842.
[44]
邓攀博, 蒋海明, 徐永斌, 张金山. 不同生育期盐地碱蓬提取物对小菜蛾的杀虫活性. 天津农业科学, 2024, 30(11): 25-29.
DENG P B, JIANG H M, XU Y B, ZHANG J S. Insecticidal activity of extracts of Suaeda salsa at different growth stages against Plutella xylostella. Tianjin Agricultural Sciences, 2024, 30(11): 25-29. (in Chinese)
[45]
DOLMA S K, SURESH P S, SINGH P P, SHARMA U, REDDY S G. Insecticidal activity of the extract, fractions, and pure steroidal saponins of Trillium govanianum Wall. ex D. Don for the control of diamondback moth (Plutella xylostella L.) and aphid (Aphis craccivora Koch). Pest Management Science, 2021, 77(2): 956-962.
[46]
KOUNDAL R, DOLMA S K, CHAND G, AGNIHOTRI V K, REDDY S E. Chemical composition and insecticidal properties of essential oils against diamondback moth (Plutella xylostella L.). Toxin Reviews, 2020, 39(4): 371-381.
[47]
SONG C F, ZHAO J Y, ZHENG R R, HAO C, YAN X Z. Chemical composition and bioactivities of thirteen non-host plant essential oils against Plutella xylostella L. (Lepidoptera: Plutellidae). Journal of Asia-Pacific Entomology, 2022, 25(2): 101881.
[48]
CHEN Y Z, ZHANG B W, YANG J, ZOU C S, LI T, ZHANG G C, CHEN G S. Detoxification, antioxidant, and digestive enzyme activities and gene expression analysis of Lymantria dispar larvae under carvacrol. Journal of Asia-Pacific Entomology, 2021, 24(1): 208-216.
[49]
AKAMO A J, OLAGUNJU B A, KEHINDE I A, AKAMO N M, OJELABI A O, ETENG O E, OPOWOYE I O, ADEBISI A A, OGUNTONA T S, AKINSANYA M A, ADEKUNBI T S, AJAGUN-OGUNLEYE O M, POPOOLA O E, AKINTUNDE J K, AKINLOYE O A. Chemotherapeutic efficacy of curcumin against plasma and cardio-hepatorenal electrolyte disruption in dichlorvos- challenged rats via augmentation of Na+/K+-ATPase and Ca2+/ Mg2+-ATPase activities. Journal of Trace Elements and Minerals, 2025, 12: 100248.
[50]
LIU X L, XI K Y, WANG Y H, MA J W, HUANG X Z, LIU R, CAI X D, ZHU Y X, YIN J L, JIA Q, LIU Y. Evaluation of the contact toxicity and physiological mechanisms of ginger (Zingiber officinale) shoot extract and selected major constituent compounds against Melanaphis sorghi Theobald. Horticulturae, 2022, 8(10): 944.
[51]
詹丽, 李敬丹, 赵传琦, 梁倩. 蔓长春花对草地贪夜蛾杀虫活性成分及机制研究. 环境昆虫学报, 2024, 46(5): 1201-1212.
ZHAN L, LI J D, ZHAO C Q, LIANG Q. Studies on the insecticidal constituents and mechanism of Vinca major against Spodoptera frugiperda. Journal of Environmental Entomology, 2024, 46(5): 1201-1212. (in Chinese)
[52]
HAO C, HAO W, WEI X, XING L, JIANG J, SHANG L. The role of MAPK in the biphasic dose-response phenomenon induced by cadmium and mercury in HEK293 cells. Toxicology in Vitro, 2009, 23(4): 660-666.

doi: 10.1016/j.tiv.2009.03.005 pmid: 19327394
[53]
PUNIA A, CHAUHAN N S. Effect of daidzein on growth, development and biochemical physiology of insect pest, Spodoptera litura (Fabricius). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2022, 262: 109465.
[54]
张翎. 过氧化氢酶和多粘菌素E协同作用多粘类芽孢杆菌致死机理的研究[D]. 杭州: 浙江工业大学, 2016.
ZHANG L. Mechanisms of synergistic effect on cell death induced by colistin and catalase in Paenibacillus polymyxa[D]. Hangzhou: Zhejiang University of Technology, 2016. (in Chinese)
[1] LI Lin, ZHANG YuanZhen, YAN WenYing, ZENG Lu, PANG Rui, XU XiaoXia, JIN FengLiang. The Role of miR-6497-x in Regulating the Reaction of Plutella xylostella to Fungal Infection [J]. Scientia Agricultura Sinica, 2025, 58(8): 1550-1563.
[2] HE JiaoPing, HAN Meng, ZHOU Ting, GU Gang, LAI YuFei, LAI RongQuan. Effects of Wild Populations for Hybridization and Outdoor Population Exercise on the Parasitic Ability of Aphidius gifuensis and Enzymes Related to the Growth and Development [J]. Scientia Agricultura Sinica, 2025, 58(7): 1344-1354.
[3] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[4] LI JianKun, PENG Chao, ZHANG ZiYang, LIANG Xi, WEI MingKang, YANG Qiang, LI BinQi, Muhammad Moaaz Ali, Viola Kayima, CHEN FaXing, DENG HongHong. Dynamics of Fruit Hollowness and Browning and Associated Lignin Accumulation and Its Genome-Wide Identification of Ps4CL Gene Family in Huangguan Plum [J]. Scientia Agricultura Sinica, 2025, 58(4): 759-778.
[5] QIN Jiaxin, OU LüSuo, XU ChenXi, ZOU YunQian, LU ChengQue, ZHU Feng, XU RangWei, CHEN XiangLing, QIN KeFeng, LI GuoGuo, CHENG YunJiang. Effect of Fluroxypyr-Meptyl on the Quality of Orah Mandarin During On-Tree Preservation [J]. Scientia Agricultura Sinica, 2025, 58(19): 3970-3984.
[6] LIU WenLong, CHANG YiFang, LI WenYu, SUN LiJuan, ZHENG ChangYing. Effects of Drought Stress During the Pupal Stage on Mating Behavior and Sensitivity to Lufenuron in Bradysia odoriphaga [J]. Scientia Agricultura Sinica, 2025, 58(14): 2793-2804.
[7] XUAN ZePeng, FENG HuiYao, CHEN MeiQi, XU JiSheng, LIU MengXuan, ZHAO BingZi, ZHANG JiaBao. Effects of Straw Returning Combined with Chemical Fertilizer on Soil Ecosystem Multifunctionality [J]. Scientia Agricultura Sinica, 2025, 58(14): 2821-2837.
[8] ZHAN Li, LIANG ZongSuo, YU Jing, LU Jun, LIANG Qian. Insecticidal Active Component Identification of Camellia oleifera Shell Against Mythimna separata and Its Action Mechanism [J]. Scientia Agricultura Sinica, 2025, 58(13): 2591-2603.
[9] ZHANG XinYao, WANG Ping, LIU YaLong, WANG JingKuan. Soil Enzyme Activities and Their Stoichiometry Under Prolonged Rice Cultivation [J]. Scientia Agricultura Sinica, 2025, 58(13): 2604-2613.
[10] LI AoGui, CHEN YaRu, PENG ZiYang, RU JingYi, LIU WeiXing. Litter Decomposition Characteristics of Steppe Ecosystems with Different Precipitation Gradients [J]. Scientia Agricultura Sinica, 2025, 58(1): 117-126.
[11] GAO YaFei, ZHAO YuanBo, XU Lin, SUN JiaYue, XIA YuXuan, XUE Dan, WU HaiWen, NING Hang, WU AnChi, WU Lin. Long-Term Sphagnum Cultivation in Cold Waterlogged Paddy Fields Increases Organic Carbon Content and Decreases Soil Extracellular Enzyme Activities [J]. Scientia Agricultura Sinica, 2024, 57(8): 1533-1546.
[12] GUO Ya, REN Hao, WANG HongZhang, ZHANG JiWang, ZHAO Bin, REN BaiZhao, LIU Peng. High Temperature and Drought Combined Stress Inhibited Photosystem Ⅱ Performance and Decreased Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4205-4220.
[13] SHAO JiaZhu, LÜ Wen, LIAO XinLin, YUAN XinYu, SONG Zhen, JIANG DongHua. Isolation and Identification of Soybean Rhizosphere Growth-Promoting Bacteria and Their Salt Tolerance and Growth-Promoting Effects [J]. Scientia Agricultura Sinica, 2024, 57(21): 4248-4263.
[14] ZHANG Yi, LIU Ying, CHENG CunGang, LI YanQing, LI Zhuang. Effects of Combined Application Proportion of Cow Manure and Chemical Fertilizer on Soil Organic Carbon Pool and Enzyme Activity in Apple Orchard [J]. Scientia Agricultura Sinica, 2024, 57(20): 4107-4118.
[15] YANG HaoRong, JIA Fan, HU Xu, MU Rong, LIU WeiNa, LIU ChangYun, WANG ShanZhi, SUN XianChao, MA GuanHua, CHEN GuoKang. BnJAZ7 Promotes Sclerotinia sclerotiorum Infection by Affecting the Antioxidant Pathway in Brassica napus [J]. Scientia Agricultura Sinica, 2024, 57(19): 3799-3809.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!